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Singular controls with non-trivial independent
trajectory of generic driftless control-affine systems

By

WATARU YUKUNO *

Abstract

We consider singular controls with non-trivial independent trajectory and corresponding
bi-extremals for generic smooth driftless control-affine systems on a finite dimensional smooth
manifold in the sense of Whitney topology. Then we have the following theorem: for generic
driftless control-affine systems of two or more smooth vector fields on a finite dimensional
manifold, any bi-extremal with the non-trivial independent trajectory is of minimal order and
any singular control with the non-trivial independent trajectory is of corank one.

§1. Introduction

Bonnard and Kupka studied in [2] singular controls of generic control-affine systems
with one drift and one control. After that, Chitour, Jean and Trélat generalized the
result of [2] in the paper [4]. Chitour, Jean and Trélat also treated the driftless control-
affine system case in [3],[4]. They studied, in those papers, the properties of singular
controls for generic driftless control-affine systems.

In [3], Chitour, Jean and Trélat introduce and describe the notions called “of min-
imal order” and “of corank one” related to singular controls. For the exact definitions,
see Definition 4.2 and Definition 5.1 of our paper. Their results imply that, for a generic
linearly-independent driftless control-affine system, any singular bi-extremal with the
non-trivial singular trajectory is of minimal order and any singular control with the
non-trivial singular trajectory is of corank one.

In the important paper [4], the results in [3] are widely generalized to general
driftless control-affine systems including possibly linearly-dependent systems of vector
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fields. In particular, as a generalization of result in [3], by using a claim(Theorem 2.13
of [4]), they showed in [4] the following result: Let (X, ---,X,,),2 < m < n be a
generic system of smooth vector fields over an n-dimensional manifold M, regarded as
a driftless control-affine system. Then any singular X-bi-extremal with the non-trivial
singular X-trajectory is of minimal order. Any singular X-control with the non-trivial
singular X-trajectory is of corank one.

Unfortunately, Theorem 2.13 of [4] seems to be not correct. In fact, it was claimed
there that, for a generic system X = (X1, -+, X.n),2 < m < n of smooth vector fields
over an n-dimensional manifold M, any X-trajectory x : [0,T] — M satisfies that

&(t) =0, for a.e. t € Igep().
Here
Tiep(z) = {t € [0,T] | X1(z(t)),- -+, Xim(x(t)) are linearly dependent},

(see also Definition 6.1 of our paper). However the statement is not correct, because
clearly there exist a counterexample: For instance, consider a generic system X =
(X1, X2, X3) on R3. Then X, X5, X3 can be linearly dependent on a surface ¥ C RR3.
Moreover setting D, = (X1(x), Xa(x), X3(x))g for x € R?, we see T,;Y is transverse to
D, in T,R? and dim(D,) = 2 for any = € U, on an open dense subset U C ¥. Then we
have a line field T N D on U and any immersive integral curve x : [0,7] — U of the
line field satisfies Igep(x) = [0,T] and

x(t) # 0 for any t € [0, T.

Therefore we need to modify the formulation of theorems in [4]. In fact we adopt the
different definition on minimal order property from that in [4].

Let X = (X1, - ,Xmn) be a system of smooth vector fields over an n-dimensional
manifold M, and €2 be an open subset of R". Consider the driftless control-affine

systems
m
i=1
with the control parameter (uy,- -, uy,) € €.

To formulate our main theorems, we introduce the new concept of an independent
X-trajectory (see Definition 6.1) for a system X = (X3, -+, X,;,). An X-trajectory x :
[0,7] — M is called independent if the set of t € [0, T] such that X5 (z(t)),--- , Xm(x(t))
are linearly dependent over R has measure zero. An X-trajectory x : [0,T] — M is called
non-trivial if for any sub-interval J C [0,7], the restriction of = to J,z|; : J — M is
not constant. We need also the notiton of singular X-controls (see §2) and that of
X-bi-extremals (see §3).
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By using the ideas due to Chitour, Jean and Trélat in [3] and Thom’s transversality
theorem (for instance see [5]), we have the following theorems (see Theorem 6.2, Theorem
6.12):

Let VF(M)™ denote the set of systems of smooth vector fields X = (Xy,---, X,,) over
M. We endow VF(M)™ with the Whitney smooth topology.

Main theorem 1 Suppose 2 < m < n. Then there exists an open dense subset
Go of VE(M)™ such that, if X € Gy, if z : [0,T] — T*M is an X-bi-extremal and if
the singular trajectory x = wo z : [0,T] — M is non-trivial and independent, then the
bi-extremal z is of minimal order.

Here 7w : T*M — M is the canonical projection from the cotangent bundle of M.

Main theorem 2 Suppose 2 < m < n. Then there exists an open dense subset G
of VE(M)™ such that, if X € G1, if u:[0,T] — Q is a singular X -control for a given
initial point o € M and if the corresponding singular trajectory x : [0,T] — M, xz(0) =
g 1s non-trivial and independent, then the control u is of corank one.

We put a remark on the case m = 1 and on the case m > n :

Let m = 1. A generic vector field on a manifold has isolated singularities. Then the
endpoint mapping has singularities everywhere of corank = n — 1. On the other hand,
by definition, no bi-extremal is of minimal order if m = 1. Therefore main theorems 1
and 2 never hold in the case.

Let m > n. Then the dependent locus turns to be the whole space, and there is no
independent trajectory. Therefore in this case main theorems become void.

In general, singular trajectories are very difficult to treat in control problems. Then
main theorems of this paper guarantee that, for a generic system, the singularities of
endpoint mappings are not so bad. Under additional conditions, any singularity is
of corank one. Moreover, in the Hamiltonian formalism, if we choose a bi-extremal
for a given singular trajectory, then the singular control can be recovered by some
differentiations of minimal order (see [3],[4]).

In §2 we recall a singular control as a singular point of an end-point mapping on a
driftless control-affine system. In §3 we introduce an equivalent condition of a singular
control and describe a singular extremal and a singular bi-extremal. In §4 we define the
concept that a singular bi-extremal corresponding to a singular control is of minimal
order. Then note that the singular control is obtained as a solution of a homogeneous
linear equation defined by the Goh matrix. In §5 we describe a singular control of
corank one. In §6 we introduce the notion of independent trajectories and show the
main results of this paper.



262 WATARU YUKUNO
§ 2. Driftless control-affine systems and singular X-controls

We recall the basic definitions in a driftless control-affine system needed in this
paper: Let M be an n-dimensional C'*° manifold and X = (X1, -+, X,,) be a system
of smooth vector fields on M. We consider the control system

=1

defined by X with the control parameters uy,- - , u,,, which is called a driftless control-
affine system.

Let  C R™ be an open set. Let g € M and 7' > 0. For an L (i.e. essentially
bounded) curve u : [0,7] — €, we consider the Cauchy problem (*)g, », namely we
consider the differential equation with the initial condition:

S ECE gjl wi () X, (x(t)) for ae. t € 0,7,

x(0) = xq

By using the classical Carathéodory theory ([1] 2.4.1), we have that there exists a locally
unique Lipschitz solution. A curve u : [0, 7] — € is called an X-control and the solution
of (%)go,u 18 called an X-trajectory.

In particular, an X-control u : [0,7T] — Q is called admissible if the global solution
x = Xy, Of ()4, . exists. We call z(T") the endpoint of the trajectory . We use Uy, 1 to
denote the set of admissible X-controls. Then Uy, C L*>([0,7],?) is a Banach open
manifold ([1]).

The endpoint mapping Emdzg0 : Uy 7 — M is defined by taking endpoint, namely,
Emdf0 (u) := x,,(T") for the trajectory x, for u € Uy, 7.

An X-control w : [0,T] — Q is called a singular or an abnormal if u is a singular
point of Endfo, namely if the differential (Endfo)* : Tuldwy 7 — Ty (7yM is not sur-
jective. When u is a singular X-control, the corresponding trajectory z, is called a
singular X-trajectory or an abnormal X-extremal.

Unless otherwise stated, after this we consider only a driftless control-affine case.

§ 3. Equivalent condition of singular X-controls

We explain the equivalent condition of singular X-controls. In general case, it is
difficult to study the properties of singular points of a functional from a Banach manifold
to a finite dimensional manifold. However, in case of the endpoint mapping, as a part
of Pontryagin maximal principle, an admissible X-control of the endpoint mapping
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is singular if and only if there exists an X-bi-extremal that satisfies the constrained
Hamiltonian equations (Proposition 3.1).

Let M be an n-dimensional manifold and X = (X5, -+, X,,,) be a system of smooth
vector fields on M. Let 2 C R™ be an open set. Then the local description of the
equivalent condition of singular X-controls can be given:

Proposition 3.1.  Let xg € M. Let u: [0,T] — Q be an admissible X -control
and x : [0,T] — M be the X-trajectory with ©(0) = zo. Then u is a singular X -
control if and only if there exists an absolutely continuous curve z : [0,T] — T*M
such that, x = mwo z, and that the following equations hold for any local coordinates

(x,p;u) = (X1, , T, P1y " 5P UL, -0 Up) Of T*M X Q, with a canonical coordinates
(x,p) of T*M

(1) &:(t) = 2L (a(t), p(t):u(t) L < i S n) forae.t € [0,T]

(2) palt) = 22 (e(t), p(); u(t)) (1 < i < n)fora.e.t € [0,T]

(3) 25 (a(t) p(t);u(t) =0 1S5 < m)  forae.t €[0,T]

(4) p(t) #0 forevery t € (0,7

\

where we define H : T*M x Q@ — R by H(z,p;u) = (p, > vy u; Xi(x)).

If a point g € M is fixed and a singular X-control u is given, then the curve z is
called a singular X-bi-extremal or an abnormal X-bi-extremal corresponding to u. The
equations (4) is called the constrained Hamiltonian equations. Note that for a singular
X-control u : [0,T] — Q, a corresponding X-bi-extremal z,, is not a unique solution of
(1) because the initial condition of (2) is not given.

§4. Singular controls of minimal order

Let M be an n-dimensional manifold. Let X = (Xi,---,X,,) be a system of
smooth vector fields on M. In order to define singular X-controls of minimal order, we
prepare the (generalized) Goh matrix ([4], Definition 2.15.).

We describe the (generalized) Goh matrix. For integers i,5 (1 =< 4,5 < m), we
define the Hamiltonians H; : T*M — R and H;; : T*M — R by

Hy(2) = (= X(a)) *
,z€T™M.
Hij(2) = (2, [Xs, Xj](2)) -
where = w(2), 7 : T*M — M is the canonical projection. Note that

(Z, [X%XJ](CE» = {Hivﬂj} (:B), S T*Ma
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where {H;, H;} is the Poisson bracket of H; and H;. Then we define the Goh matriz
G :T*M — S,,(R) associated to the system of vector fields X = (Xy,---,X,,) on M
by :

G(z) == (Hi;(2)1<i j<m - 2 €T7M,

where S, (R) is the set of m x m skew-symmetric matrices. Note that since G(z) is a

skew-symmetric matrix, rank G(z) is even. If m is even, then there exists a polynomial
— R of degree % in the variables (H;;)i<;< <y, such

function P : §,,(R) = R™5 3

that for any G € S,,(R), det G is the square of P(G), which is called the Pfaffian.
We define the Hamiltonian P : T*M — R associated to the system of vector fields
X =(Xy1, -+ ,X;m) on M by

P(z):= P((Hi‘(z))lgiqgm), zeT"M.
Note that the following holds:
det (G(2)) = (P(2))%, 2 € T*M.

Then we define the generalized Goh matriz G : T*M — Myp+1,m(R) associated to the
system of vector fields X = (X5, -+, X,,) on M by an (m + 1) X m -matrix

) (Hi'(z))1§i,j§m

G(z) == ({P’Hj}(z))lgém 2z €T*M.

Now, we show that any X-singular control is obtain as a solution of a homogeneous
linear equation by Goh matirices or generized Goh matrices:
Let 2 C R™ be an open subset.

Proposition 4.1.  Fiz xg € M. Let u : [0,T] — Q be a singular X -control and
z2:[0,T] — T*M be a singular X -bi-extremal corresponding to u. Then, the followings
hold:

(1) w is a solution of the equation G(z(t))u(t) =0 for almost every t € [0,T].

(2) If m is even, then u is a solution of the equation G(z(t))u(t) = 0 for almost

every
te[0,T].

Proof. (1) Since u is a singular X-control, by Proposition 3.1, for each integer
i (1 =<i< m) and for every ¢ € [0,T],

H;(2(t)) = 0.
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By differentiating both sides, for each integer i (1 < ¢ < m) and for almost every
t €10,71,

m

> Hij(2(t) uy(t) = 0.

Jj=1

This is equivalent to the following equation: for almost every ¢ € [0, T,
G(z(t))u(t) = 0.

(2) If m is even, then rank G(z(t)) < m — 1 for ¢t € [0,T]. Therefore for every
t €10,7],
P(z(t)) = 0.

By differentiating both sides, for almost every t € [0,T],

S {P, Hj} (w(t))u;(t) = 0.

j=1
This is equivalent to the following equation: for almost every ¢ € [0, T,
G(z(t)) u(t) = 0.
O

Definition 4.2. A singular X-bi-extremal z : [0,7] — T*M is called of minimal
order if it satisfies the following condition: If m is odd (resp. even), then rank G(z(t)) =
m — 1 (resp. rank G(z(t)) = m — 1) for almost every t € [0, T].

Remark By Proposition 4.1, if a singular X-bi-extremal z : [0, 7] — T*M correspond-
ing to singular X-control u : [0,7] — Q is of minimal order, then we can deduce an
expression for u(t), up to time reparameterization.

The definition of a singular bi-extremal of minimal order (Definition 4.2 of our
paper) is different from Definition 2.16 of [4]. Definition 2.16 of [4] is that, a singular
X-bi-extremal z : [0,7] — T*M is called of minimal order if it satisfies the following
conditions:

(i) #(t) = 0, for almost every ¢ € Iqep ().
(i) If m is odd (resp. even), then rank G(z(t)) = m — 1 (resp. rank G(z(t)) =m — 1)
for almost every t € [0, \ Iqep ().
Here

Tep(z) = {t € [0,T] | X1(z(t)),- -, Xm(x(t)) are linearly dependent}.

Theorem 2.13 of [4] claims that any X-trajectory satisfies the above condition (i) for
generic X, which is not correct as is mentioned in §1. Therefore in our Definition
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4.2, we do not suppose the above condition (i). Instead we adopt the condition (ii) as
the minimal order condition by replacing I4ep(x) with [0, 77, in order to get a natural
definition (Definition 4.2).

§5. Singular controls of corank one

Let M be an n-dimensional manifold. Let X = (Xi,---,X,,) be a system of
smooth vector fields on M. Let €2 C R™ be an open subset and let o € M.

Definition 5.1. A singular X-control u : [0,7] — Q is called of corank one if
the codimension of (EndL ). is one, namely if dim M — dimIm ((EndL ).) =1 at u.

In particular, if the control system is driftless control-affine system, then it is well-
known that the following theorem:

Proposition 5.2.  ([3]) A singular X -control u : [0,T] — Q is of corank one if
and only if for any corresponding two singular X -bi-extremals z1, 2o : [0,T] — T*M to
u, there exists a non-zero real number \ such that zy = X ze on [0,T].

§6. Singular control with non-trivial independent trajectory

In this section, we prove the main theorems (Main theorem 1 and Main theorem 2).
In order to describe the main theorems, we define the independent trajectory on a drift-
less control-affine system. Let M be an n-dimensional manifold. Let X = (X, -+, X,;,)
be a system of smooth vector fields on M.

Definition 6.1. A singular X-trajectory = : [0,7] — M on a driftless control-
affine system & = 2111 u; X; is called independent if the set

Tiep(z) :={t € [0,T]| X1(x(¢)),--- , X (z(t)) are linearly dependent over R}
has measure zero.

Recall that VF(M) denotes the space of smooth vector fields over M and VF(M)™
the m-tuple product of VF(M) with the Whitney smooth topology. Then, as is stated
in Introduction, the following theorem holds:

Theorem 6.2.(Main theorem 1) Suppose 2 < m < n. Then there exists an
open dense subset Gy of VF(M)™ such that, if X € Go, if z : [0,T] — T*M is an
X -bi-extremal and if the singular trajectory x = mwo z : [0,T] — M is non-trivial and
independent, then the bi-extremal z is of minimal order. Here w : T*M — M is the
canonical projection from the cotangent bundle of M.



SINGULAR CONTROLS OF GENERIC DRIFTLESS CONTROL-AFFINE SYSTEMS 267

The proof goes in parallel with the proof of Theorem 2.4 in [3]. However note that
Theorem 2.4 in [3] implies the results only for driftless control-affine systems which are
independent everywhere. Since we treat general systems of vector fields which may have
non-void locus of dependence, we need appropriate modifications of the proof given in
[3].

Outline of proof : Let d 2 1 be an integer. Put N = 2d. We denote the space
of all N-jets of vector fields X € VF(M) by JV(VF(M)), and the fibre product over
M of m-tuple spaces of JN(VF(M)), by JN¥(VF(M))™. Then, we will show the main
theorem 1 by the following procedures:

[Stepl] (See Definition 6.5) Construct the “bad set” with respect to minimal order,
Buo(d) € JN(VF(M))™. Note that, B,,,(d) is semi-algebraic and in particular, di-
mensions of B,,,(d) and its closure m are well-defined.

[Step2] (See Lemma 6.10) Show that, if X € VF(M)™ satisfies the condition that, for
any v € M, jN X & Bpo(d), if 2 : [0,T] — T*M is an X-bi-extremal, and if the singular
trajectory woz : [0, 7] — M is non-trivial and independent, then z is of minimal order.
[Step3] (See Lemma 6.11) Compute the codimension of B,,,(d) in JY(VF(M))™.
[Step4] (See the subsection §6.4) For N > 4n (d > 2n), let G be the set of X € VF(M)™
such that the jet jVX is not included in Bpo(d) in JY(VF(M))™. Then, show that,
Gy is an open dense subset of VF(M)™ in the sense of Whitney smooth topology by
Thom transversality theorem (for instance see [5]).

In order to show the main theorem 1, we prepare the subsections: §6.1 to §6.4. In
86.1, after preparing the notations, permutated Hamiltonians, Goh matrices and elemen-
tary determinants in Definition 6.3, 6.4, we define the bad set B,,,(d) of JN (VF(M))™
in Definition 6.5. In §6.2, in Lemma 6.8,6.9, we describe some properties of rank of
Goh matrix for any singular X-bi-extremals if X € VF(M)™ satisfies the condition
that for any z € M, jN X is included in complement of B,,,(d) in JY(VF(M))™. In
particular, the important Lemma 6.10 prepared for the proof of main theorem 1 can be
immediately derived from the Lemmata 6.8,6.9 : if X € VF(M)™ satisfies the condi-
tion that , j¥ X ¢ B,,,(d) for any x € M, then any singular X-bi-extremal with the
non-trivial independent singular X-trajectory is of minimal order. In §6.3, we compute
the codimension of the closure of By,,(d) in JY(VF(M))™ in Lemma 6.11. In §6.4, by
using these Lemmata 6.10,6.11, we show the main theorem 1.

§6.1. Construction of bad set.

In this section, we construct the semi-algebric set B,,,(d), which is called the bad
set with respect to minimal order for an integer d :
Let &,, be the set of permutations with m elements, and X = (X;,---,X,,) €
VE(M)™. Then, we prepare some notations, permutated Hamiltonians, Goh matri-
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ces and elementary determinants, in order to define B,,,(d) for an integer d :

Definition 6.3. TLeti(1 =¢<m),j(1=j<m)andr(1 <r <m—1) be
integers. Then, we define permutated Hamiltonians H;, H; ; : &,, x T*M — R and
permutated Goh matrices G : G,y X T*M — M, (R), G" : &,,, x T*M — M,(R) by

Hi(07 Z) = {Za Xa(i) (W(Z))}, Hij(o-a Z) = {27 [Xo(i)a Xa(j)](ﬂ—(z))})
G(o,2) = (H; (o, Z))lgi,jgm, G"(0,2) = (H; (o, Z))lgi,jgm

where 7 : T*M — M is the canonical projection.

Definition 6.4. We inductively define the real valued functions on &,,, x T*M,
which are called elementary determinants: Let o0 € &,,,2 € T*M. Then,
(I) For an integer r (1 <7 <m — 1),

Ab(o,2) = det(G"(0,2)), AY(o,z2):=1.

(IT) For integers 7 (1 S r <m —1), k(r+1 < k < m), (with the convention that the
index m + 1 stands for r + 1),

4

G"(o,2)

(Hij(o, Z))1§i§r

Apt (o, 2) = de
' dt (Saaes))

(520,1’...),

=1,---,rk

¢"(0.2) ](HW, ))) |

(H(k4+1);(0,2))1<5<r

AS:IS (0,2) = det (

Hp1yk(o, 2)

\

(Il) Forrlsr<m—1),p(1=<p<m—r—1),and sy, -+ ,sp, = 1

Y

(
(Hij(0,2))  1zizr
j=1,---,r+p,k
+1
({Aggl 1,Hj}(0', z))j=1,'~~,7‘+p,k

AS 7;:'1 spri-ilk(o" Z) = det (3 = 0517"')5

({A’“”““"“"“*p H; ), z))

0,81, ,8p—1"

0,s1, 3Sp,S

1, k 1, 1,k
L AGLT TSP (0, 2) i= AT TP (0, 2).

(IV) Let m be an even integer. We denote the Pfaffian polynomial of G, by p :
m(m—1)

R™=" — R. Then, P(0,2) := p((Hi;(0,2))1<i<j<m)-
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(i) for every k € {m —1,m},

55,1 (0, %) = det G™ (o, 2) ‘(Hik(O', Z))1<i<m—2 (s=0.1.-)
({05 Hi} (0. 2)1zjemes|  {0F, Hi} (o 2)

66(0,2) := P(0, 2).

(ii) for every integer s1 = 1,

(
(Hij(o, Z))lgigm-2
1Sj<m

St (02 = (Gr T Y 0) o, | OO

({651,57 Hj}(aa Z))1§j§m

0s1,0(0, 2) =65 (0, 2).

\
By using the elementary determinants, we define the bad set By,,(d) for an integer d :

Definition 6.5. Let d be an integer and N = 2d. For an integer p, let N, 4 be
the set of (p + 1)-tuples 5 = (0,51,---,5p) in {0} x (N)? with s +---+ 5, < d + p.
We define the “bad set” with respect to minimal order, B,,(d) C JV (VF(M))™ by the
image of Byno(d) by the canonical projection JN (VE(M))™ x5 T*M — JN(VE(M))™

N

Bmo(d) = {(]iVXa Z) |aj = 7T(Z) € M,Z € T*M7 (]iVXﬂ Z) € Bgmo(d) UBflno(d)}ﬂ
Then, By,,(d) is defined by the following:
Buo(d) = {iNX |z =7(2) e M, (j¥X,2) € B (d) U B., (d) for somez € T*M?},

where B (d),BL (d) ¢ JN(VF(M))™ x5 T*M are written in Definition 6.6,6.7 re-
spectively:

Definition 6.6. If m = 2, then ng(d) = (0. On the other hand, if m = 3, then
we define BY (d) ¢ JN(VF(M))™ x5 T*M by the union of the sets B, (d,o,r,3, 2)
with 0 € &,,, even integers 7 (0 £ < m —3), and 5 € N, 4 with 0 < p < m. Here the
definition of BY (d,o,r,3, z) is below:

For z € T*M with n(2) =2z € M, 0 € &,,,, an even integer (0 < r < m —3), and 5 €
Ny.q with p (0 < p < m), let BY, (d,0,7,5, 2) be the set of (jV X, 2) € JN(VF(M))™ x5
T* M such that:

1). Xq1(x), -, X,n(x) are linearly independent;

2). Aj(o,z) #0;

3). for every integer i (0 < i < p),

(a) AYL T (g, 2) £ 0

0,81, ,8;
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(b) for every integer k(r+i <k <m)and s(1 <s=s;— 1),

Ar,r—l—l,n- ,r—l—i—l,k(a_, Z) — O;

07817"' y8i—1,8
4). forevery k(r+p+1Sk=m)and s(1<s=d+p—(s1+--+5p),

AL TRk (g 2y 2 )

S1,°738p,S

Definition 6.7. If m is an odd integer, then B! (d) = 0. On the other hand,
if m > 2 is an even integer, then we define B! (d) ¢ JN(VF(M))™ x T*M by the
union of the sets B%w(d, 0,81,2) with o € &,, and integers s; (1 < s7 < d). Here the
definition of B}, (d, 0, sy, z) is below:

Let m = 2 be an even integer. For o € &,,, and an integer s1(1 < s1 < d), we define
Bl (d,o,s1,2) by the set of elements (j¥ X, z) € JN(VF(M))™ x5 T*M such that:

1). Xq1(x), -, X,n(x) are linearly independent;

2). AT ?(0,2) # 0;

3). (a) if s; < d, then 67 !(0,2) # 0;

(b) for k € {m —1,m} and s (0 < s < sy — 1),6%(0,2) = 0;

4). for s(1=s=d—s1),0s,5(0,2) =0.

§6.2. The property of singular bi-extremals avoiding bad set.

We describe some properties of rank of Goh matrix for any singular X-bi-extremals
with the non-trivial and independent singular X-trajectory if X € VF(M)™ satis-
fies the condition that for any z € M, jN¥ X is included in complement of B,,,(d) in
JN(VF(M))™. In particular, we will show the important Lemma 6.10 prepared for the
proof of the main theorem 1 by using the Lemmata 6.8, 6.9.

Lemma 6.8.  Suppose that, 2 < m < n. Let d be a positive integer and N = 2d.
Let X € VE(M)™ such that for any x € M, jNX & By,,(d). Then, if z: [0,T] — T*M
is an X -bi-extremal and if the singular X -trajectory wo z : [0,T] — M is non-trivial
and independent, then

m — 2 < rank G(z(t)) £m —1, for a.e.t €[0,T].

Here w: T*M — M 1is the canonical projection from cotangent bundle of M.

Proof. By the assumption that 7 o z is non-trivial and by Proposition 4.1 (1), we
have the inequality rank G(z(t)) < m—1 for a.e.t € [0, T]. Therefore it suffices to show
the inequality m — 2 < rank G(z(t)) for a.e.t € [0,T].
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In m = 2 case, Lemma 6.8 clearly holds. We consider m = 3. In order to prove by
contradiction, assume that, z : [0,7] — T*M is an X-bi-extremal and the singular X-
trajectory moz : [0, 7] — M is non-trivial and independent but there exists a measurable
subset of positive measure K C [0,77] such that

rank G(z(t)) < m — 3 for every t € K.

Since 7 o z is independent, the compliment of Igep(m © 2), Iindep(m © 2) has positive
measure. Then, let J := I} N Lipgep(m 0 2). J has positive measure and for every t € J,
Xi1((moz)(t)), -+, Xm((woz)(t)) are linearly independent over R.

After this, in the same way as the proof of Lemma 3.8 in [3], we can prove this
Lemma 6.8 :
In fact, for an integer p (1 £ p < m), we denote by I, a subset of {1,---,m} with
cardinality p. Let r be the maximum of even integers p (1 < p < m —3) such that there
exists a subset I, C {1,---,m} satisfying det (H;;(2(¢t)))(,jerz # 0 on J. Let J, be
the set of t € J such that there exists I, C {1,---,m} satisfynig (H; ;(2(t)) @ j)erz # 0.
Note J, has positive measure. Therefore there exists ¢ € G such that

Af(o,2(t)) # 0 for every t € J,.
On the other hand, for any subset I, o C {1,---,m}, det (Hi’j(z(t))(i’j)g&r2 =0 on

Jr and rank (HM(,2(15))(Z-J~)€IEJr2 < r on J,.. Therefore for any subset I,.11 C I,49,

det (Hi,j(z(t))(i’j)ng: 0 on J,. In particular, for k =r+1,--- ,m,
Ag”g(a, z(t)) = 0 for every t € J,.
By differentiating both sides, for k=r—+1,--- ,m,

> ui(t) {ALG, Hi} (0, 2(t) = 0 for ace. t € J,.
=1

Here, we denote by Go(o, z(t)) the following m x m- matrix:

Hll(U,Z(t)) Hlm(gaz(t))

Hyi(0,2(1)) Hyn (0, 2(t))
{AS:B—’_I? Hl}(av Z(t)) e {A6:1(j)+17 Hm}(av Z(t))

{Ago s Hit(o,2(1) -+ {Ago, Him} (o, 2(1))

Then Gy(o, 2(t)) # 0 on J,.. Note that, the first diagonal minors of order r of Go(0, 2(t))
is A{ (o, z(t)),which never vanishes on J,.. and by definition, the diagonal minors of order
r + 1 containing A{ (o, 2(t)) are AS’E(O’, z(t), k=r+1,---,m.
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Claim. There exists k; € {1,--- ,m}, an integer s;(1 < s; < d+ 1), and a subset
Jr11 C Jp of positive measure such that

AS:IE(U, 2(t)) =0 on Jy1q, for any integers k, ¢ (r+1<k<m,0S0= 51— 1);

AR (o, 2(1)) # 0for every t € Jyuq.

0,81

In fact, assume the claim is false. Then for every k(r +1 = k < m) AS’E(O‘, z(t)) =0
on J,. We consider the matrix G(o, 2(t)) obtained by replacing the last m — r rows of
Go(o, z(t)) with rows

({250, He} (0, 2())1202ms for k (1S k < m).

By construction, det G1 (o, 2(t)) = 0 on J,.. The contradiction assumption implies that,
for k(r+1<k <m), AS’S (0,2(t))) =0 of J,.. Proceeding similarly, there exists ¢t € J,
such that jo.X belongs to B(d,o,7,0,2(t)). This contradicts the assumption that,
for any x € M, j, X € B,,0(d). Thus the claim is proved.

Up to a permutation, assume k3 = r + 1. We define a non-invertible matrix by
replacing in Gy :

the (r + 1)-th line by ({A§2 ), Ho} o, 2(6)1<o<m
for j (r +2 < j < m), the j-th line by ({Aggl_l, He} (o, 2())1<o<m-

To this matrix is applied the previous reasoning on GGy. Thus, by a finite number of steps,
we obtain that there exists subset J,,,_1 C J of positive measure, and s = (0, 1, , Sm)
in Ny,—1,4, such that

AT rbm—l (0,2(t))) # 0 for every t € Jp,—1;

0,31,"' ,Sm—l
AGT LTI (0, 2(8)) 2 0 on 1, £ 2 0.

As a consequence, for every t € Jp, 1, jroz)X belongs to B(d,o,7,5,2(t)). This con-
tradicts the assumption that, for any = € M, j, X € B,.(d). O

Lemma 6.9.  Suppose that, m is even and 2 < m < n. Let d be a positive
integer and N = 2d. Let X € VF(M)™ such that for any v € M, j¥X & Bpo(d).
Then, if z : [0,T] — T*M 1is a singular X -bi-extremal and if the singular X -trajectory
woz:[0,T] = M is non-trivial and independent, then

rank G(z(t)) =m — 1 for a.e.t € [0,T].

Proof. By the assumption that 7 o z is non-trivial and by Proposition 4.1 (2), we
have the inequality rank G(z(t)) £ m — 1 for a.e.t € [0,T]. Therefore we will show the
inequality rank G(z(t)) 2 m — 1 for a.e.t € [0, T.
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In order to prove by contradiction, assume that, z : [0,7] — T*M is an X-bi-
extremal and the singular X-trajectory moz : [0,7] — M is non-trivial and independent
but there exists a measurable subset of positive measure K C [0, 7] such that

rank G(z(t)) < m — 2 for every t € K.

Since 7 o z is independent, findep(7 0 2) has positive measure, where Iipgep (7 0 2) is the
compliment of Iqep(moz) in [0, 7). When let J := I} N ingep(m02), J C [0, 7] has positive
measure and for any t € J, X;((m o 2)(t)), -+, X;n((m 0 2)(t)) are linearly independent
over M. After this, in the same way as the proof of Lemma 3.8 in [3], we can prove this
Lemma 6.9:

In fact, By the previous proof, we may assume that there exists o € G,,, such that

AT2(0,2(t)) # 0 for every t € J.
In particular, rank G(z(t)) = m — 2. Moreover, for k =m — 1 and k = m,
58(a,2(t)) = 0 and 6% (0, 2(t)) = 0 for every t € J,.

Similarly to the argument of Lemma 3.8, we claim that there exists an integer
s1(1=s1 <d), and ky € {m — 1, m}, such that

5;“11 (0,2(t)) # 0 for every t € J.

In fact, otherwise, for s (0 < s < d) and for k € {m—1,m}, §¥(c, 2(t)) = 0. In that case,
for every t € J, jfr\gz(t)X belongs to B(d,o,d,z(t)). This contradicts for any x € M,
JzX € Bpo(d).

Up to a permutation, we may assume k; = m — 1. Let J; C J be a subset of
positive measure such that

57 Mo, 2(t)) # 0 for everyt € J;.
Similarly to the argument of Lemma 3.8, for every s = 0, we have
0s,,5(0,2(t)) =0 for t € J,.

Then, for every t € Jq, jfr\gz(t)X belongs to Bl(d, o, s1,2(t)). This contradicts for any

T €M, ju X € Bmold). O

Lemma 6.10.  Suppose that, 2 < m < n. Let d be a positive integer and N = 2d.
Let X € VE(M)™ such that for any x € M, jNX & B,,,,(d). Then, if z: [0,T] — T*M
is a singular X -bi-extremal and if the singular X -trajectory wo z : [0,T] — M is non-
trivial and independent, then z : [0, T] — T*M s of minimal order.
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Proof.  Since rank G(z(t)) is even, by Lemma 6.8 if m is odd, then m — 2 can be
replace with m — 1 in the statement of Lemma 6.8:
If m(2 < m < n)isodd, if z : [0,T7] - T*M is a singular X-bi-extremal and if
moz:[0,T] — M is non-trivial and independent, then

rank G(z(t)) =m — 1 for a.e.t € [0,T].

On the other hand, by Lemma 6.9, the following immediately holds:
Ifm(2 < m < n)is even, if z : [0,7] — T*M is a singular X-bi-extremal and if
woz:[0,T] = M is non-trivial and independent, then

rank G(z(t)) =m —1 for a.e.t € [0,T).

Therefore, these imply that for every integer m (2 < m < n), z is of minimal order (see
Definition 4.2). O

§6.3. Codimension of bad set.

Let d be an integer and N = 2d. Let VFp]O\lry

polynomial vector fields of degree < N over R™.

(R™) be the m-tuple product space of

In this section, we compute the codimension of the bad set of the closure B;,,(d)
in JN(VF(M))™. In order to prove this Lemma 6.11, we constuct the typical fiber

G(d) C VFp]OYy(R”) of Bmo(d). G(d) and its closure G(d) are semi-algebraic for d. In

particular, dimensions of G(d), G(d) are well-defined. By using the codimension of G(d)

in VFp](yly(R”), we show Lemma 6.11:

Lemma 6.11.  codim(B,,,(d), JN(VF(M))™) = d — n.

Proof. We describe only the outline of the proof of Lemma 6.11 because this bad
set Byo(d) is the completely same bad set B, (d) defined as 3.1.2 in [3]:

Step 1: Construct the typical fiber G(d) of B,,,(d) : The typical fiber G(d) C
VFp]O\lry(R”) is constructed by the union of GY(d) and G*(d). Note that G°(d), G1(d) are
semi-algebraic sets for d. Therefore G(d) = G°(d)UG!(d) and its closure G(d) are semi-
algebraic also. In particular dimensions of G°(d), G1(d), G(d), G(d) are well-defined and

we have that

dim(G(d)) = dim(G(d)) = max{dim(G°(d)), dim(G*(d))}.

Moreover we have that the dimensions of B,,,(d) and B,,,(d) are well-defined and that

they are equal.
The definition of G°(d), G*(d) C VF N (R™) is below:

poly
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(1) Construction of the trivial fiber G°(d) of BY (d): If m = 2, then G°(d) = 0.
If m = 3, then G°(d) is the canonical projection of G°(d;T;R™) by VFPZOVI},(R”) X
R — VEA (R"). GO(d; T;R™) is defined by the set of (Q,p) = (Q1,--- ,Qm,p) €
VFp]OVly(R”) x R™ such that there exist ¢ € &,,, an even integer r (r < m — 3), and
5 Nq 4 with ¢(0 < ¢ < m) such that (@, p) satisfies the conditions 1) to 4):

1
2
3

4

1(0),- -+, @ (0) are linearly independent;
0(0,20) # 0;

for every integer i (0 < i < ¢q), AP ,Szrﬂ(a 20) # 0.

0 381,

(a )forevery1ntegersz(0< <qk(r+i<k<m),and s(1 <s<s;—1),

)- @
). A
)-
)-

ror+1,---,r+i—1,k .
A0,81,--- ,si—1,s (07 ZO) - 07

(b) for every integer k(r+p+1Sk=m)and s(1=s<d+qg—(s1+---+5p)),

T»T—’_l»"' »T+q7k —
AO,sl,-n ,Sq,8 (07 ZO) =0,

where z( is the elements of TJR™ given in coordinates by (0, p).
(2) Construction of the trivial fiber G!(d) of B! (d) : In m is an odd integer,
then G(d) = (. If m is an even integer, then G'(d) is the canonical projection of
GH(d; T;R™) by VE LY (R™) x R" — VE Y (R™). GL(d; Ty R™) is defined by the set of
(Q,p) = (Q1, - ,Qm,p) € VFp]OYy(R”) x R™ such that there exists a positive integer
s1(1 <51 £d) and 0 € &, such that (Q,p) satisfies the conditions 1) to 4):

1). @1(0), -+, @, (0) are linearly independent;

2). AT 2(0,20) # 0;
3). if 51 < d, then 67" (0, 29) # 0;
4). (a) for every integer k € {m — 1.m} and s (0 < s < s1 — 1), 6%(0,20) = 0;

(b) for every integer s (1 = s = d— s1),0s,,5(0,20) =0,

where zg is the elements of TfR"™ given in coordinates by (0, p).
Step 2: Construct the two mappings ¢°(c,7,3), ¢! (0, s1) : VFP%(R”)) x R™ —
4. (1) Construction of ¢°(c,7,5) : Let 0 € &,,, 7(0 < r < m — 3) be an even

integer, and 5 = (0,81, -+ ,84) € Nga with 0 = ¢ < m. Then, we define the mapping
#°(o,7,5) : VF N R")) x R™ — R? by for (Q,p) € VF N (R™)) x R™,

poly( poly

A'I’,'I’-i-l,... ,T+i:l,r+i(Q)(a_, ZO) i = 1’ g, and 3 = 1, - 1,

0 38157 98§ —1,8

¢°(0,7,5)(Q,p) ==
Arr—i—l - ,r4q, 7‘+‘1+1(Q)(U, Zo) s=1,2,--- ,d+q - (81 + +S(1)7

0,51, ,5¢,8

where zg is the elements of T¢R" given in coordinates by (0, p), and Ap" 1 mH L+ gy

0 381,70 4y Si— 17
’l",'l"—|—1,"' »T-l'q,?"—l-(H-l : :
PR (Q) are the elementary determinants associated to Q.

(2) Construction of ¢!(0,s;): Let 0 € &,, and 51 (1 < 57 < d). Then, we define the
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mapping ¢!(o,s1) : VF N (R™)) x R® — R9 by for (Q,p) € VF N (R™)) x R™,

poly poly

6y (Q)(0,20), s=0,1--+ 51— 1;
53173(Q)(U7Z0)7 s = 172 7d_317

¢'(0,51)(Q,p) =

where 2 is the elements of TFR™ given in coordinates by (0,p), and 07*(Q), s, s(Q) are
the elementary determinants associated to Q).

Step 3: Construct the two open sets T2, 5,75 . C VFp](yb,(R”)) x R™ :
(1) Construction of T) - :Let 0 € &y, r(0 < 7 = m — 3) be an even integer,

and 5 = (0,81, -+ ,84) € Nga with 0 < ¢ < m. Then, T2, - is defined by the set of

o,r,s

(Q,p) € VFPJOVI},(R”)) x R™ such that (Q,p) satisfies the conditions 1) and 2):
1). @1(0), -, Q@ (0) are linearly independent;
2). for every integer i (0 < i < p), AL (0, 20) #£ 0,

where zg is the elements of TfR"™ given in coordinates by (0, p).
(2) Construction of T}, : Let 0 € &,, and s1 (1 < 51 < d). Then, T, is defined

.51
by the set of (Q,p) € VFPJOYY(R”)) x R™ such that (Q,p) satisfies the conditions 1) to
3):

1). @1(0), -+, @, (0) are linearly independent;

2). Al 3(0,29) #£0;

3). if 81 is 81 < d, then 52}‘1(0, z0) # 0,
where z( is the elements of TJR"™ given in coordinates by (0, p).

Then, T, 5 and T} ,, are open subsets of V]F’pjo\lry (R™)) x R™.

Step 4: The followings immediately hold:

(1) If m = 3, then Go(d; T§R™) is the union of the kernels of the restriction to
Tg,r,E of the mapping ¢°(o,r,3) with ¢ € &,,, even integers 7 (0 < r < m — 3), and
5 € Ngq with 0 < g < m.

(2) If m = 2 is even, then G'(d; T;R™) is the union of the kernels of the restriction
to T,y ,, of the mapping ¢' (o, s1) with o € &,,, and s1(1 < 51 < d).

Step 5: Let Q be the set of @ € VFp]O\lry(R”) such that @Q1(0),---,Q.,(0) are
linearly independent. Then, the followings hold (see Lemma 3.5, 3.6 in [3]):

(1) If m 23,0 € &, and 7 (0 < r < m — 3) is an even integer, then the restric-
tion to the intersection T S,T,E NV of the mapping ¢°(o,r,3) is a submersion for every
coordinate neighborhood V of Qg x R™.

(2) If m = 2 is even, 0 € &,,, and an integer s; satisfies 1 < s; < d, then the
restriction to the intersection T;,sl NV of the mapping ¢ (0,s1) is a submersion for

every coordinate neighborhood V of Qg x R™.
Step 6: codim(B,,,(d), JN(VF(M))™) =2 d—n:

Let k € {0,1}. By step 4,5, codim(G*(d; T(}"R”),VFN

poly R™) X R™) = d. On the
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other hand, G¥(d) is the canonical projection of G¥(d; T¢R"™) by VF N (R™) x R™ —

poly

ve N (R™). Therefore, codim(G*(d), VF N (R™)) = d—n. Since G(d) = G°(d) UG (d)

poly poly
is the typical fiber of By,,(d),

codim (B (d), JN (VF(M))™) = codim(G(d), VF N (R™)) =2 d—n.

poly

Since the dimensions of B,,,(d) and By,,(d) are equal,

codim(B,o(d), JN (VE(M))™) 2 d — n.

§6.4. Proof of main theorem 1

Proof of Theorem 6.2 (Main theorem 1) :
Let d > 2n be a positive integer. Let N = 2d(> 4n). Let Gy be the set of X € VF(M)™
such that for any € M, jY X is not included in the closure of B,,,(d) in J~ (VF(M))™:

Go = {X € VE(M))"™ | jN X ¢ Byo(d) for any v € M.} .

By Lemma 6.11,
codim(B,,o(d), JN(VE(M))™) =2 d —n > n.

Then Gy is an open dense subset of VF(M )™ by using the transversality theorem (see
[5])-

Let X = (X1, , Xm) € Go. Then, for any v € M, j¥ X & B,,,(d). Therefore, by
using Lemma 6.10, if z : [0, 7] — T*M is a singular X-bi-extremal and if the singular X-
trajectory x = wo z: [0,7] — M is non-trivial and independent, then z : [0,T] — T*M

is of minimal order. O

Next we prove the following theorem:

Theorem 6.12. (Main theorem 2) Suppose 2 < m < n. Then there ezists an
open dense subset G1 of VF(M)™ such that, if X € Gy, if u: [0,T] — Q is a singular
X-control for a given initial point xo € M and if the corresponding singular trajectory
x:[0,T] = M,z(0) = ¢ is non-trivial and independent, then the control u is of corank
one.

Outline of proof : Let d’ = 1 be an integer. We set d =2d' —1and N =d+1=2d'.
[Stepl] Construct the “bad set” with respect to corank one, Bg(d) € JN(VF(M))™.

Note that Be(d) is semi-algebraic and in particular, dimensions of B¢ (d) and its closure
Be(d) are well-defined.
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[Step2] (See Lemma 6.18) Show that, if X € VF(M)™ satisfies for any z € M, jY¥ X ¢
Bpo(d') U Be(d), if w : [0,T] — Q is a singular X-control for a given initial point
xo € M and if the corresponding X-trajectory x : [0,7] — M, z(0) = z( is non-trivial
and independent, then the control « is of corank one.

[Step3] (See Lemma 6.19) Compute the codimension of Bo(d) in JN (VE(M))™.
[Step4] (See the subsection §6.8) Let d’ > 2n. Then N = 2d’ > 4n and d = 2d'—1 > 3n.
Let G; be the set of X € VF(M)™ such that, for any x € M, the jets jV X is not
included in the closure of By,,(d') U Bo(d) in JY(VF(M))™. Then, show that G is
an open dense subset of VF(M)™ in the sense of Whitney smooth topology by Thom
transversality theorem (for instance see [5]).

In order to show the main theorem 2, we prepare the subsections: §6.5 to §6.8. In
86.5, after preparing some notations, namely, permutated Hamiltonians, extended Lie
derivatives and elementary determinants in Definition 6.13, 6.14, 6.15, we define the
bad set B¢(d) in Definition 6.5. In §6.6, we show the important Lemma 6.18 prepared
for the proof of main theorem 2: if X € VF(M)™ satisfies the condition that, for any
v € M, j¥NX & Bpo(d), then any singular X-control with the non-trivial independent
singular X-trajectory is of corank one. In §6.7, we compute the codimension of Bx(d)
in JN(VF(M))™ in Lemma 6.19. In §6.8, by using these Lemmata 6.18, 6.19, we show
the main theorem 2.

8 6.5. Construction of bad set.

In this section, we construct the semi-algebraic set B (d), which is called the bad
set with respect to corank one for an integer d.

Let &,, be the set of permutations with m elements, and X = (X, --,X,,) €
VE(M)™. Then, we prepare some notations, permutated Hamiltonians, extended Lie
derivatives and elementary determinants, in order to define Bo(d) € JN (VF(M))™ for
an integer d.

Definition 6.13. For k € {1, 2}, we define the real valued functions Hi[;.c], Agc]’r, Pl 5£k]’i

on &, x T*M xp; T*M, which are called permutated Hamiltonians:
Let 0 € &, and (21, 2P1) € T*M x5y T*M. Then,
Hi[;‘e](0-7z[l]az[2]) = HZ](UVZ[k]) fOI"i,j (1 é Za.] é m)
Age]”(a, 202121y = Ap(o, 2I¥1) for every integerr (0 <7 < m — 1)
PH(g, 21 2RIy .= Pz and PFm=2(5 201 22]) .= pm—2([k])
5Lk]’i(a, 2 212) .= §i(0, 2), for every integers > Oand i € {m — 1,m},

where P (resp. P™~2) is defined by

P(0,2) i= P ((Hy(0,)icjzm) (resp. PP72(0.2) 1= P ((Hig(0.2)igicyzm ») )
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for o0 € &,z € T*M by using the Pfaffian polynomial of G (resp. G™2).

Definition 6.14. Let F, be the set of F' € C°(T*Mx 5y T*M) such that there
exists Fy, Fy € C®°(T*M) such that F(z[U 22) = F (I E (2B for (21U, 2R) €
T*M xpfT*M. Let F be the set of FF € C®(T*Mxp T*M) such that F is a lin-
ear combination of a finite number of elements of Fo on R. Then, for the Hamiltonian
vector field H of X € VF(M), we define an extended Lie derivative L4 : F — F by
the following: For F € F, and (21, 212) € T*M x ,T*M,

L (F) (2N, 2P o= L5 (F) (M) By (2P + Py (M) £ (Fe) (1)),

and extend it by linearly to F. Here, L3;(Fj) is the Lie derivative of Fy with respect
toﬁforke{l 2} .

Definition 6.15. We inductively define the real valued functions on &,,, xT* M X ps
T*M, which are called elementary determinants: Let o € &,, and (21, 2) € T*M x5,
T*M. Then

(

(H[l (0, 211 ])>1§i§m—l,
@S_|_1(0',Z[1],Z[2]) = det 12i5m (8:0717"')7
(2]
(E J@S % )) 1<58m

and

0,(c, 211, 21y .= det ({P[l],H}l]}(g’z[l],z[z])> (s=0,1,---)

o(o, 211 221} .= det ({P[l],H][l]}(o.’z[l],z[Q])> )
1<
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Definition 6.16. Let N = d+1. We define the “bad set” with respect to corank
one, Be(d) by the canonical projection of Bo(d) by JN (VE(M))™ x p T*M X 3y T*M —
JN(VF(M))™. The definition of B (d) is written in Definition 6.17:

Definition 6.17.  We define Ba(d) € JN(VE(M))™ x5 T*M X 3; T*M by the
union of the sets Bo(d, o) with o € &,,. Here the definition of B (d, o) is below:
For o € G,,, let Bo(d, o) be the subset of JN (VF(M))™ x 3y T*M x 3y T* M of all triples
(5N X, 211, 212} such that ¢ = n(z!Y) = 7(212):

1). Xi(x), -, X,n(x) are linearly independent;

2). 2111, 221 are linearly independent;

if m is odd, then AT (o, 21 £ 0,
" | if m is even, then 87" (o, ) P™=2(0, 221) £ 0;
if m is odd, then O,(c, 21, 212) = 0,

if m is even, then 6,(o, z!Y, 212) = 0

3)

4). f0r3(0§s§d—1),{

§6.6. Property of singular controls avoidng the bad set.

We show the important Lemma 6.18 prepared for the proof of the main theorem 2.

Lemma 6.18.  Suppose that 2 < m < n. Let d = 1 be an integer. We set
d=2d—1and N =d+1 = 2d. Let X € VF(M)™ such that for any v € M,
iNX & Byo(d') U Bo(d). Then, if u : [0,T] — 2 is a singular X -control for a given
initial point xo € M and if the corresponding X -trajectory x : [0,T] — M, z(0) = xq is
non-trivial and independent, then the control u is of corank one.

Proof. 1In order to prove by contradiction, assume that, u : [0, 7] — € is a singular

X-control for a given initial point 9 € M and z : [0,T] — M, x(0) = z is non-trivial
and independent but the control u is not of corank one. Then by Proposition 5.2, there
exists two bi-extremals z!Y, 2P : [0, 7] — T*M with z[1 o7 = 22 o 7 = 2 such that
20 (t) and 212 (t) are linearly independent for every ¢ € [0, 1].
Case 1 We consider the case m is odd. For k = 1,2, we denote by GI¥! the Goh
matrix G(z[F) = (Hij(z[k]))l§i’j§m. Since X = (X4, -+, X)) € VE(M)™ is for any
r € M, N X ¢ Bpo(d'), by the proof of Lemma 6.8, there exists I,,, 1 C {1,---,m}
with cardinality m — 1 such that det (H;;(z! (t))igerz_, # 0 on [0,T]. Then, up
to a permutation, we may assume that there exist an open subinterval K C [0,7] and
o € G,, such that

AB =Y (), 221(1)) # 0 for every t € K.

On the other hand, since x is independent, Iingep(z) has positive measure, where
Iindep() is the compliment of Iqep () in [0, 7. Then Let J := K N Lipdep().
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Now, since for k = 1,2, H;(o, z[*(t)) = 0 on [0,7], by differentiating both sides,
fori(1=i<m),

m

> ui(t) Hij(o, 2%(t)) = 0 ae. t € [0, 7).
j=1
Hence, the matrix

Hyi(o,200(t)) -+ Hip(o,20(1))
H;—1)1(0, () - Hm—1ym (o, 2H(1))
Hyi(o,2P1(t)) -+ Hin(o,22(1))

is not invertible. Therefore Oq(a, z[1(t), 22(t)) = 0 on [0,T]. By differentiating both
sides,

> ui(t) LpOo(o, 2M(t), 2P () = 0 ae.t € [0, 7).
j=1

This implies ©; = 0. By proceeding similarly, for k(0 £ k < d —1).

AGH o, 2100(1), 2 (1)) # 0
for every t € J.
Ok (0, 211 (1), 2P (1)) = 0

This contradicts the assumption that, for any x € M, j¥ X € Bo(d).
Case 2 We consider the case m is even. By proofs of Lemma 6.8, 6.9, up to permutation,
there exists an subinterval K C [0,7] such that

{ PUlm=2(g, 20(t), 2P(1)) # 0

for every t € K.
511 o, 21 (1), 22 (1)) # 0

Then Let J := K N Lipdep ().

We show that PRLm=2(g, 21U (1), 2P1(2)) # 0 for every t € J. For a € [0, T, consider
2% = (1 — )zl 4+ azPl. Since P™2(z[°l(t)) depends continuously on «, for a small
enough, P ~2(zl*l(t)) = 0 for every t € J. Moreover, the set of singular X-bi-extremals
of singular X-trajectory z is a vector space, z!* is singular X-bi-extremals of z, and
for a > 0, z[(¢) and z[1(¢) are linearly independent for every ¢t € J. Then, it suffices
to replace z[2 by 2z, for some a > 0 small enough.

Similar to the case m odd, for k(0 < k < d—1),

O (o, 211 (2), 2B (8)) PEIm=2(g, 2 (1), 220 (2)) £ 0
for every t € J.
91@(0; Z[l] (t)7 2[2] (t)) =0
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This contradicts the assumption that, for any x € M, j¥ X € Bo(d).

§6.7. Codimension of bad set.

Let d be a positive integer and N = d+ 1. Let VFPJO\IZ,

space of polynomial vector fields of degree £ N over R".

(R™) be the m-tuple product

In this section, we compute the codimension of the closure of the bad set Bg(d)
in JY(VF(M))™. In order to prove this Lemma 6.19, we construct the typical fiber
Ge(d) C VFPZOVI},(R”) of Bo(d). Ge(d) and its closure Geo(d) are semi-algebraic for d.
In particular, dimensions of G¢(d), Ga(d) are well-defined. By using the codimension

of Go(d) in VFp](yb,(R”), we show Lemma 6.19:

Lemma 6.19. codim(B¢(d), J¥(VF(M))™) = d — 2n.

Proof. We describe only the outline of the proof of Lemma 6.19 because this bad
set Bo(d) is the completely same bad set Bo(d) defined as 3.1.2 in [3]:

Step 1: Construct the typical fiber Go(d) of Be(d) :

Typlcal fiber Go(d) of Be(d) is the canonical projection of Go(d; TgR"XTFR™)
by VFpoly(R”) x R" x R" — VFp]O\lry(R”). Geo(d; TER™TFR™) is defined by the set
of (Q,plM,pl) € VFpoly(R”) x R™ x R™ such that there exists ¢ € &; such that
(Q, p!Y, pl?) satisfies the conditions 1) to 4):

1). @1(0), -+, @, (0) are linearly independent;

2). pll pl2 are linearly independent

3). (a) if m is odd, then A (o, Zo )
if m is even, then 67" (o, Zo )Pm 2(0 z([,z]),

)
) if m is odd, then ©,(o, z([) L z([,z]) for every integer s(0 < s<d—1),
) ]

(1] [2

(b
4). (a
(b) if m is even, then 85(o, 2, ", 2, ) for every integer s (0 < s < d — 1),

(1] 2]

where z; ", z; are the elements of TfR"™ given in coordinates by (0, p1), (0, p2).
P (R") x R" x R — RY -
Let 0 € 6. Then construct the mapping ¢, by dividing two cases of m being

Step 2: Construct the mapping ¢, : V

odd and even:
N

Case 1 If m be an odd integer, then we define ¢, : VF ;1 (R") x R" x R" — R? by for

(Q,p!Y,pl?) € VF N (R") x R™ x R™,

poly

b0 (@1 p) 1= (04(Q) (0, A4 2

)>o§s§d—1 ’

where z([,l], z([JQ] are the elements of T*R" given in coordinates by (0, pll p[2]) and O4(Q)

is the elementary determinants associated to Q).
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Case 2 If m be an even integer, then we define ¢, : VFp]OVb,(R”) x R” x R® — R? by
for (Q,p!",p) € VFY (R") x R x R™,

poly

0op 2]
¢U,V(Q7p » P )_ (95(07 SUREC ))Ogsgd—l,

where zél], z([f] are the elements of T*R™ given in coordinates by (0, p!l, pl?l) and 6,(Q)

is the elementary determinants associated to Q).

Step 3: Construct the open subset V, C VFPZOVIY(R”) x R™ x R™ :

Let 0 € &. Then, construct V,, by dividing two cases of m being odd and even:
Case 1 If m is an odd integer, then V,, is defined by the set of (Q, p, pl?) e V]F’pjo\lry (R™) %
R™ x R™ such that (Q, p!Y), p!?) satisfies the conditions 1) to 2):

1). p!Y, i are linearly independent;

2). A" (o, 1) £ 0.

Case 2 If m is an even integer, then V, is defined by the set of (Q,p!",pl?) €
VE N (R") x R" x R™ such that

1). plll pll are linearly independent;

2). 07 (o, 24 VP2 (0,257) #0,

where z([Jl] , z([,z] are the elements of T*R™ given in coordinates by (0, pll, p[z]).

Then, V, is an open subset of VFp]()Vb,(R”) x R™ x R™.

Step 4: Go(d; TGR™ x T R™) is the union of kernels of restriction to V,, of the
mapping ¢, with 0 € G,,.

Step 5: Let g be the set of @ € VFPZOVI},(R”) such that Q1(0), -+, Q@ (0) are
linearly independent. It is well-known that the local coordinate systems on 2y can be
constructed (see Coordinate systems in [2],[3]).Then, if 0 € &,,, then the restriction
to the intersection V, NV of the mapping ¢, is a submersion for every coordinate
neighborhood V of Q x R”™ x R™. (The proof is Lemma 4.2. in [3].)

Step 6: codim(Bc(d), JN(VF(M))™) = d — 2n :

By Step 4,5, codim(G¢(d; TS‘R”XTS‘R”),VFP%(R") xR™ x R™) = d. On the other
hand, G¢(d) is the canonical projection of G (d; TfR™ X TFR™) by VFp]o\lry(R”) x R™ x

R" — VF Y (R™). Therefore, codim(G¢(d), VF N (R™) = d — 2n. Since G¢(d) is the

poly poly

typical fiber of Bo(d),

codim(Be(d), JN¥ (VE(M)) = codim(Ge(d), VE N (R")) = d — 2n.

poly

Since the dimensions of Ba(d) and Be(d) are equal,

codim(B¢c(d), JN (VF(M)) 2 d — 2n.
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§6.8. Proof of main theorem 2

Proof of Theorem 6.12 (Main theorem 2):
Let d’ > 2n be an integer. We set d =2d’ — 1 and N =d + 1 = 2d'(> 4n).

Then, let G; be the set of X € VF(M)™ such that for any € M, jN¥ X is not
included in the closure of By,,(d’) U Bo(d) in JN (VF(M))™:

Gy = {X € VE(M))™ | jN X & Byg(d) U Ba(d) for any € M.} .

By Lemmata 6.11,6.19,

codim(B,,,(d') U Bo(d), JN (VE(M))™) 2 min{d' — n,d — 2n} > n.

Then G; is an open dense subset of VF(M)™ by using transversality theorem (see [5]).

Let X = (X1,---,X,,) € G1. Then, for any z € M, j¥NX ¢ B,,,(d') U Bo(d).
Therefore, by using Lemma 6.18, if u : [0,7] — € is a singular X-control for a given
initial point zy € M and if the corresponding X-trajectory x : [0,T] — M, z(0) = ¢ is
non-trivial and independent, then the control w is of corank one. O
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