
RIMS Kôkyûroku Bessatsu

B55 (2016), 185−203

Topology of manifolds and global theory of

singularities

By

Osamu SAeKI*

Abstract

This is a survey article on topological aspects of the global theory of singularities of

differentiable maps between manifolds and its applications. The central focus will be on the

notion of the Stein factorization, which is the space of connected components of fibers of a

given map. We will give some examples where the Stein factorization plays essential roles in

proving important results. Some related open problems will also be presented.

§1. Introduction

This is a survey article on the global theory of singularities of differentiable maps

between manifolds and its applications, which is based on the author�s talk in the

RIMS Workshop (�Theory of singularities of smooth mappings and around it�, held in

November 2013. Special emphasis is put on the Stein factorization, which is the space

of connected components of fibers of a given map between manifolds. We will see that

it often gives rise to a good manifold which bounds the original source manifold, and

that it is a source of various interesting topological invariants of manifolds.

We start with the study of a class of smooth maps that have the mildest singular‐

ities, i.e. the class of special generic maps (Section 2). A typical example is a Morse

function with only critical points of extremal indices. According to Reeb [33], if a closed

connected manifold admits such a Morse function, then it is necessarily homeomorphic
to the sphere. However, in higher dimensions, exotic spheres, which are smooth mani‐

folds homeomorphic to the sphere but not diffeomorphic to the standard one, are known
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to admit such Morse functions. This means that the existence of such a Morse function

contains the information on the topology of the source manifold, but not on the differ‐

entiable structure. However, we will see that if we consider special generic maps into

higher dimensional Euclidean spaces, then they can give us information on the differen‐

tiable structure as well. This will be proved by using the notion of a Stein factorization

of a map. A Stein factorization, or more precisely, its quotient space, encodes the con‐

nected components of the fibers of a given map. It will be seen that if the difference

between the dimensions of the source and the target manifolds is small, then the source

manifold of a special generic map is diffeomorphic to the boundary of a disk bundle over

the quotient space, and this is the key to the proof of the above‐mentioned result on

the differentiable structure of the sphere. Basically, the content of Section 2 is a survey

of [38, 39, 46].
In Section 3, as another application of the Stein factorization, we consider stable

maps of codimension -1 ; i.e. C^{\infty} stable maps f : M^{n}\rightarrow \mathrm{R}^{n-1} . In this case, a regular
fiber is a disjoint union of circles and thus bounds a disjoint union of 2‐disks. Therefore,
there is a good chance to get a 2‐disk bundle over the quotient space whose boundary is

the source manifold M^{n} . We will see that this is true for n=2 and n=3 as long as the

manifolds are orientable. However, for the case n=4
,

this is not true: a certain class

of singular fibers give rise to obstructions to constructing a desired 2‐disk bundle. By

analyzing the singular fiber that gives the obstruction in detail, we will see that every

closed oriented 4‐dimensional manifold is oriented cobordant to a disjoint union of some

copies of \mathrm{C}P^{2} or its orientation reversal. As a consequence, the 4‐dimensional oriented

cobordism group is infinite cyclic generated by the cobordism class of \mathrm{C}P^{2} . This is of

course a classical result due to Rohlin [36]; here, we prove this classical result by using
the global theory of singularities of differentiable maps. One of the advantages of our

proof is that the appearance of \mathrm{C}P^{2} is quite natural. As a byproduct of this argument,
we get the signature formula for 4‐dimensional manifolds in terms of the number of

certain singular fibers of stable maps on the manifold. This formula implies that the

stable maps on a topologically complicated manifold are necessarily complicated. Some

related results are also presented. The content of Section 3 is a survey of [45].
In Section 4, we give some ideas for constructing invariants of manifolds using

stable maps on manifolds or their Stein factorizations. In many situations, we can

get plenty of topological invariants using Morse functions on manifolds. For example,
in dimension 3, the celebrated Kirby Calculus is now a source of a lot of 3‐manifold

invariants, and it is based on Morse functions. Unfortunately, not so many invariants are

known that are derived from stable maps into Euclidean spaces of dimension \geq 2 . Here,
we give several of its examples and their properties, including the quantum invariants

of 3‐manifolds. The content of Section 4 is a survey of [4, 30].
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Finally in Section 5, we present several open problems related to the contents of

Sections 2‐4. These problems had been posed in the workshop �Singularity Theory and

its Applications� held in Oita National College of Technology in 2011. Since then, some

of them have been solved. Here we present those which have not been solved until now

as far as the author knows.

Throughout the paper, manifolds and maps are smooth of class C^{\infty} unless otherwise

indicated. For a space X, \mathrm{i}\mathrm{d}_{X} denotes the identity map of X.

§2. Special generic maps

In the following, M^{n} and N^{p} will denote smooth manifolds of dimensions n and p,

respectively.

Definition 2.1. Let f : M^{n} \rightarrow N^{p}, n\geq p ,
be a smooth map. A singular point

q\in M^{n} of f is called a fold singularity if f has the normal form

(x_{1}, x_{2}, . . . , x_{n})\mapsto(x_{1}, x_{2}, . . . , x_{p-1}, \pm x_{p}^{2}\pm x_{p+1}^{2}\pm\cdots\pm x_{n}^{2})

with respect to appropriate local coordinates around q and f(q) . It is a definite fold

singularity if all the signs appearing in the above normal form are the same.

Definition 2.2 (Burlet‐de Rham [4], Calabi [5]). A smooth map f : M^{n} \rightarrow

 N^{p}, n \geq  p ,
is called a special generic map if all of its singular points are definite

fold singularities.

The class of special generic maps can be considered to be a class of maps with

mildest singularities. Note that every generic map f : M^{n} \rightarrow  N^{p}, n \geq p ,
of a closed

manifold into an open manifold necessarily has definite fold singularities.

Remark 2.3. Historically, Burlet and de Rham [4] were the first who formulated

the notion of a special generic map of a 3‐manifold into \mathrm{R}^{2} . Then, Porto and Furuya

[31] extended the notion to higher dimensions. However, before all these developments,
Calabi [5] had already studied special generic maps in his study of the topology of

manifolds admitting certain Riemannian metrics with pinched curvatures.

Example 2.4. A smooth function f : M^{n} \rightarrow \mathrm{R} on a manifold of dimension n

is a special generic map if and only if it is a Morse function with only critical points of

index 0 or n.

Example 2.5. For the unit sphere S^{n} \subset \mathrm{R}^{n+1} ,
let f:S^{n}\rightarrow \mathrm{R}^{p},  n\geq p\geq  1

,
be

the standard projection \mathrm{R}^{n+1} \rightarrow \mathrm{R}^{p} restricted to S^{n} . Then, it is an easy exercise to

show that it is a special generic map.
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Example 2.6. For b \geq  b \geq  1
,

let f_{1} : S^{b} \rightarrow \mathrm{R}^{b'} be a special generic map as

constructed in Example 2.5. Then, the composition

\mathrm{S}^{\mathrm{a}} \times \mathrm{S}^{\mathrm{b}} \mathrm{i}\mathrm{d}_{\mathrm{S}^{\mathrm{a}}}\times \mathrm{f}_{1}

is a special generic map, where the last map is an arbitrary immersion.

We can use special generic maps in order to define an invariant of smooth manifolds

as follows.

Definition 2.7. Let M^{n} be a smooth closed n‐dimensional manifold. We define

S(M^{n}) to be the set of integers p with 1\leq p\leq n such that there exists a special generic

map f : M^{n}\rightarrow \mathrm{R}^{p} of M^{n} into the p‐dimensional Euclidean space.

Note that this is a diffeomorphism invariant of M^{n} : i.e., if M_{0} and M_{1} are smooth

closed manifolds that are diffeomorphic, then we have S(M_{0})=S(M_{1}) .

Example 2.8. Examples 2.5 and 2.6 show the following:

(1) S(S^{n})=\{1, 2, . . . , n\} for  n\geq  1,

(2) S(S^{a} \times S^{b})=\{a+1, a+2, . . . , a+b\} for  b\geq a\geq  1.

For details, see [38, 39].

Then, using our invariant, we have the following characterization of the standard

sphere.

Theorem 2.9 (Saeki [38]). Let M^{n} be a smooth closed manifold of dimension

n . Then, we have

S(M^{n})=\{1, 2, . . . , n\}

if and only if M^{n} is diffeomorphic to the standard n ‐dimensional sphere S^{n}.

Remark 2.10. Calabi [5] announces a result close to the above theorem: if f :

M^{n}\rightarrow \mathrm{R}^{p} is a special generic map such that the singular point set S(f) is diffeomorphic
to the (p-1) ‐dimensional standard sphere and if f |_{S(f)} is an embedding, then M^{n} is

homeomorphic to S^{n} ,
and that if p \geq  n-1 in addition, then M^{n} is diffeomorphic to

the standard sphere S^{n} , although he did not give a proof.

Note that there exist lots of exotic spheres. More precisely, depending on the

dimension n
,
the topological sphere has differentiable structures other than the standard

one [22]. This means that special generic maps can detect the standard differentiable

structure on a sphere among those various differentiable structures.
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Example 2.11. Let $\Sigma$^{7} be one of Milnor�s exotic 7‐spheres [29]. Then, we have

\{1, 2, 7\}\subset S($\Sigma$^{7})\subset\{1, 2, 3, 7\},

which can be proved by using results obtained in [38].

For the proof of Theorem 2.9, we need the following notion.

Definition 2.12. Let f : M \rightarrow  N be a smooth map. For x, x \in  M
,

define

x \sim f x if f(x) = f(x)(=y) ,
and x and x belong to the same connected component

of f^{-1}(y) . This defines an equivalence relation. We denote by W_{f} the quotient space

M/\sim f ,
and by q_{f} : M\rightarrow W_{f} the quotient map. Then, it is easy to see that there exists

a unique continuous map \overline{f}:W_{f}\rightarrow N that makes the following diagram commutative:

M N

 q_{f}\searrow \nearrow\overline{f}
W_{f}.

The above diagram or the space W_{f} is called the Stein factorization of f.

It is known that if f is generic enough, then the Stein factorization is triangulable

[19]. For special generic maps, we have more structures as follows.

Proposition 2.13. Let f : M^{n} \rightarrow  N^{p} be a proper special generic map with

n>p . Then, we have the following.

(1) The singular point set S(f) of f is a regular submanifold of M^{n} of dimension p-1.

(2) The quotient space W_{f} has the structure of a smooth p ‐dimensional manifold possibly
with boundary such that \overline{f}:W_{f}\rightarrow N^{p} is an immersion.

(3) The restriction q_{f}|_{S(f)} : S(f) \rightarrow\partial W_{f} is a diffeomorphism.

(4) If M^{n} is connected and S(f) \neq \emptyset , then the restriction  q_{f}|_{M\backslash S(f)} : M^{n}\backslash S(f) \rightarrow

Int  W_{f} is a smooth fiber bundle with fiber the standard (n-p) ‐dimensional sphere
S^{n-p}.

An illustrative example is depicted in Figure 1.

Note that the structure group of the smooth S^{n-p}‐bundle in Proposition 2.13 (4)
may not necessarily be reduced to an orthogonal group. However, when n-p\leq 3 ,

the

reduction is possible due to Smale [50] and Hatcher [18], and consequently we have the

following disk bundle theorem. Note that a fiber bundle whose structure group can be

reduced to an orthogonal group is said to be linear.
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\mathrm{M}\mathrm{n}

\mathrm{S}(f) \mathrm{S}^{\mathrm{n}\mathrm{p}}-

N^{p}

\rightarrow^{f}

-\mathrm{f}qf

\partial \mathrm{W}\mathrm{f} Wf

Figure 1. Stein factorization of a special generic map

Theorem 2.14 (Saeki [38]). Let f:M^{n}\rightarrow N^{p} be a proper special generic map

with n-p= 1
, 2, 3, where M^{n} is connected and S(f) \neq\emptyset . Then,  M^{n} is diffeomorphic

to the boundary of a linear D^{n-p+1} ‐bundle over W_{f}.

Let us now review the outline of the proof of Theorem 2.9.

By Example 2.5, the necessity is clear. Conversely, suppose that we have S(M^{n}) =

\{1, 2, . . . , n\} . As 1 is contained, there exists a Morse function f_{1} : M^{n} \rightarrow \mathrm{R} with

only minima and maxima as its critical points. Then, by a theorem of Reeb [33], M^{n}

is homeomorphic to S^{n} . More precisely, M^{n} is diffeomorphic to the closed manifold

obtained by attaching two copies of the n‐dimensional disk D^{n} along their boundary

spheres. In particular, if n\leq 4 ,
then M^{n} is diffeomorphic to the standard S^{n} (for n=4,

we use a result of Cerf [6]). Therefore, we assume n \geq  5 . As n- 1 \in  S(M^{n}) ,
there

exists a special generic map f : M^{n} \rightarrow \mathrm{R}^{n-1} . Then, a standard argument in algebraic

topology implies that W_{f} is contractible. Now by Theorem 2.14, M^{n} is diffeomorphic
to the boundary of a D^{2} ‐bundle over W_{f} ,

which is contractible. Then, the solution to

the generalized Poincaré conjecture due to Smale [51] implies that M^{n} is diffeomorphic
to the standard n‐sphere. This completes the proof.

Observe that in the above proof, W_{f} is the core (or spine) of \mathrm{a}
(

good manifold�

whose boundary is diffeomorphic to the given manifold M^{n} . This was essential in the

proof.
In dimension four, we also have the following characterization of the standard \mathrm{R}^{4}.

Recall that the differentiable structure on \mathrm{R}^{n}, n \neq  4
,

is unique, while for n = 4, \mathrm{R}^{4}

admits more than one differentiable structures. The result in dimension four was a

consequence of two big theorems due to Freedman [12] and Donaldson [10] (for details,
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see [15] or [16]). In fact, there exist uncountably many exotic \mathrm{R}^{4\prime}\mathrm{s} (Taubes [52]).

Theorem 2.15 (Saeki [46]). Let M^{4} be a smooth 4‐dimensional manifold home‐

omorphic to \mathrm{R}^{4} . If there exists a proper special generic map f : M^{4} \rightarrow \mathrm{R}^{p} for some p

with 1\leq p\leq 3 ,
then M^{4} is diffeomorphic to the standard \mathrm{R}^{4}.

Note that the standard \mathrm{R}^{4} does admit proper special generic maps into \mathrm{R}, \mathrm{R}^{2} and

\mathrm{R}^{3} . For example, consider the map defined by (x_{1}, x_{2}, x_{3}, x_{4})\mapsto(x_{1}, x_{2}, x_{3}^{2}+x_{4}^{2}) ,
etc.

§3. Stable maps

Let f : M^{n}\rightarrow N^{n-1} be a smooth map of codimension -1 of a closed n‐dimensional

manifold M^{n} into a manifold of dimension n-1
,

where the codimension of a smooth

map is defined to be the dimension of the target manifold minus that of the source.

In the codimension -1 case, regular fibers are disjoint unions of S^{1} and each of their

components bounds a 2‐dimensional disk. It would be nice to have a �disk bundle�

over the quotient space W_{f} such that the boundary of its total space is diffeomorphic to

M^{n} . This is an optimistic observation derived from the study of special generic maps as

surveyed in the previous section. Note that, in this context, obstructions to constructing
such \mathrm{a} (D^{2} ‐bundle� over W_{f} are concentrated around the singular fibers.

In order to realize such an idea, we need to work with a nice class of smooth maps,

i.e. stable maps, which are defined as follows.

For manifolds M and N
,

we denote by C^{\infty}(M, N) the space of smooth maps  M\rightarrow

 N endowed with the Whitney C^{\infty} topology. There is a natural action of the groups

\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(M) and \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N) of self‐diffeomorphisms of M and N
, respectively, on C^{\infty}(M, N) :

for ( $\Phi$,  $\varphi$) \in \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(M) \times \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N) and f\in C^{\infty}(M, N) ,
we define ( $\Phi$,  $\varphi$)\cdot f= $\varphi$\circ f\circ$\Phi$^{-1}.

We say that a smooth map f \in  C^{\infty}(M, N) is C^{\infty} stable (or stable, for short) if its

orbit is open (see [14] for details). In other words, stable maps are those which do

not change their differential topological properties after small perturbations. There are

some characterizations of stable maps depending on the dimensions of M and N . For

example, a smooth function f : M^{n}\rightarrow \mathrm{R} on a closed manifold M^{n} of dimension  n\geq  1 is

stable if and only if it is a Morse function (with all the critical values pairwise distinct).
In this section, the notion of a fiber will play an important role. It is formulated

as follows.

Definition 3.1. For a smooth map f : M \rightarrow  N and a point q \in  N
,

the map

germ along the inverse image

f : (M, f^{-1}(q))\rightarrow(N, q)

is called the fiber over q (see [42]). In particular, if a point q\in N is a regular value of

f ,
then we call the fiber over q a regular fiber; otherwise, a singular fiber.
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An equivalence relation among the fibers is defined as follows. Let f_{i} : M_{i} \rightarrow N_{i},
i=0 , 1, be smooth maps. For q_{i} \in N_{i}, i=0 , 1, we say that the fibers over q_{0} and q_{1} are

equivalent if for some open neighborhoods U_{i} of q_{i} in N_{i} ,
there exist diffeomorphisms

 $\Psi$ :  f^{-1}(U_{0}) \rightarrow  f^{-1}(U_{1}) and  $\psi$ :  U_{0} \rightarrow  U_{1} with  $\psi$(q_{0}) = q_{1} which make the following

diagram commutative:

(f_{0}^{-1}(U_{0}), f_{0}^{-1}(q_{0})) \rightarrow^{ $\Psi$} (f_{1}^{-1}(U_{1}), f_{1}^{-1}(q_{1}))

f_{0}\downarrow \downarrow f1
(U_{0}, q_{0}) \rightarrow^{ $\psi$} (U_{1}, q_{1}) .

Now let us restrict our attention to codimension -1 stable maps. We start with

the simplest case, i.e. the case of smooth maps of surfaces into the real line. Let M^{2} be

a closed oriented surface, and f : M^{2}\rightarrow \mathrm{R} a Morse function.

In this case, singular fibers are classified as in Figure 2 (for details, see [42]).

----\sim

(1)
. . .

(2) ----\sim . . . ----\sim

Figure 2. Singular fibers of Morse functions on orientable surfaces

There are no obstructions to filling in the singular fiber neighborhoods. In fact,
the leftmost surfaces (with boundary) in (1) and (2) together with the 2‐dimensional

disks bounded by the boundary circles bound  D^{3} . As a corollary, we get the following
well‐known result without using the classification theorem of closed surfaces.

Corollary 3.2. Every closed oriented surface is oriented null‐cobordant, i. e., it

bounds a compact oriented 3‐dimensional manifold.

Let us now consider the 3‐dimensional case. It is known that stable maps of 3‐

dimensional manifolds into surfaces are characterized as follows. (This can be proved

by using the Mather theory of stable maps [27, 28].)
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Proposition 3.3. Let M be a 3‐dimensional manifold and N a surface. A

proper smooth map f : M \rightarrow  N is C^{\infty} stable if and only if the following conditions

are satisfied.

(i) For every q \in  M
,

there exist local coordinates (x, y, z) and (X, Y) around q \in  M

and f(q) \in N , respectively, such that one of the following holds:

\{
(x, y) , q : regular point,

(X \circ f, Y\circ f)=
(x, y^{2}+z^{2}) , q : definite fold point,

(x, y^{2}-z^{2}) , q : indefinite fold point,

(x, y^{3}+xy) , q : cusp point.

(ii) Set S(f) = {  q\in  M : rank df_{q} < 2 }, which is a regular closed 1‐dimensional

submanifold of M under the above condition (i). Then, for each cusp point q,

f^{-1}(f(q)) \cap S(f) = \{q\} holds, and f|_{S(f)\backslash \{\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{p}\mathrm{s}\}} is an immersion with normal

crossings.

There is a classification result of singular fibers of stable maps of closed orientable

3‐manifolds into surfaces. For details, see [24, 25, 42 ]^{}.
Let M^{3} be a closed oriented 3‐manifold, and f : M^{3}\rightarrow \mathrm{R}^{2} a stable map. Then, we

can show that the possible obstructions to filling in the singular fiber neighborhoods lie

near the singular fibers as in Figure 4 (for details, see [45]). Note that Figures 3 and

4 depict the components of singular fibers containing singular points as inverse images:

however, they actually represent map germs along the inverse images up to regular fiber

components (for details, see [42]).

Figure 3. Singular fibers for stable maps of 3‐manifolds into \mathrm{R}^{2} which may give ob‐

structions

Costantino‐Thurston [9] showed that in fact, there are no obstructions to filling in

the neighborhoods of the above singular fibers2. Thus, we get the following classical

result of Rohlin.

Corollary 3.4 (Rohlin [35]). Every closed oriented 3‐manifold is oriented null‐

cobordant, i.e.
,

it bounds a compact oriented 4‐dimensional manifold.
1In fact, the list consists of those fibers of  $\kappa$=1 and 2 which appear in Figure 4.

2Using this idea, Costantino‐Thurston [9] showed that every closed oriented 3‐manifold efficiently
bounds a 4‐manifold.
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How about the 4‐dimensional case? Singular fibers of stable maps of closed ori‐

entable 4‐manifolds into \mathrm{R}^{3} are classified as in Figure 4, based on a characterization

of stable maps similar to Proposition 3.3 (for details, see [42]). Note that in the list,  $\kappa$

denotes the codimension of the relevant fibers. The codimension of a singular fiber is

the codimension of the set of points in the target over which lies a singular fiber of the

given type. For stable maps, such a set is always a smooth submanifold. In particular,
for stable maps of closed 4‐manifolds into 3‐manifolds, singular fibers of codimension 3

appear discretely and their numbers are finite.

 $\kappa$ = 1

 $\kappa$ = 2

 $\kappa$ = 3

Figure 4. List of singular fibers of proper stable maps of orientable 4‐manifolds into

3‐manifolds

Then, it has been proved the following.

Theorem 3.5 (Saeki [45]). There are no obstructions to filling in the singular

fiber neighborhoods, except for the III^{8} ‐type singular fiber as in Figure 5. Furthermore,
around each singular fiber of type III8, a copy of \mathrm{C}P^{2} or its orientation reversal \overline{\mathrm{C}P^{2}}

appears.

As a corollary, we get a new proof of the following classical result.

Corollary 3.6 (Rohlin [36]). The oriented 4‐dimensional cobordism group is in‐
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Figure 5. The singular fiber that determines the cobordism class

finite cyclic generated by the class of \mathrm{C}P^{2}.

Proof. By classical algebraic topology, we can show that the signature function

 $\sigma$ :  $\Omega$_{4} \rightarrow \mathrm{Z} is a well‐defined homomorphism, where $\Omega$_{4} denotes the 4‐dimensional

oriented cobordism group. On the other hand, let  $\varphi$ : \mathrm{Z} \rightarrow $\Omega$_{4} be the homomorphism
defined by sending the generator 1 \in \mathrm{Z} to the class of \mathrm{C}P^{2} . By Theorem 3.5, this is

surjective. Since the signature of \mathrm{C}P^{2} is equal to 1, the composition  $\sigma$\circ $\varphi$ is the identity,
and hence  $\varphi$ is also injective. This completes the proof. \square 

The above proof shows that the appearance of \mathrm{C}P^{2} is something natural, and not

artificial. There are many representative manifolds for the generator of $\Omega$_{4} : however,

among these, \mathrm{C}P^{2} is the most natural one.

As a byproduct of the above proof, we get the following signature formula.

Corollary 3.7 (Saeki‐T. Yamamoto [49]). For a C^{\infty} stable map f:M^{4}\rightarrow \mathrm{R}^{3}
of a smooth closed oriented 4‐manifold M^{4}

,
the signature of M^{4} is equal to the number

of III8‐type singular fibers counted with signs.

Recall that the original proof of the above signature formula was based on the

cohomology calculus of a Vassiliev type complex for singular fibers. The above proof

using the Stein factorization for trying to find a 5‐dimensional manifold bounding a

given 4‐manifold is more geometric and intuitive.

The above result has a further consequence about the complexity of a stable map.

Recall that for a stable map f : M^{4} \rightarrow \mathrm{R}^{3}
,

its set of singular points S(f) is a smooth

closed surface embedded in M^{4} . Furthermore, f|_{S(f)} : S(f)\rightarrow \mathrm{R}^{3} is an immersion with

cuspidal edges and swallowtails.

Corollary 3.8. Let f : M^{4} \rightarrow \mathrm{R}^{3} be a C^{\infty} stable map as above. Then, f|_{S(f)}
has at least | $\sigma$(M^{4})| triple points, where  $\sigma$(M^{4}) stands for the signature of M^{4}.

We can observe that the complexity of a stable map reflects the topology of M^{4}.

We also have the following related results.
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Theorem 3.9 (Gromov [17]). Let f : M^{n}\rightarrow \mathrm{R}^{2} be a C^{\infty} stable map of a closed

n ‐dimensional manifold and S(f) the set of its singular points. Then, we have

rank H_{*}(M^{n};\mathrm{Z}) \leq 2N_{2}+N_{\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{p}}+2N_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}},

where N_{2} is the number of double points of the plane curve f|_{S(f)} : S(f) \rightarrow \mathrm{R}^{2}, N_{\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{p}}
is the number of cusps of f ,

and N_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}} is the number of components of S(f) .

Theorem 3.10 (Costantino‐Thurston [9], Gromov [17]). Let f : M^{3} \rightarrow \mathrm{R}^{2} be

a C^{\infty} stable map of a closed orientable 3‐manifold M^{3} . Then, we have

||M^{3}||_{\triangle} \leq 10N_{\mathrm{s}\mathrm{f}}\leq 10N_{2},

where ||M^{3}||_{\triangle} is the simplicial volume, N_{\mathrm{s}\mathrm{f}} is the number of singular fibers as in Fig‐
ure 3, and N_{2} is the number of double points of f|_{S(f)}.

Note that ||M^{3}||_{\triangle} is less than or equal to the minimal number of 3‐simplices of any

triangulation of M^{3}
,

and that ||M^{3}||_{\triangle} = 0 for graph manifolds M^{3} . Here, a compact

orientable 3‐manifold is a graph manifold if it is the union of S^{1} ‐bundles over surfaces

attached along some of their torus boundaries. Recall that every closed orientable graph
manifold admits a stable map into \mathrm{R}^{2} with N_{\mathrm{s}\mathrm{f}}=0 (see [41]).

§4. Invariants of manifolds

Let M^{3} be a smooth closed oriented connected 3‐manifold. Let us consider Morse

functions f : M^{3}\rightarrow \mathrm{R} . Such a Morse function is not unique: however, every pair of such

functions can be connected by \mathrm{a} (�generic path� in the space of smooth functions (see
Cerf [7]). This singularity theoretical fact is the basis of the celebrated Kirby Calculus

[23], which has provided a lot of topological invariants. They are in fact still under

investigation.

Then, we have the following natural question: how about using stable maps  M^{3}\rightarrow

\mathrm{R}^{2} ?

Reshetikhin‐Turaev [34] defined a quantum invariant for 3‐manifolds, just after

Witten�s celebrated proposal to use (yet mathematically unjustified) path‐integral in

order to define invariants of 3‐manifolds (associated to each Lie algebra). This can, in

fact, be interpreted as an invariant derived from stable maps M^{3}\rightarrow \mathrm{R}^{2} . More precisely,
Turaev [53] invented the notion of a shadow, which is a 2‐dimensional compact connected

polyhedron locally modelled on the cone over the edges of a tetrahedron such that to

each non‐singular surface component is associated a half integer, called a gleam. Such

a shadow gives rise to a closed 3‐manifold, and two shadows corresponding to the same

3‐manifold can be connected to each other by a set of certain moves (see also [8, 20
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For example, the quotient space in the Stein factorization of a stable map gives a

shadow as long as it has no singular fiber corresponding to (1\cdot 2\cdot 2\cdot 1) ‐type in Levine�s

terminology [25], or no singular fiber of type \mathrm{I}\mathrm{I}^{3} in the author�s terminology [42]. In

fact, it is known that such a singular fiber can be replaced by other singular fibers (see
[20, Remark 2.3]). Starting from such a shadow, Turaev defined a certain state sum

invariant for 3‐manifolds, which is closely related to the Turaev‐Viro invariant (defined
as a state sum on 3‐manifold triangulations [54]). As a corollary, Turaev proved that

the Turaev‐Viro invariant coincides with the absolute square of the Reshetikhin‐Turaev

invariant.

Let us consider another possibility. For a smooth closed connected orientable 3‐

manifold M^{3} and a stable map f : M^{3} \rightarrow \mathrm{R}^{2} of M^{3} into the plane, the quotient space

W_{f} is a compact 2‐dimensional polyhedron whose local structures have been completely
classified (see [24, 25, 30]). Define \mathcal{W}(M^{3}) to be the set of the homeomorphism classes

of the 2‐dimensional polyhedrons which appear as the quotient space of some stable

map f : M^{3} \rightarrow \mathrm{R}^{2} . This is clearly a diffeomorphism invariant of M^{3} . Note that we

ignore the gleams associated to the regular surface components of W_{f}.
Concerning this invariant, the following has been known.

Theorem 4.1 (Motta‐Porto‐Saeki [30]). For any finite set M_{1}^{3}, M_{2}^{3} ,
. . .

, M_{k}^{3} of
closed connected orientable 3‐manifolds, we have

\displaystyle \bigcap_{i=1}^{k}\mathcal{W}(M_{i}^{3})\neq\emptyset.
On the other hand, the intersection over all such 3‐manifolds is empty:

\displaystyle \bigcap_{M^{3}}\mathcal{W}(M^{3})=\emptyset.
Then, we have the following natural question.

Problem 4.2. Let M_{i}^{3}, i = 0 , 1, be smooth closed connected orientable 3‐

manifolds. If \mathcal{W}(M_{0}^{3}) =\mathcal{W}(M_{1}^{3}) ,
then are M_{0}^{3} and M_{1}^{3} diffeomorphic?

We have a partial answer as follows.

Theorem 4.3 (Burlet‐de Rham [4]). Suppose M_{0}^{3}=S^{3} or \#^{k}(S^{1}\times S^{2}) for some

k \geq  1 . Then, for a smooth closed connected orientable 3‐manifold M_{1}^{3} , if \mathcal{W}(M_{0}^{3}) =

\mathcal{W}(M_{1}^{3}) ,
then M_{0}^{3} and M_{1}^{3} are diffeomorphic.

The above result is implicit in Burlet‐de Rham�s work. In fact, they showed that

for a stable map which is a special generic map, the topology of the quotient space
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completely determines the diffeomorphism type of the source 3‐manifold. In such a

case, gleams are unnecessary.

§5. Problems

In this section, we give some open problems in the global theory of singularities of

differentiable maps that are related to the topics covered in this paper. These problems

were, in fact, presented in the workshop �Singularity Theory and its Applications� held

in Oita National College of Technology in 2011, and those problems which we present

here are still unsolved, as far as the author knows.

Problem 5.1. Determine S($\Sigma$^{7}) for an exotic sphere $\Sigma$^{7} of Milnor (see Exam‐

ple 2.11 of Section 2).

Problem 5.2. Let M and N be smooth manifolds and f : M \rightarrow  N a smooth

map. Define the notion of the �most natural map� (or the (�simplest map�, or the

�standard map�, or anything similar) among the generic smooth maps in the homotopy
class of f ,

and study such maps (existence, uniqueness, their topological properties,
etc

Problem 5.3 ([48]). Describe the Euler class e of an oriented S^{1} ‐bundle in terms

of the space C^{\infty}(S^{1}, \mathrm{R}^{2}) . Note that Kazarian [21] has obtained some results in terms

of C^{\infty}(S^{1}, \mathrm{R}) .

For example, for an oriented S^{1} ‐bundle E
,

if there exists a map E \rightarrow \mathrm{R}^{2} that is

an immersion of rotation number \pm 1 on each fiber, then the S^{1} ‐bundle is necessarily

trivial, i.e. e(E)=0.

Problem 5.4 ([26]). It is known that for a generic function f : M^{2} \rightarrow \mathrm{R} on a

closed surface, the quotient space in its Stein factorization is a graph, which is often

called a Reeb graph (see [32]). Let G be an arbitrary finite graph without loops or

isolated vertices.

(1) Is there an embedding  $\eta$ :  M^{2}\rightarrow \mathrm{R}^{3} of a closed orientable surface such that the

Reeb graph of the associated height function is homeomorphic to G ?

(2) Is there an embedding  $\eta$ :  M^{2}\rightarrow \mathrm{R}^{3}\backslash \{0\} of a closed orientable surface such that

the Reeb graph of the associated distance function from the origin is homeomorphic to

G ?

Problem 5.5. A link in a 3‐manifold is a graph link if its exterior is a graph
manifold. A stable map f : M \rightarrow  N between manifolds is simple if each connected

component of every fiber of f contains at most one singular point.
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It is known that every closed orientable graph 3‐manifold M^{3} admits a simple
stable map into \mathrm{R}^{2} and that the singular set of such a map is a graph link in M^{3} [41].
Characterize those graph links which appear as the singular set of a simple stable map.

Problem 5.6. Let M^{3} be a closed orientable graph 3‐manifold. Determine the

smallest number of singular set components for simple stable maps M^{3}\rightarrow \mathrm{R}^{2}.

Problem 5.7 ([44]). For a smooth closed connected orientable 3‐manifold M^{3}

and a positive integer g ,
are the following two conditions equivalent?

(1) There exists a Morse function f : M^{3}\rightarrow \mathrm{R} such that the genus of every component

of every regular fiber is at most g.

(2) The 3‐manifold M^{3} is diffeomorphic to the connected sum of finitely many closed

orientable 3‐manifolds of Heegaard genus at most g.

It is known that they are equivalent for g=1.
Note that every closed connected orientable 3‐manifold has a Heegaard decomposi‐

tion, i.e., it is always a union of two handlebodies attached along their boundaries. The

Heegaard genus of such a 3‐manifold is the minimum possible genus of the handlebodies

that give its Heegaard decomposition.

Problem 5.8. Let M^{4} be a closed oriented 4‐dimensional manifold. For a stable

map f : M^{4}\rightarrow \mathrm{R}^{3}
,

it is known that the number of singular fibers of type III8, counted

with signs, coincides with the signature  $\sigma$(M^{4}) of M^{4} (see [49] or Corollary 3.7 of the

present paper). Does there always exist a stable map M^{4}\rightarrow \mathrm{R}^{3} such that the number

of singular fibers of type \mathrm{I}\mathrm{I}\mathrm{I}8 (counted without signs) coincides with | $\sigma$(M^{4})| ?

Problem 5.9 ([37]). A smooth map is a fold map if its singularities are all fold

singularities (see Definition 2.1). Let M^{4} be a simply connected smooth closed manifold

of dimension 4. If M^{4} admits a simple fold map into \mathrm{R}^{2}
,

then does it admit a special

generic map into \mathrm{R}^{3} ?

Problem 5.10. Let G be a finitely presentable group. Does there exist a closed

orientable 4‐dimensional manifold M^{4} and a simple stable map M^{4} \rightarrow \mathrm{R}^{3} such that

$\pi$_{1}(M^{4})\sim G ? Or does there exist a closed orientable 4‐dimensional manifold M^{4} with

$\pi$_{1}(M^{4})\cong G and a stable map f : M^{4}\rightarrow \mathrm{R}^{2} such that every component of every regular
fiber is diffeomorphic to S^{2} ? (See [47].)

Problem 5.11. Let M_{1}^{4} and M_{2}^{4} be smooth (not necessarily closed) manifolds

of dimension 4. We suppose that they are homeomorphic. If there exist proper special

generic maps f_{1} : M_{1}^{4} \rightarrow \mathrm{R}^{3} and f_{2} : M_{2}^{4} \rightarrow \mathrm{R}^{3}
,

then are M_{1}^{4} and M_{2}^{4} diffeomorphic?

(This would mean that the differentiable structure on a topological 4‐manifold that

allows the existence of a proper special generic map into \mathrm{R}^{3} is unique.) See [46].
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Problem 5.12. Does every closed non‐orientable 4‐dimensional manifold admit

a fold map into \mathrm{R}^{3} ?

Problem 5.13. It is known that closed manifolds whose tangent bundles satisfy
certain conditions admit fold maps for which all the fold indices appear [1, 11]. Study the

existence of fold maps with restricted set of fold indices. The extremal case corresponds
to that of special generic maps.

Problem 5.14 (Gay‐Kirby [13]). Let M^{n} be a closed connected n‐dimensional

manifold (n \geq 3) . It is known that every smooth map M^{n} \rightarrow  S^{2} is homotopic to an

excellent map (i.e. a smooth map with only folds and cusps as its singularities) without

definite folds [43]. If M^{n} is 1‐connected, is every smooth map M^{n} \rightarrow S^{2} homotopic to

an excellent map without folds of index 0 , 1, n-2, n-1 ?

Problem 5.15. Characterize those surface links that appear as the singular set

of a stable map S^{4}\rightarrow \mathrm{R}^{3} . (Compare with [40].)

Problem 5.16. Let C be a plane projective curve in \mathrm{C}P^{2} . Study the condition

for C to be topologically equivalent to a plane projective curve defined by a polynomial
of real coefficients.

Problem 5.17. Let

f(z)=\displaystyle \sum_{j=1}^{n+1}z_{j}^{a_{j}} and g(z)=\displaystyle \sum_{j=1}^{n+1}z_{j}^{b_{j}}
be Brieskorn‐Pham type polynomials. It is known that if their associated algebraic
knots are cobordant, then their Seifert forms are Witt equivalent over R. Furthermore,
their Seifert forms are Witt equivalent over \mathrm{R} if and only if

\displaystyle \prod_{j=1}^{n+1} C0t \displaystyle \frac{ $\pi$\ell}{2a_{j}} =\displaystyle \prod_{j=1}^{n+1} C0t \displaystyle \frac{ $\pi$\ell}{2b_{j}}
holds for every odd integer \ell (see [2]). Does it imply that  a_{i} = b_{j} up to renumbering
the indices?

Problem 5.18. Let f(z) be a Brieskorn‐Pham type polynomial as above. De‐

scribe the condition on the exponents a_{j} such that H_{n-1}(K_{f};\mathrm{Z}) is torsion free, where

K_{f} =f^{-1}(0)\cap S^{2n+1} is the (2n-1) ‐dimensional closed manifold called the link of f.
The condition for the vanishing of H_{n-1}(K_{f};\mathrm{Z}) has been described in [3].
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