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Global degenerating families with
periodic monodromies

By

Takayuki OKUDA*

Abstract

We prove that, given N powers of one surface periodic mapping class, if their composi-
tion coincides with the identity, then there exists a degenerating family of Riemann surfaces
over a Riemann surface of arbitrary genus k with N singular fibers whose local monodromies
correspond to the given N mapping classes respectively. We also show that, in the case
(N,k) = (2,0), the degenerating family constructed by our method has n (—1)-sections if
the given mapping classes have n fixed points.

§1. Introduction

It is known that the topological types of minimal degenerations of Riemann surfaces
of genus at least two are in a bijective correspondence with the conjugacy classes in the
surface mapping class group represented by pseudo-periodic maps of negative twist,
via topological monodromy. Earle-Sipe [1] and Shiga-Tanigawa [6] showed that the
topological monodromy of any degeneration is represented by a pseudo-periodic map of
negative twist. The converse of this result was demonstrated by Matsumoto-Montesinos
[4]. Namely, given a pseudo-periodic mapping class f of negative twist, they construct
a degeneration with singular fiber whose topological monodromy coincides with [f] up
to conjugacy. Their argument is quite topological, based on open book construction. On
the other hand, Takamura [7] gave another algebro-geometric construction, called cyclic
quotient construction.

In this paper, we consider global cases. A global degenerating family (or simply,
degenerating family) of Riemann surfaces of genus g > 1 is a proper surjective holomor-
phic map 7w : M — S from a compact smooth complex surface M to a compact Riemann
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smooth complex surface M
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Riemann sphere S

Figure 1. An example of a degenerating family of Riemann surfaces of genus
three over the Riemann sphere with two singular fibers.

surface S such that all but finitely many fibers are smooth complex curves of genus g.
We call the fibers over the singular values sq, ss,...,sy € S of 7w the singular fibers. If
S is the Riemann sphere, then the composition of the topological monodromies around
N singular fibers (precisely, with respect to IV loops in S going around each s; once
in the counterclockwise direction with a base point *) coincides with the identity. This
gives us the following natural problem: Is there always a degenerating family of Rie-
mann surfaces over the Riemann sphere with N singular fibers whose local monodromies
respectively correspond to the given pseudo-periodic mapping classes [fi],[fz], ..., [f~]
of negative twist satisfying [f1] o [f2]o---o[fn] =17

In Section 2, we begin with the review of cyclic quotient construction for degener-
ations of Riemann surfaces with periodic monodromy. After that, we give a solution to
the above problem for the case N = 2. To be precise, we show that, given two periodic
mapping classes [f1] and [f2] satisfying [f1] o [f2] = 1, there exists a degenerating family
of Riemann surfaces over the Riemann sphere with two singular fibers whose local mon-
odromies respectively correspond to [fi] and [f2] (Proposition 2.5). See Figure 1. Note
that two pseudo-periodic mapping classes [f1] and [f2] of negative twist are periodic if
[file[fo] = 1.

Section 3 is devoted to the review of the total valency for periodic maps. Using
this concept, in Section 4, we generalize the statement of Proposition 2.5. We prove
that, given N powers [fi1],[f2],...,[fn] of one periodic mapping class [f] satisfying
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[fi]o[fz] o - o[fn] =1, there exists a degenerating family of Riemann surfaces over a
Riemann surface of arbitrary genus k with N singular fibers whose local monodromies
respectively correspond to [fi],[f2],- .-, [f~] (Theorem 4.4). Note that, assuming that
(N, k) = (2,0), we obtain Proposition 2.5. This result may be known to experts, but we
can apply this construction to the case for “degenerating families of complex manifolds”.
See Proposition 4.5.

The total valency also plays a very important role when we clarify the total spaces
and the singular fibers of degenerations of Riemann surfaces. See [4], [7]. In the remain-
ing part of this paper (Sections 5-7), by the similar argument to that used in [7], we
explicitly describe the degenerating families of Riemann surfaces constructed in Propo-
sition 2.5. In particular, we show that, such a degenerating family has n (—1)-sections
(holomorphic sections with self-intersection number —1) if the given periodic mapping
classes have n fixed points (Theorem 7.3).

§ 2. Global cyclic quotient construction (special case)

Let us begin with the review of cyclic quotient construction for degenerations of
Riemann surfaces with periodic monodromies.

Let ¥ = ¥, be an oriented closed real surface of genus g and let [f] be a periodic
mapping class of ¥ of order m (so [f]" = 1). By Kerckhoff’s theorem [3], there exists
a complex structure on ¥ and a periodic automorphism of the Riemann surface ¥ that
represents [f]. We denote the automorphism by f again. We consider an automorphism
~v of ¥ x C given by

(2.1) v (2,t) — (fH(2),wt),

where w := ¢2™V=1/m_ The cyclic group G generated by v, which is of order m, acts on
Y. x C. Then we obtain the quotient space (X x C)/G of ¥ x C under the group action
of G. Note that the complex surface (¥ x C)/G is not necessarily smooth. In fact, it
may possibly have cyclic quotient singularities, which are contained in (X x {0})/G.
Let v : M — (X x C)/G be the resolution map that resolves all the cyclic quotient
singularities of (X xC)/G minimally. We next define a holomorphic function ¢ : ¥ xC —
C by ¢(z,t) := t"™. Since ¢ is G-invariant, it descends to a holomorphic function
? : (¥ x C)/G — C. By construction, we see that general fibers g 1(s), s # 0,
are identical to X, and that the monodromy automorphism around the central fiber
7 1(0) (= (X x {0})/G) coincides with f. Noting that v maps M \ t~1(71(0)) to
(X x C)/G) \ p*(0) isomorphically, we have the following.

Lemma 2.1.  The composition map w := pot : M — C is a degeneration of
Riemann surfaces of genus g, and the monodromy automorphism around the central
fiber 7=1(0) coincides with f.
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Moreover, we see that the degeneration m : M — C is linear. (For details, see
[7]. We can find the definition of linear degenerations in [8], §15.1.) Thus we obtain
Takamura’s theorem for periodic case.

Theorem 2.2 ([7]).  For a periodic mapping class [f] of ¥4 (g > 1), there exists
a linear degeneration of Riemann surfaces of genus g such that the topological mon-
odromy around the singular fiber corresponds to [f].

Before proceeding, we give an alternative definition of the above degeneration w :
M — C as follows. Let ® : ¥ x C — C denote the second projection. Then @ is
compatible with the G-action, that is, the following diagram is commutative:

EXCL)(C

vl l“'

EXCL)(C

Thus ® determines a holomorphic map ® : (X x C)/G — C/(w). Then we see that
®: (¥xC)/G — C/{w) (= C) coincides with 3 : (X xC)/G — C. In fact, ¢ : ExC — C
is factorized as ¢ = v o ®, where v : C — C is given by v(t) = t". Since the diagram

uxC -2, ¢c Y5 C
dl ]
uxC -2, ¢c Y5 C

is commutative, we have = 7 o ®, where ¥ : C/(w) — C is the holomorphic function
determined by v. Note that 7 gives an isomorphism between C/(w) and C. Under
this identification, ® : (X x C)/G — C coincides with % : (X x C)/G — C. Then the
composition ® ot : M — C is nothing but the degeneration 7 : M — C in Lemma 2.1.
Thus we have the following.

Lemma 2.3. Let G be the cyclic group generated by v, where v is an automor-
phism of X xC given by (2.1). Let ® : (¥ xC)/G — C/{w) be the holomorphic map deter-
mined by the second projection ® : X xC — C, and letv: M — (¥ xC)/G be the minimal
resolution map of (X x C)/G. Then the composition map 7 := ®ovr: M — C/(w) (= C)
s a degeneration of Riemann surfaces whose monodromy automorphism coincides with

f.

Remark.  Note that the base space of the degeneration obtained in Lemma 2.3
is C. For any open disk A in C centered at the origin, we obtain a degeneration of
Riemann surfaces over A satisfying the same conditions as those of 7, by taking the
restriction 7 : 71 (A) — A of 7.
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We now construct a degenerating family of Riemann surfaces of genus g over the
Riemann sphere with exactly two singular fibers. We will consider more general case in
Section 4. We show the following.

Lemma 2.4.  Let f be a periodic automorphism of a Riemann surface ¥ = 3,
of genus g > 1. Then there exists a degenerating family of Riemann surfaces of genus g
over the Riemann sphere with two singular fibers whose local monodromies respectively
correspond to f and f~1.

Proof. Let Cy and Co be two copies of C, and let S (= CP!) be the Riemann
sphere with the standard open covering S = Cy U Co, by identifying t € Cp \ {0} and
t' € Coo \ {0} via t' = 1/t. We denote 0 € Co, by oo as usual. Denote by m the order
of f. We consider an automorphism + of ¥ x S given by

Y(z,t) = (fH(z),wt), (z,t) € ¥ x C,y,
y(z, ') = (f_l(a:),w_lt’) , (x,t') € ¥ X Cpo,

where w 1= ¢2™V=1/m_ Then the cyclic group G generated by v acts on X x S. Note
that all the singularities of the complex surface (X x S)/G, if exist, are cyclic quotient
singularities contained in (X x {0}) /G U (X x {o0}) /G. Let v : M — (X% 5)/G be the
minimal resolution map. We next define two holomorphic functions ¢ : ¥ x Cy — C
by p(z,t) :=t™ and ¢’ : ¥ X Cop = Coo by ¢'(x,t') := (t')™. They together determine
the holomorphic map from 3 x S to S, denoted by ¢ again. Since ¢ : X x § — S is
G-invariant, it descends to a holomorphic map @ : (X x S)/G — S.

We now consider the composition map m:=pot: M — S. Set Xo := 7 1(0) and
Xoo := 7 1(0). Note that M \ X = 7 1(Cq) and M \ Xg = 7 1(Co). By Lemma
2.1, the restriction 7 : 771(Cg) — Cy is a degeneration of Riemann surfaces of genus
g with singular fiber Xy whose monodromy automorphism coincides with f. On the
other hand, the restriction m : 77}(Cy) — Cu is a degeneration of Riemann surfaces
with singular fiber X, whose monodromy automorphism coincides with f~!. In fact,

! as another generator of G, which acts on ¥ x C,, by

vty = ()

Applying Lemma 2.1 to the case f is f~!, we see that the monodromy automorphism
around the singular fiber X, of 7 : ﬂ_l(Coo) — Co coincides with f~!. Therefore

we can take v~

! (a:),wt') , (2,t) € T X Cwo.

m: M — S is the desired degenerating family. O
By Lemma 2.4, we have the following.

Proposition 2.5.  Let [fi] and [f2] be periodic mapping classes of ¥4 satisfying
[fi] o [f2] = 1. Then there exists a degenerating family of Riemann surfaces over the
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Riemann sphere with two singular fibers whose local monodromies respectively correspond

to [f1] and [f2].

§ 3. Total valencies of periodic maps

This section is devoted to review of the total valencies of periodic maps. Let
f ¥ — ¥ be a periodic map of an oriented closed real surface ¥ = ¥, of genus g > 1.
In what follows, we regard f as a periodic automorphism of a Riemann surface ¥ as in
the previous section. We denote its order by m.

A point z of ¥ is a multiple point of f if the least positive integer ¢ that satisfies
fé(x) = x is less than m. In this case, we call ¢ the recurrence number of x. Then
f¢ preserves a small disk centered at x and acts on it as a rotation of order [, where
[ :=m/c. We assume that the action of f¢ is the rotation of angle 27b/l in the clockwise
direction, where b is a positive integer less than and relatively prime to [. Let ¢ be the
least positive integer that satisfies bg = 1 mod [. We call the irreducible fraction ¢/l the
valency of the multiple point x.

We next consider the quotient map 1y : ¥ — ¥ := X/(f) of ¥ under the cyclic
group action generated by f. We denote by My the set of all the multiple points of
f, and set By := 1y(My). Then 9 is an m-fold cyclic covering branched at Bjy.
Say By = {p1,p2,...,pn}, the branch points of 1;. For each branch point p; € By,
Jj =1,2,...,n, take a ramification point p; € w;l(pj) over p;. Since p; is a multiple
point of f, we have the recurrence number ¢; and the valency g;/l; of p;. Note that ¢;
and ¢;/l; do not depend on the choice of a ramification point p;. The valency of the
branch point p; is defined to be g¢;/l;.

The (n + 2)-tuple
(goms 22 2 )
T,
is called the total valency of f. By the following theorem, the total valency determines
a periodic map up to conjugacy.

Theorem 3.1 ([5]). Let f and f’ be two periodic maps of £, with total valencies

(g.mia1/liq2/l2, - qn/ln) and (g, m's ¢4 /15, 45/15, . .. @), /1)) respectively. Then f is
conjugate to ' if and only if the following conditions are satisfied.

(1) The orders of f and f' coincide, that is, m = m’.

(2) the cardinalities of the branch loci By and By coincide, that is, n =n'.

(3) For each j =1,2,...,n, the valencies of branch points p; and p} coincide, that is,
a;/l; = 4;/1;,

under a successive change of numbering on the branch points if necessary.
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Let k denote the genus of ¥ := X/(f) and set §; := ¢;q; for j = 1,2,...,n. In what
follows, we use the expression

[kamv 017927 s 7017,]

of the total valency in place of (k,m;q1/l1,q2/1l2,...,qn/ln). The following is known.
(For example, see [2].)

Proposition 3.2.  Let k be a nonnegative integer, and let m and n be positive
integers greater than one. Let 01,05, ...,0, be positive integers less than m. Then there
exists a periodic map f of ¥, with total valency [k, m;61,02,...,60,] if and only if the
following conditions are satisfied:

(i) 01+ 02+ -+ 6, =0 mod m.

(ii) If k =0, then n > 3 and ged(m, 01,05, ...,0,) = 1.

(iii) 29 —2=m(2k —2) + Z(m — ¢j), where ¢; = ged(m, 0;).
j=1

This proposition immediately yields the following.

Lemma 3.3. Let k be a nonnegative integer, and let m and n be positive integers
greater than one. Let 01,04, ...,0, be positive integers less than m. Then there exists a
positive integer g and a periodic map f of an oriented closed real surface ¥ of genus g
with total valency [k, m; 01,02, . ..,0,] if and only if the following conditions are satisfied:

(I) 61 +02+---+ 6, =0mod m.

(IT) If k=0, then n > 3 and ged(m, 0,04, ...,0,) = 1.

In this case, the genus g of ¥ is given by the equation (iii) in Proposition 3.2.
The following lemma is clear:

Lemma 3.4.  Let f be a periodic map of an oriented closed real surface ¥ = 3,
of genus g with total valency [k, m; 01,0, ...,0,]. Then the following hold:

(1) The order of f~! is m, and the multiple points of f~! coincide with those of f.

(2) The quotient space X3/(f~1) is identical to X/{f), and the branch points under the
quotient map Yy-1 : XL — S/{fY) coincide with those under 1y : ¥ — B/{f).

(3) For each branch points p;, j = 1,2,...,n, if the valency of p; with respect to f is
q;/l;, then the valency of p; with respect to =1 is (I; — q;)/1;.
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In particular, the total valency of f~' is given by [k,m;m — 60y, m — 0, ..., m — 0,].

§4. Global cyclic quotient construction (general case)

In this section, we will generalize the statement of Proposition 2.5. Let f be a
periodic automorphism of a Riemann surface ¥, of genus g > 1 and denote its order by
m > 2. We construct a degenerating family of Riemann surfaces of genus g such that
the local monodromy automorphisms around the singular fibers correspond to powers
of f whose composition is the identity.

First, take another Riemann surface ¥; of genus h > 1 and a periodic automor-
phism p of 3, of order m. We consider an automorphism v of ¥, x ¥j given by

v (x,y) — (f_l(ili),u_l(y)) :

Clearly its order is m. The cyclic group G generated by v acts on ¥, x ¥j;. Let
¢ : ¥, x X — X, denote the second projection of X4 x 3j,. Then ® is compatible with
the actions of G and (u), where (u) denotes the cyclic group generated by p. In fact,
for another generator u~* of (i), the following diagram is commutative:

Sy X Sp —— %,

Ll

Sy X Sp —— S

Then the projection map ® determines a holomorphic map ® : (3, x X) /G — X5 /{p).
Note that the quotient space (X4 x X3) /G is a complex surface with (at most) cyclic
quotient singularities, while ¥j, := ¥;/(u) is a smooth complex curve (that is, a
Riemann surface). Let v : M — (¥, x X;) /G be the minimal resolution map of
(¥, X ¥1,) /G. Then we obtain the composition map 7 := ®ov: M — X5, /().

We will show that the holomorphic map 7 : M — X, is a degenerating family of
Riemann surfaces of genus ¢ over the Riemann surface ¥j, such that the local monodromy
automorphisms around its singular fibers are powers of f. Recall that the quotient map
Yy o X — 5, is an m-fold cyclic branched covering. Let pi,pa,...,pn € %5 be the
branch points under v¢,,. As we see below, they coincide with the singular values of .

Lemma 4.1.  Let A be an open disk contained in Xp, \ {p1,p2,...,pn}. Then
the restriction m : 71 (A) = A is a trivial degeneration of Riemann surfaces of genus

g.

Proof. Noting that A does not contain any branch points of the quotient map
Y, X — Sp, the inverse image @b;l(A) is the disjoint union of m open disks in X,
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say A1, Aq, ..., A,,. Clearly
(AT UAY U UA) = (B, x AU (B x Ag) U=+ U (X x Apy).

The action of G permutes ¥y X Ay, X, x Ay, ..., X, X Ay, while that of (1) permutes
Ay, As, ..., A, Then the diagram

(Sg X AU (Sg X Ag) L+ (S X Apy) —— Ay UASU---UA,,

/e | Iz

S, x A SN A

1

is commutative, which means that ® (A) = ¥, x A and that the restriction ® :
—1

® (A) — A is the natural projection. Since ¥, x A is smooth, the restriction t :
v (2, x A) = ¥, x A of the resolution map is trivial. Thus 7= 1(A) (=t 1(Z, x A))
is identical to X, x A and the restriction 7 : 7~ 1(A) — A is the natural projection,
which confirms the assertion. O

For each j =1,2,..., N, let ¢;/l; be the valency of the branch point p;. We denote
the total valency of u by

m:m;017027"'70N] .

Recall that h denotes the genus of the Riemann surface ;. We may assume that

if necessary, under a successive change of numbering on the branch points. Setting
¢; = ged(m,0;), we have m = ¢;l; and 6; = ¢;q;. Note that ¢; is nothing but the
recurrence number of a ramification point of p; under v, (equivalently, the cardinality
of the inverse image 7, (p;)).

Lemma 4.2.  Let A be a small disk neighborhood of the branch point p; in Sh.
Then the restriction 7 : 7~ 1(A) — A is a degeneration of Riemann surfaces of genus g
whose monodromy map coincides with % .

Proof. Where ¢; is the recurrence number of a ramification point of p; under
Y, 0 B — 3, the inverse image w;l(A) of A is the disjoint union of ¢; open disks in
Yh, say Ay, Ag, ..., A, . Clearly

d! (Eluﬁgu---u&]) — (Eg ><£1> L (Eg ><82> U--- U (Eg xﬁcj).

Let b; be the least positive integer such that bjq; = 1 mod [;, where ¢;/l; is the
valency of p; (so it is a irreducible fraction). Recall that the cyclic group (u) generated
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by % acts on each disk &z as a rotation of angle 27b;/l; in the clockwise direction.
Namely pu% : A; — A; is explicitly given by

qu (t) — 6_27T\/__1bj/ljt.

Note that Ay /(% ), Ay (u), . .., Ecj /{p<) are all identical to A. Clearly the quotient
group (1) /{11 acts as the permutation of Ay / (%), Ay /(). . .. ,&cj/(/fj). Similarly,
we consider the subgroup G; of G generated by v, which acts on each ¥, x A,. The
action is explicitly given by

Vi (2, y) = (f~9(x), 9 (y))
_ (f—cj (:l'}), 6271'\/—_1bj/ljt> )

On the other hand, the action of the quotient group G/G; on [[;Z, ((Eg X ﬁz)/Gj) is
defined as the permutation induced by the G-action. Noting that ® is compatible to
the actions of G; and (u®), we then obtain the following commutative diagram:

Hfil (Eg X ZZ) s Hzcjzl 81

/s | [ e
[ (2 x A0)/65) ARSI
/(6/65) | | s

(8, x A)/G; —2— A.

Take another generator v%% of G;. Since 0; = c¢jq; and b;q; = 1 mod [, we have
9 (2, y) = (f o9 (), 2V Tbs0s /s t)
— (f—ej (x),eQN\/—_l/ljt> .

Applying Lemma 2.3 to the case that G (resp. ) is G; (resp. Y% ), we see that
the composition map m; := P o v; + M; — A with the resolution map v; : M; —
(X4 X A;)/ G of (X, x A;)/ G; is a degeneration of Riemann surfaces of genus g whose
monodromy automorphism coincides with f%. (See also Remark below Lemma 2.3.) By
construction, 7~ *(A) is identical to M; and the restriction 7 : 7~ 1(A) — A coincides
with m; : M; — A, which confirms the assertion. O

From Lemma 4.1 and Lemma 4.2, we obtain the following.

Lemma 4.3.  The holomorphic map ™ : M — Xy is a degenerating family of
Riemann surfaces of genus g that has N singular fibers over p1,psa,...,pn. Moreover,
for the branch point, p;, j =1,2,...,N, the local monodromy around the singular fiber
over p; corresponds to fo .
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We now show the main theorem.

Theorem 4.4.  Let [f] be a periodic mapping class of ¥4 and [fi],[f2], ..., [fn]
(N > 2) be powers of [f] satisfying [f1] o [f2] o --- o [fn] = 1. Then there exists a
degenerating family of Riemann surfaces of genus g over a Riemann surface of arbitrary
genus k > 0 with N singular fibers whose local monodromies respectively coincides with

[f1]; [f2]s -, [fN] up to conjugacy.

Proof. By Kerckhoft’s theorem, there exists a complex structure on X, and a
periodic automorphism f of the Riemann surface ¥, such that f represents [f]. Denote
the order of f by m, so f™ =idy,. Since [f1],[f2],....[fn] are powers of [f], for each
j=1,2,...,N, we write as [f;] = [f]® where 0; is a positive integer less than m. In
particular, we take a representative f; = f% of [f;].

In what follows, we assume ged(61,6s,...,0n) = 1. If d := ged(64,602,...,0N) > 2,
then we consider an alternative periodic automorphism f¢ in place of f. Setting 93 =
6;/d and m’' := m/d, since f; = (fd)eg‘ and ged(0,05,...,0%) = 1, we can also apply
the following argument to this case.

Take an arbitrary nonnegative integer k& (which will be the genus of the base space
of the resulting degenerating family). We first assume that (N, k) = (2,0). Note that,
since f o fo = idg,, we have f; = f and f; = f~1, by permutation of subscripts if
necessary. Then, by Lemma 2.4, there exists a degenerating family of Riemann surfaces
of genus g over CP! with two singular fibers whose local monodromies respectively
correspond to f1 and fs, which confirms the assertion.

We next consider the case that (IV, k) # (2,0). Since fio foo---0 fy =1, the sum
0, + 65 + -+ Oy is a multiple of m, equivalently,

014+ 60+ -+ 60x = 0mod m.

From Lemma 3.3, there exists a positive integer h and a periodic map p of an oriented
closed real surface ¥j of genus h such that the valency of y is

[k,m; 91,02,...,91\[] .

By Kerckhoft’s theorem again, we regard X5 as a Riemann surface of genus h and p as
a periodic automorphism of ;. We set %, 1= 3, /(11).

The projection map ® : ¥, x ¥;, — ¥, which is compatible with the G-action,
determines a holomorphic map ® : (3, x 3,) /G — ¥, = %, /{u). Let v : M —
(X4 x Xp) /G be the resolution map of (X, x X) /G that resolves its quotient singular-
ities minimally. we then obtain the composition map 7 := ®ot: M — ¥j. By Lemma
4.3, we see that m : M — X is a degenerating family of Riemann surfaces of genus
g that has N singular fibers whose local monodromies correspond to ff1, f02 ... fox
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respectively. Recall that f; = f% for each j = 1,2,...,N. Thus 7 is the desired
degenerating family. O

By the similar argument to that for the proof of Theorem 4.4, we can show the
following.

Proposition 4.5.  Let f be a periodic automorphism of a complex manifold Z,
and let f1, fo,..., fn (N > 2) be powers of f satisfying f1 0 faoo---o fy =idgz. Then
there exists a degenerating family of complex manifolds (identical to Z) over a Riemann
surface of arbitrary genus with N singular fibers whose local monodromies respectively
coincide with f1, fa,..., fn-

§5. Patching of two degenerations (core part)

The remaining part of this paper is devoted to describing the total space of the
degenerating family = : M — S over the Riemann sphere S with two singular fibers
obtained in Lemma 2.4, that is, we consider the case (N, k) = (2,0). Recall that, where
the Riemann sphere S has the standard open covering S = Cy U C,, the restriction
7w H(Co) = Cq (resp. 7 : 7 1(Cs) — Cu) is a (linear) degeneration of Riemann
surfaces of genus g whose singular fiber X (resp. X ) has the monodromy automor-
phism f (resp. f~!). To be precise, by using the concept of the total valency again,
we will clarify the gluing map F : 7 1(Co) \ Xo = 7 1(Coo) \ Xoo of the two linear
degenerations, that is, the biholomorphic map that commutes the following diagram:

7 HCo) \ Xo —— 71(Coo) \ X oo

Co\ {0}  — = Cw\ oo},
where £(t) = 1/t.
For the periodic automorphism f of the Riemann surface ¥ = X, of genus g, denote

by ¢y : ¥ — 3 := ¥/(f) the quotient map under the cyclic group action generated by
f,and let By = {p1,p2,...,pn} be the set of the branch points of ¢y. We set

S =5\By, ¥ =3\¢;N(By).

For each branch point pj, j = 1,2,...,n,let pj1,Dj2,...,Dj., be the ramification points
over p; under vy, where ¢; is the recurrence number of them. Take a small disk A; in
Y centered at p;. Then we have zDJIl(Aj) = A1 UAj U UA; ., where each Aj;
(t=1,2,...,¢5) is an (f%)-invariant open disk in ¥ centered at p;,. Note that

sos (U a), seso(UL L A).
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Then we see that (X x S)/G consists of two parts as follows:

(X x 8)/G = (3% x S) /GU (|_|";:1 Y R x S) /G

i=1

We call L :=t71 ((X% x 8) /G) the core part of M, and N := v~1 ((|_|” 3“ X S) /G)
the branch part of M. Since (£ x S) /G is smooth, the restriction of t to the core part
is an isomorphism (so L = (X* x S) /G).

Here we consider a subset

LO = (EX X Co)/G

of L := (¥* x §)/G. We see that Ly is a flat line bundle on " and the bundle
projection p : Lo — % is given by p([z,t]) = [z] for (z,t) € % x Cy. Moreover, for
each branch point p; € X of 9, setting A; = Aj \ {p;}, the restriction L0|ij of Ly
to A;( is a flat line bundle on A;(. Note that Lo A% is isomorphic to the trivial bundle
A;( x C, but this bundle isomorphism is not a canonical one. Then, where the valency
of p; is q;/l;, the holonomy of the flat line bundle Lo| A% is given by multiplication by
e2™V=14;/li In fact, L0|ij is given by (K;(Z X (C) /G, where G is the subgroup of G
generated by
VI () > (f7% (@), XYL/ My,

Recall that f% acts on A ]><l as the rotation of angle 27b;/l; in the clockwise direction,
where b;q; = 1 mod [; holds. Thus

,ij (Cl?,t) — (ezﬂ\/__lbj/lja:,QQW\/__l/ljt),

and G is also generated by

NI (2, ) — (62“‘/__1/ljx,62”‘/__1qj/ljt).

Accordingly, we can take such “coordinates” (Z, () of Lo Ax (where Z is the base coordi-
J

nate and ( is the fiber coordinate) that ¢ is multiplied by e2™V=14/li a5 7 goes around
p; once in the counterclockwise direction. These coordinates (%, () on Lo| ax are called
the flat coordinates.

Note that Lo| A is smooth. Under identifying t=! (Lo ij) with Lo| INT the restric-
tion 7 : L0|ij — Cy of 7 is given by

-m

(5.1) (2, =C( .

We thus see that 7 : Lo|yx — Co is a degeneration with the singular fiber
J

XO = mAJX,
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where m is the multiplicity of Af.
By the same argument as above, setting

Lo = (X" xCy)/G,
a subset of L = (3 x S)/G, we see that L is a flat line bundle on ¥ and that for each

branch point p; € > of Yy, the restriction Loo|,x is a flat line bundle on A; whose
J

holonomy is is given by multiplication by 2™V ~1(i=%)/Li (by Lemma 3.4). Moreover,
the restriction 7 : t™ (Lo s x) (2 Loo|px) — Coo is given by
J J

;= —n\m
~(2,0)=(¢)
where (2’, Z/) is the flat coordinates of L] x, and it is a degeneration with the singular
J
fiber X = mAjX.
Let us return to the gluing map F : 7 1(Co) \ Xo — 7 1(Cs) \ Xoo. Here we

restrict it to the core part, that is, we consider F': Lo\ Xo — Loo \ Xoo. It is clear that,
for each j =1,2,...,n, Lo|,x and L, x, are patched via F as follows.
J J

Lemma 5.1.  For each j =1,2,...,n, the restriction F : Lo|xx \ Xo = Loo|px \
J J
Xoo of the gluing map F' is given by

(5.2) F:7=% ¢C =1/

where (Z,¢) and (Z' ,Z/) are the flat coordinates of Lo A and Lo Ax respectively.
Note that Lg| Ax can be identified with the trivial bundle A;( x Cp via
Z=2, (=24l

where (z,() € L0|ij and (z,¢) € AY x Co. Thus, by (5.1), we have

m(z,¢) =2%¢™, (2,¢) € Aj x Co,
since mgq;/l; = cjq; = 0;. On the other hand, Lo| Ay can be identified with the trivial
bundle ij x Coo via

=4, T =()blig,
where (2/,2/) € Loo|ij and (2/,(") € A x Cu, and we have
w2, ¢") = ()"H()", () € A) x C

We see that (2,¢) € AF x (Co\ {0}) and (2',¢") € AF x (Cu \ {0}) are patched by

2=z (¢ =z1¢h
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In fact, by (5.2), we have
¢ = (g/)—(lj—qg')/ljzl — g—(lj—qg‘)/ljz_l — = 5=4;)/1; (zqg'/lj<>_l =z 1¢

Lemma 5.2.  Under identifying the flat line bundle Lo|xx (resp. Loo|sx) with
J J

the trivial bundle A;( x Co (resp. A;( X Cx), the restriction F : L0|ij \ Xo — Loo|ij \
Xoo of the gluing map F' is given by

F:2=2 (=211

where (2, () (resp. (2,(")) are the natural coordinates of A x Co (resp. AT x Coy).

§6. Patching of two degenerations (branch part), 1

Keep the notations in the previous section. We will reconstruct the branch part N
of the top space M of degenerating family 7: M — S.
First recall that N is the minimal resolution of

(L L, B s) r6 = LI, (UL, Bas x 5) /6)
For each j =1,2,...,n, we set N := ¢! ((|_|f’=1 ﬁaz X S) /G) Then we have
N=NO N ...y N®)

We next consider the Subgroup G of G generated by v“/. Then the quotient group G/G;
of order ¢; acts on |_|Z 1 AJ i X S as the permutation of A] 1 XS, AJ 9 X S,. Aj,c] x S.
We then obtain the commutative diagram

|_|:J=1 Ej,i x S M &j x S

/e | | v

(L2 Bsi x 8) /G —=— (8% 5) /Gy,

Under the identification via this isomorphism, we have N() = ¢—1 ((ﬁj X S> / Gj>.
Set Néj) = 717 1(Cy) N NV and N = 77 (Coo) N N 50 that NU) = Néj) uNgD.
Since (&7 X S) /G = (&7 X (Co) /G U (&7 X Coo) /G, we have

N =1 ((&7 X (Co) /Gj) , NY =1 ((ﬁj X Coo) /Gj) :

The action of G; on ﬁj x Cq is given by v% (x,t) = (6_2”‘/__1bj/lja:, 62”\/__1/ljt).
Taking another generator v“/% of G, since 0; = c;q; and b;q; = 1 mod [;, we have

% (2, t) = (6_2”‘/__1/ljx, 62”‘/__1qj/ljt) :
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We then obtain the minimal resolution Néj ) of (ﬁj X CO> /G; by Hirzebruch-Jung
construction for its cyclic quotient singularity as follows. First note that the irreducible
fraction /;/g; has the unique continued fraction expansion of negative type

L 1
L=
4qj 1
r9 — ——
1
Iy
where each 7; is an integer greater than one. Take A\ copies ©1,0,,...,0, of CP!. For

eacht=1,2,..., ), let ©; = U; UV, be the standard open covering by two copies U; and
Vi of C with coordinates w; € U; \ {0} and z; € V; \ {0} satisfying z; = 1/w;. Next we
construct a line bundle Ny ; on ©; of order —r; from U; x C and V; x C by identifying
(zi,G) € (Vi \ {0}) x C with (wy,n;) € (U; \ {0}) x C via
itz = i, Gi = w{’m-
W
We then patch Ny ; and Ny ;1 (i =1,2,...,A—1) by plumbing pl, : V; xC = U;4; xC
given by (w;t1,ni+1) = (i, zi) so that they together define a smooth complex surface,
which is nothing but Néj ).
There exists a unique sequence (dgp,d1,...,dx,dx1+1) of nonnegative integers such
that
do = lj, dl = Qj, d)\ = 1, d>\+1 = 0,
do >dy > -+ > dy >d>\_|_1,
di—1+diy1 =mrid;, 1=1,2,... A\

We call it the division sequence of ;/q;. Setting m; := c¢;d; for each i, we obtain the
sequence Mg, M1, ..., Mx, M1 of integers. Here mg = m, m; = 0;, my = ¢; and
mx+1 = 0. Then the restriction 7 : Néj) — Cy is given by

m(w;,m;) = w; iy, (wi,m;) € Uy x C
(2, G) =z, M, (2i,6) € Vi x C

Moreover, we see that m : Néj ) Cop is a degeneration of “disjoint unions of c¢; open
disks” (identical to | |, A;;) with the singular fiber

Xo = mAj +m101 + moBOs + - -+ + m)O,.
Before proceeding, we take the two following sequences:
e (ag,ay,...,ax,axy1) is inductively defined by

ap:=0, a1:=1, ajp1:=ria;—a;—1(i=1,2,... ).



GLOBAL DEGENERATING FAMILIES WITH PERIODIC MONODROMIES 179

e (ag,ay,...,ax,axy1) is inductively defined by
ap 1= —1, ai 1= O, C_Li—i—l =iy — A1 (Z: 1,2,...,)\).
Then we can see that
ijj —1

(6.1) ax="bj, axy1=1; ax= 0 W=
j

By using these sequences, we explicitly describe the patching map between U; x C and
V)\ x C.

Lemma 6.1. Let ¢ :=¢roply_jopr_10---oplyod : U x C* —= V) x C*,
be the composition of the patching maps. (1) Then ¢ is given by

Zy = wl_b]nl_(quj_l)/ljv CA — wljntlbv
and (2) the inverse ¢~ of ¢ is given by
—gi o= (bigi—1)/1
wlzqu]C)\(JqJ )/J’ 1_Z)\<)\

Proof. We first claim that ¢; opl,_;o¢;_10---0plyo¢y: U x C* — V. x C*,
1=1,2,..., ], is given by

o —a; —ay — it ditt
Zi=wy 'm0, Gi = wy T

In fact, we have z; = w; 1775J and ¢; = wi'n}, and supposing the validity of the assertion

for i — 1, we obtain

(2,G) = dsoply_1 (2i—1,Gi—1) = dsopl;_4 (wl_ai_lnl_ai_law(fin?i)
i—1, —Qi— idi) 1 i @i\ —Qi—1, —0;—
= ¢; (wl 771 >w1a 1771(1 1) = ((w(f 77?) 7(w(11 77(11 )T (wla 1771(1 1))

_ 'r'zaz a;—1 TiG;—0;—1 _ i az-‘,—l Ai41
= ( yt U ) = ( pywi ) :

In particular, zy = w; “n; ™, ¢\ = w1, and by (6.1), we have
Z\ = wl_bjnl—(bj‘h'_l)/lj, C)\ — wljn(fjﬂ
which confirms (1). (2) follows from (1). O

On the other hand, noting that the action of v“/% on ﬁj X C is given by

NG (g, 1) = (e%\/—_l/ljx,eQTFx/—_l(lj—qg')/ljt/) ,



180 TAKAYUKI OKUDA

we see that (ﬁj X Coo) /G also has a cyclic quotient singularity. We then obtain

its minimal resolution Nég) by the same argument as that for Néj ). In fact, for the
continued fraction expansion of negative type

L 1
=5 - ———,
lj —qj 1
S§g — ————
1
5
we construct line bundles N4, (i = 1,2,...,v) on Riemann spheres ©) of order —s;

from U/ xC and V/ xC by identifying (=, (/) € (V/\{0}) xC with (w},n}) € (U/\{0})xC
via

1
A / INSi o)
¢i:zizw7 Cz:(wi)sm
7

and patch N ; and Noo 41 (i = 1,2,...,v — 1) by plumbing pl; : V/ x C — Ui, xC
given by (wj 1,m;,,) = ((}, 2;) so that we obtain N Let (do,dy,....d,,d, ;) be the
division sequence of 1;/(l; — g;) and Set m} := ¢;d] for each ¢ = 0,1,...,v 4+ 1. Note
that my = m, m) = m—40;, m;, = ¢c; and m;,; = 0. Then the restriction 7 : N = ¢
is given by

w(wlnf) = (@) )™, () € U C

(2, ¢l = ()™ ()™, (24, ¢) e Vi x C.

We see that 7 : Nég) — C is a degeneration of disjoint unions of ¢; open disks (identical
to | |2, A;.;) with the singular fiber

Xoo =mAj; +m)O] + mhOs + -+ -+ ml 0O,
Moreover:

Lemma 6.2. Let ¢’ := ¢/, opl,,_j0¢!, j0---0pljog) : (U))*xC* — (V/)*xCX,
be the composition of the patching maps. (1) Then ¢ is given by

2! = (w)) "W () A=)l —a) =1l ! — ()l ()l
and (2) the inverse ¢~ of ¢ is given by

wll _ (Zl’/)—(lj—%')(CI//)—{(lj—bj)(lj—Qj)—l}/lj’ 77/1 — (Z’ )lj (C’)lj—bj‘

§ 7. Patching of two degenerations (branch part), 2

We now describe the restriction F : Néj ) \ Xo — N \ Xoo of the gluing map F
to each connected component of the branch part.
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First recall that
NP = (U, x C)U (Vi x C)U--- U (Uy x C) U (Vy x C).

Set U := U; \ {0} and V,* := V; \ {0} for each i = 1,2,...,A. Then U x C* and
VX x C* are all identified. Therefore,

N\ Xo = (U x C)YU (VX xC) U (US xC)U (K xCX)U--
U (U x C*) U (V) x CX)
=V>\ x C*.

Similarly we have
NN\ X = V! x C*.

Patching of the core part Ly and the component Néj ) of the branch part is given
by plumbing pl, : AY x Cy — Uy x C:

(’LUl, 771) - (Ca Z)a

where the trivial bundle A% x Cy is identified with the flat line bundle Lo|,x. Note
J

that the restriction of 7 to Uy x C is given by m(w1,m1) = wi™°ny™* = w’lnnfj, while that

to A;( x Cg is given by 7(z,() = 2% (™. Likewise Lo, and the component Nég) of the

branch part is given by plumbing pl;, : AF x Coo = Uy x C:

(wiv nill) - (Cla Zl)>

where the trivial bundle A% x C is identified with the flat line bundle Loo|,x. Now
the following necessarily holds.

Lemma 7.1.  The following diagram is commutative.

x X F X x
Al xCq —— A7 xCZ

oo | [

U x C* (U])* x C*

(j)::d))\opl)\_loqb)\_lo---opllod)lJ{ J{d)'::qb,'/oplil_lod),'/_lo---opl'lod)'l

VX x € —I s (V< x X,

v

The restriction F : V* x C* — (V;))* x C* is explicitly given by

v

(ZI//7<1//) = (CAZ)\, %\) .
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In fact,
by Lemmas 5.2, 6.1, 6.2 and 7.1,

(2,¢) = ¢' oplyo Foplyo¢™"(2x,(r)
— 4o P|6 o Fo Plo_l (Z;qJ*C;(qug*—l)/lj’Zi\jd\j)
= ¢ oplyo F (3¢, 2, ¢ )
_ ¢,OP|6 (Zi\jd\j Z;lj‘HIjC;bj"‘(ijj_l)/lj)
— ¢ (Z;lj-i-qJ‘C;bj"‘(quJ‘—l)/lj,le Cij)

— ((Z;lj'i'%' C;bj‘F(ijj ~1)/1; ) ~(i=bs) (zl; Cij) A =b3) (=g =13/

—lj+q; ~=bj+(bja;=1)/1; \ 7 [ L b5\
(srw gt () )
= (220, G ) -

Y

Note that

(71) W(Z)\a C)\) = CiJ € CO? 71’(21//7 Cllj) = C;SJ € Coo
We then have the following.

Lemma 7.2.  The restriction F : V\ x C* — V! x C* of the gluing map F :
7 HCo) \ Xo = 7 HCos) \ Xoo is given by

(7:2) (2, ¢) = (C,\Z,\, i) :
Ca
By patching V) x C and V) x C via (7.2), we obtain a line bundle N on a Riemann
sphere Z; of degree —1, where =; denotes its zero section: =; := {zy = 0} U {z], = 0}.
Note that 7 : M — S maps =; onto S by (7.1). Moreover, if ¢; =1, then 7: Z; — S is
biholomorphic. Namely, Z; is a (—1)-section of .

Theorem 7.3. Let m: M — S be the degenerating family of Riemann surfaces
over CPY with periodic automorphism f obtained in Lemma 2.4. Then, if f has n fived
points (multiple points with recurrence number 1), then © has n (—1)-sections.
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