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A remark on non-existence results for the semi-linear
damped Klein-Gordon equations

By

Masahiro IKEDA* and Takahisa INUT**

Abstract

We consider the Cauchy problem for the semi-linear damped Klein-Gordon equations with
a p-th order power nonlinearity in the Euclidean space R%. It is well-known that the equation
is locally well-posed in the energy space H'(R?) x L*(R%) in the energy-subcritical or critical
case l <p<pjford>3orl<pford=1,2 wherep; :=1+4/(d—2). In the present paper,
we give a large data blow-up of energy solution in this case, i.e. 1 <p<piford>3orl<p
for d = 1,2 (Theorem 2.4). Moreover, we also prove a non-existence of a local weak solution
(Definition 2.2) in the energy-supercritical case p > p1 (Theorem 2.7). Our proofs are based
on a invariant of a test-function method.

§1. Introduction

In the present paper, we study the Cauchy problem for the semi-linear damped
Klein-Gordon equations

0?u — Au+m?u+ adpu = F(u),  (t,z) €[0,T) x R?,

(NLKG) u(0,z) = Af(z), Owu(0,x) = Ag(x), z € R?,

where T" > 0, d € N is the space dimension, m,a € R are constants, u = u(t,z) is a
C-valued unknown function of (¢,z), F' = F(z) denotes a nonlinearity, A > 0 is a non-
negative parameter, and f = f(x), g = g(z) are C-valued prescribed functions of z € R,
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When m = a = 0, the equation is called nonlinear wave equation, when m > 0,a = 0,
(NLKG) is called nonlinear Klein-Gordon equation and when m = 0, a > 0, the equation
is called nonlinear damped wave equation. These equations often appear to describe
various physical phenomena. Our main aim in this paper is to prove a large data blow-up
of energy solution to the equation (NLKG) with F(2) = £[z|P and 1 < p < py := 1+ 725
(ifd>3)orl<p(ifd=1,2) and to show a non-existence result of local weak solution
for the same equation with p > p; for arbitrary A > 0 and a suitable function (f,g) in
the energy space H!(RY) x L?(R4).

Throughout this paper, we assume that the nonlinearity F' is continuously differ-
entiable in the sense of functions in real numbers and satisfies the estimates

) { F(2) = O(|2"),  F.(2). Fx(z) = O(z"),
F.(2) = Falw), Fo(2) = Fx(w) = O]z — w] ™t =b3H (||  fu|)meci0r=21),

for some p > 1, where F., and F% are the complex derivatives

1 /OF OF 1 /OF OF
Fz.——(——l—>, Fg—§<%+la—y>

The typical examples which satisfy (A) are the following power type nonlinearities:
F(2) = £z 12z, or +|zP.

In the massless and undamped case, i.e. m = a = 0, the equation (NLKG) with such

p-th order power nonlinearities is invariant under the scale transformation
u(t,z) = uy(t,x) == ’y%u(’yt,’y:c), for v > 0.

Moreover, the direct computation gives

2

2 _d—2
[y (0, ) [ g =77 = [[u(0, ) [l g1
where H! denotes the homogeneous Sobolev space. Thus if the order p satisfies

2= 4
p—1 2 d—2’
then the H'-norm of the initial data is also invariant. Therefore, the case p = p; is
called H!-critical case. And the case of p < p; (resp. p > p;) is called H!'-subcritical
case (resp. H!'-supercritical case). Moreover, if u is a real-valued solution to (NLKG),
then the following energy identity holds formally:

%{H@tu(tﬂl%z +IVu)lZe +m?llu®)lz> + Glu(t, 2))} = —al|dru(t)l|7-,
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where G(u) := [ F(s)ds. From the above observations, it is natural to consider the
equation (NLKG) in the energy space H!'(R?) x L2(R9). It is well known that if the
nonlinearity F satisfies (A), then the equation (NLKG) is locally well-posed in the energy
space H'(R?) x L2(RY) in the H'-subcritical or critical case (1 < p < p1) (see papers
[5, 6, 14, 15] for example, and textbooks [27, 26]). Especially, the final result of the local
well-posedness to (NLKG) was obtained in [14]. Recently, global behaviors of solution
to (NLKG) with the gauge invariant type nonlinearity 4|z|P~1z has been extensively
studied (see [24, 25, 17, 21, 1]). However the global well-posedness to (NLKG) with
general nonlinearities in the subcritical and critical case has been open as well as the
local well-posedness in the super critical case. We address these problems and give
an answer to them partially in the present paper in the case of F(z) = %|z|P. More
precisely, as was mentioned before, we prove a large data blow-up result to the equation
(NLKG) with F(z) = #£|z|? in the subcritical or critical case 1 < p < p;. Moreover
we give a non-existence result for local weak solutions in the supercritical case p > p;.
Recently, the similar results for the nonlinear Schrédinger equation with F'(z) = |z|P
were obtained in [9].

§2. Notations and Main results
In order to state our main results, we define energy solution and weak solution to
(NLKG) and also introduce several notations.
As was stated in the introduction, we are interested in energy solution to (NLKG),
which is defined as follows.

Definition 2.1 (Energy solution, its lifespan). ~ We say that a function w : [0,7T") x
R? — C is energy solution or H!-solution to (NLKG), if u lies in the class

E(T) := C([0,T); H*(R?)) n C*([0,T); L*(RY))

and obeys the Duhamel formula in H L_sense
t
u(t,x) = A0 + a)D(t) f(x) + AD(t)g(x) + / D(t — s)F(u(s,x))ds,
0

where D(t) := e” 2 FLL(t,&)F is the free damped Klein-Gordon evolution group and

sin(ty/m2—a?/4+4€|?) . 2 2 2
f —a”/4
L(t,§) == Vm?—a?/4t[E)2 im” = a*/4+ [ >0,
| sieh(EmA et AIER) 2 24 4 )2 < 0.

Vomrra Al

For the convenience of readers, we give a proof of existence and uniqueness of the
local energy solution in Theorem 5.1 in Appendix of this paper. We also define lifespan
of the solution as

T(\) :=sup{T € (0, o0]; there exists a unique solution v to (NLKG) on [0,7)}.
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In this paper, we reduce our problems into whether there exists a weak solution to
(NLKG) or not, which is defined as follows.

Definition 2.2.  We say that u is a weak solution to (NLKG) on [0,7), if u
belongs to LY. ([0,T) x R?) and the following identity

loc

@) [t o{@R0)tn) — (A0 +mP0(t,a) - a(0)(t.0) dads
[0,7) xR
[ @)@)0.0)ds 4 [ (af(e) + g@)p 0,2
R4 R4
+ / Fu(t, 2))(t, o) dudt
[0,7) xR

holds for any 1 € C$°([0,T) x R?). We also define lifespan of the weak solution as
Tw(A) :=sup{T € (0, o0]; there exists a unique weak solution u to (NLKG) on [0,7T)}.

Now we state our main results in the present paper.

Result 1. Large data blow-up in energy-critical or energy-subcritical

First we state a non-existence result for the global weak solution for p > 1 for a
suitable (f,g) € (L} .(R%))? and large A > 1.

loc

Proposition 2.3 (Non-existence of the global weak solution for p > 1 and large \).
Letm,a € R, d €N, p>1, F(2) = |2|P and (f,9) € (L}, .(R?))2. We assume that the

loc

function (f,g) satisfies

el 7%, (lal < 1),
(22) %(af+g)(w)2{07 1)

where k < min (d, 2L ). Then there exist constants g > 0 and C > 0 depending only
on d,p, k,|m|, |a| such that for any A > Ao,

(2.3) Tw(\) < OAY/7,

where o = % —k (>0).

Next we state one of our main results, which gives a large data blow-up result for
the H'-solution in the H!-subcritical or critical case, i.e. 1 <p <p; ford>3orl1l<p
ford > 1,2.

Theorem 2.4 (Large data blow-up in the H!-critical or subcritical case).
Let mja € R, d e N, 1 <p<pjford>3orl<pford=12 F(z) =]z and
(f,9) € HY(R?) x L2(RY). We assume that the function (f, g) satisfies (2.2) with k < £.
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Then there exist constants Ao > 0 and C > 0 depending only on d,p, k,|m/|, |a| such that
for any A > Ao,

(2.4) T(\) < CA Yo,

where o := % —k (> 0). Moreover, the norm of the solution blows up at t = T'(\):

liminf ||(u(t), Ou(t))||lgixrz =00, if 1 <p<py ford>3 orl<p ford=1,2,
t—T(A\)—0

lul| 2ea+0 =00, if p=np1.
L, 772 ([0,T(\)xR4)

Example 2.5. It should be verified whether there exists the function (f, g) sat-
isfying the assumptions in Theorem 2.4, i.e. (f,g) € H*(R?) x L?(R%) and (f, g) satisfies
the estimate (2.2) with k < . Indeed, we may choose

lz| 7k, if |z <1,
(2.5) f(z):=0 and g¢g(z):= < smooth, if1< |z|< 2,
0, if |z| > 2,

where k < %.

Remark 2.1.  Lower estimate of lifespan T'(\) to the equation (NLKG) can be

obtained. However we do not pursue the optimality of the lifespan in this paper (see
Remark 5.3).

Result 2. Non-existence of local weak solution in the energy-supercritical
First we prepare a non-existence result for the local weak solution for p > 1 + %
for a suitable (f,g) € (L}, .(R?))? and arbitrary A > 0.

loc

Proposition 2.6 (Non-existence of local weak solution in p > 1+ %)
Letmya € R, d>2,p>1+ 2, F(z) = |2[P, A >0 and (f,9) € (L}, (R))% We

assume that the function (f,q) satisfies the estimate (2.2) with Z—i < k < d. Then if
there exist T > 0 and a weak-solution u to (NLKG) on [0,T'), then A = 0.

Next we give a non-existence result for local weak solution in the energy-supercritical
case p > p; for a suitable (f, g) in the energy space for arbitrary A > 0.

Theorem 2.7 (Non-existence of local weak solution in energy-supercritical).  Let
m,a €R, d>3,p>py, F(2) =27, A >0 and (f,g9) € H*(RY) x L2(R?). We assume
that the function (f,g) satisfies (2.2) with Z_i <k< %. Then, if there exist T > 0 and
a weak-solution u to (NLKG) on [0,T'), then A = 0.
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Example 2.8. It should be also verified whether there exists the function (f, g)
satisfying the assumptions in Theorem 2.7. Indeed, we may choose the same function
(f,g) which appears in Example 2.5.

Remark 2.2. We note that Theorem 2.4 and 2.7 also hold in the massless case

24 and the time

m = 0 or undamped case a = 0, which implies that the mass term m
derivative term ad;u in the equation (NLKG) do not give any effect on the behavior
of solutions under the conditions of the theorems, i.e. (NLKG) with f(z) = |z|P and
“I<p<p ford>3orl<pford=12 and large \” (Theorem 2.4) or p > py

(Theorem 2.7).

Remark 2.3.  The similar statements as the above results also hold for the nega-
tive time direction if the left hand side of (2.2) is replaced by —R(af + g)(x).

Next, we explain the strategy of the proof of the theorems. We use a variant of
the test-function method used in the papers [29, 30, 22, 13, 23, 28, 12, 11, 10, 8] etc. In
the papers, the method was applied to some nonlinear evolution equations (parabolic
equations, damped wave equations and Schédinger equations), to prove a small data
blow-up result in a subcritical case. Different from their situations, we have to prove a
large data blow-up result in the critical case or to treat the supercritical case. Thus we
have to modify the argument of their method. The major difference from the previous
works comes from how to choose the initial function (f,g). In our result, we take the
initial data (f, g) such as R(af + ¢) has a singularity at the origin x = 0 different from
the previous works (see also [20] for such choice of the initial data). We also note that
the test-function method does not seem to work to prove a small data blow-up result
for the Klein-Gordon equation because of the presence of the mass term m?u. With
regard to this method, our theorems imply that the method is effective, in order to
prove a large data blow-up result or to treat the supercritical case even for the massive
Klein-Gordon equation (m > 0).

At the end of this section, we introduce several notations throughout this paper.
For 1 < p < oo, we define the Lebesgue space as LP = LP(R9), with the norm || f||z» :=
(fga |f(a:)|Pda:)1/p if 1 <p <ooand | f|Lre :=ess.sup,epa |f(x)]. For a time interval I
and a Banach space X, we use the time-space Lebesgue space LY (I; X), with the norm
lullzerxy = Mu®lxllpery L x R?) denotes the set of measurable functions
u : I xR? — C such that for every compact interval J C I x R%, u|; € LP(J). We define
C"(I; X) as the Banach space whose element is an r-times continuously differentiable
mapping from I to X with respect to the topology in X. Let S(RY) be the rapidly
decaying function space. For f € S(RY), we define the Fourier transform of f as

1

FIE©=F(© ::W

/ e (2) de,
Rd
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and the inverse Fourier transform of f as

1

F o [f](z) ::W

| emer@as

and extend them to S'(R?) by duality. We define the inhomogeneous Sobolev spaces
as W*P(RY) with the norm | f|lwes = |[F[(€)*f]ll 2z, where (-) := (1+ - |*)/2. We
also use H*(R%) := W*2(R%). We denote the homogeneous Sobolev space as W*?(R%)
with the norm || f[|yie == [ F €] flll L. We also define H%(R%) := W*2(R%).

§ 3. Integral inequalities via a test-function method

In this section, we derive two useful inequalities (Lemmas 3.1, 3.2 below) by using
suitable test-functions.

We take the two functions n = n(t) € C5°([0,00)), ¢ = ¢(z) € C$(RY) such as
0<n,¢<1and

1 (0 <t<1/2), 1 (0 < |z < 1/2),
n(t) := ¢ smooth (1/2<t<1), &é(z):= q{smooth (1/2< |z|<1),
0 (t>1), 0 (lx| > 1).

For a parameter 7 > 0, we also define the time-space function
Vr = Yo (t, @) i= 0 (8)dr () = n(t/T)d(2/T).
We define the open ball of radius 7 > 0 at the origin in R? as B(r) := {z € R% |z| < r}.

Lemma 3.1. Letm,a € R, de N, p>1, F(z) =|2|P,l € Nwithl > 2q+1,
A>0, F(z) =27, (f,9) € (L} .(RY))? and u be a weak solution of (NLKG) on [0,T).
Then there exists a constant C > 0 depending only on d,p and l, such that the estimate

(3.1) A R(af + g)(x)¢} (x)de < CT (7720 4 |m| + |a|7~9),
B(r)
holds for any T € (0,T), where q is defined by ¢ =p/(p —1).
Proof of Lemma 3.1. We introduce the two positive functions of 7 € (0,7

I(r) = / fu(t, @) [P (t, @) dadt,
[0,7‘) X B(T)

I0)i= [ (af (@) + gla))dh @
B(r)
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Since u is a weak solution on [0,7) and ! € C§°([0,T) x R?), by substituting the
test-function in Definition 2.2 into 1!, using the identity {0;(¥%)}(0,z) = 0 and taking
the real part of the obtained equation, we have

(32)  I(7)+RJ(1) = / (Rw)0Z (VL) dadt + / (—Ru) A (L )dadt
[0,7)xB(T) [0,7)x B(1)
+m (Ru)yldrdt — a/ (Ru) 0, (L )dxdt
[0,7)x B(1) [0,7)xB(1)

=: K]_+K2+K3+K4.

We will estimate K;. Due to I/qg — 2 > 0 and Hélder’s inequality, we have

(3:3) Ky <I(l—1)77? / ulnk2 gL (0um) (t/7)|*dxdt
[0,7)xB(1)
Ll / 6L (0Pn) (87 | deedt
[0,7)xB(T)

< CT_Q/ |u|1,[1l7/pd:cdt < CT(d+1)/q_2{I(T)}l/p.
[0,7)xB(1)
Next we consider Ky. By I/qg —2 > 0 and Hélder’s inequality, we obtain

(3.4) Ky <1(i—1)r /[ oo A0 )

Ll /[ e (99 ) Pt
,T X T

< COr 2 / lu|pl/Pdedt < CrldTD/a=21 ()P,
[0,7)xB(1)
Next we deal with K3. From Hoélder’s inequality, we have

(3.5) K3 < |m)| lu[p/Pdadt < C|m|r @Y/ 1(1)} /P,
[0,7)xB(1)

Finally we estimate K4. By I/qg — 1 > 0 and Hélder’s inequality, we can get

(36)  Ki<l|alir /[ N A RO IEERs
,7' X T

< Clalr 1 / lu[pl/Pdxdt < Cla|r( @D/ 1(1)}1/P,
[0,7)xB(1)

By combining the estimates (3.2)—(3.6), we obtain

(3.7)  MRJ(7) < (CrHD/a=2 L Clp|r(dHD/4 4 O|a|r 4T/ a1 () }P — I(7).
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We note that since p,q > 1 and 1/p+ 1/q = 1, we have ab < a?/p + b?/q for a,b > 0.
By combining this estimate and (3.7), we have

(3.8) ARJ(7) < CrH 7240 4 Clm|r ¥ + Cla| 7174,

where C is a positive constant dependent only on d, p and [, which completes the proof

of the lemma. O
Lemma 3.2. We assume the same assumptions as in Lemma 3.1. Furthermore

we assume that the function (f,g) satisfies (2.2) with k < d. Then the estimate

z|<1/7

-1
(3.9) A< O (72 4 m| + |alr79) </| |x|_k¢l(aj)dx>

holds for any T € (0,T"), where C' > 0 is the same constant as in Lemma 3.1.

Proof of Lemma 3.2. By changing variables and (2.2), we have
RJI(r) = 7 / R(af + g)(ra)d (x)de > 74" / 2| * ! (2)de
R4 |lz|<1/7

for any 7 € (0,7). By combining Lemma 3.1 and the above estimate, we obtain (3.1),
which completes the proof of the lemma. O

§4. Proof of the main results

§4.1. Large data blow-up for the energy-critical or subcritical case

First we give a proof of Proposition 2.3.

Proof of Proposition 2.3. By Lemma 3.2, we have
(4.1) A< O (T2 i+ Jalr T {L(T)}

for any 7 € (0,7, (\)), where
(4.2) L(r) = / %o () da.
fel<1/7

Claim. There exists A\g > 0 depending only on |m/|, |a|,d,p,l, k such that if A > ),
then the estimate holds:
(4.3) Tw(N) < 2.

Indeed, on the contrary, we assume that T3,(A) > 2. Then by (4.1) with 7 = 2,

(4.4) A< CL2RH (272 o m| 4 [a)27){L(2)} L
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By changing variables and k < d, we have
1/2
(4.5) L(2) = / 2| Fdx = C/ PR e =2 Oy(< 00).
lz|<1/2 0

By combining (4.4)-(4.5), we obtain
A< CLO 2R TH (2720 | + [al277) =: Ao,

which leads to a contradiction to A > A\g. Thus the claim is proved.
Since L(7) is monotone decreasing on [0, 00) and k < d, we obtain

(4.6) L(r) > L(2) = / @ Fdz = Oy,

|z|<1/2
for any 7 € (0,2). In the case of A > Ao, let 7 € (0,7,()\)). Noting that 0 < 7 <
Tw(A) <2, by (4.1) and (4.6), we can get

A< 010517k+1(7_2q + |m| + |a|7™?) < Cs7 7",

where C5 is a positive constant depending only on d, p,l, k, |m/|, |a| and o0 = 2¢ — k — 1.
Since o > 0 due to k < %, we have

< O\,

Since 7 is arbitrary in (0, Ty»())), the above inequality implies T}, (A) < C4A™Y*%, which
completes the proof of the proposition. O

Now we give a proof of Theorem 2.4. We need the following proposition.

Proposition 4.1. Leta,m € R, d € N, T > 0. Assume that the nonlinearity F
satisfies (A) with 1 < p <p; ford >3 or1 <p ford=1,2. If u is a energy solution
to (NLKG) with (u(0,-),0;u(0,-)) € H*(RY) x L2(R?) on [0,T) which belongs to X (T)
given in Theorem 5.1, then u becomes weak solution on [0,T') in the sense of Definition
2.2.

The proof of this proposition is due to a standard density argument. Thus we omit
the detail (see Appendix in [11] for example).
Now we prove Theorem 2.4.

Proof of Theorem 2.4. We note that by k < d/2, we can find the function (f, g) €
H'(R?) x L?(R%) satisfying (2.2) (see Example 2.5). We also note that p satisfies
l<p<pyford>3orl<pford=1,2. Thus by the existence of the uniqueness
of the local energy solution, we can see that T'(A) > 0. Let 7 € (0,7'()\)) and u be the
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energy-solution on [0,7). By Proposition 4.1, we can see that u is a weak solution on
[0,7). We also note that by the assumptions 1 < p <p; ford >3 or 1 <pford=1,2
and k < d/2, we have k < d/2 < min(d, E—J_rl). Thus we can apply Proposition 2.3 to
obtain 7 < CA™"%, A > \g, where )\g is given in Proposition 2.3. Since 7 is arbitrary in
(0,T(X)), we obtain

T(\) < OA,

for A > XAg. The divergence of the norm ||(u(t), Opu(t))||gixr2 if 1 < p < py for d > 3 or

ifl<pford=1,20r ||u|| 2w+ if p = p1 and d > 3 for the solution follows
Ly 5% ((0,T(N)xRY)
from the standard blow-up criterion (see Theorem 5.1 for example), which completes

the proof of the theorem. O

§4.2. Non-existence of the local weak solution in the supercritical case

We prove Proposition 2.6.
Proof of Proposition 2.6. By Lemma 3.2, we have

(4.7) A< C’57’k+1_2q{L(7')}_1,

for any 7 € (0, min(1,7")), where L(7) is defined by (4.2) and Cj is a positive constant
dependent only on d,p,l, k,|m/|,|al. Since L(7) is monotone decreasing on [0,00) and
k < d, we obtain

(4.8) L(t) > L(1) > /| s lz| ~*dx =: Co(< o),

for any 7 € (0,1). Thus by (4.7)—(4.8), we can get
(4.9) 0 <A< Cs5Cy k=2

for any 7 € (0,min(1,7")). By the assumption % < k, we have k +1 —2q > 0.
Therefore, taking the limit 7 — 40 in (4.9), we can conclude A = 0, which completes
the proof of the proposition. O

Finally we give a proof of Theorem 2.7.

Proof of Theorem 2.7. By p > p1, we have % < g. Thus we can see that there

exists a function (f,g) € H'(R?) x L?(R?) satisfying (2.2) with f;—ﬂ <k < ¢. Thus we
can apply Proposition 2.6 and obtain A = 0. O

§5. Appendix

In this appendix, we recall the local well-posedness (L.W.P) result in the energy
space for (NLKG) in the energy-subcritical or critical case 1 < p < p; for d > 3 or
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1 <pford=1,2 (see [5, 6, 14, 15, 27, 26, 17, 21] and their references). L.W.P for more
general hyperbolic equations was obtained in [14]. However, for the convenience of the
readers, we give a proof of this result. The proof can be done via Strichartz’s estimates
(Lemma 5.2) and Sobolev’s inequality (Lemma 5.3).

We define the closed ball in the energy space at the origin of the radius r as

Bo(H' x L?) = {(f,g) € H"(R") x L*®Y;: (£, )11 < 1.
For T' > 0, we also introduce the resolution space

E(T) if1<p< % ford>3orl<pford=1,2,
E(T)NnY(T) 1f—<p<p1ford>3
where Y (T') is an auxiliary space given by
W s d
Y(T) = L?(O,T,Wj ) lf <p<l+ m,
Li(0,T;W=") N Li(0,T; Lg), if 1 + @ <P < b

2(d+1) 1
— ) I

=42 and o := —(p_l)z(dﬂ)

where 7, i and o are defined by v := (p_12)?d+1)

respectively.
Theorem 5.1 (L.W.P. in the energy space in H'-subcritical or critical case).

Let m,a,€ R and d € N. Assume that the nonlinearity F' satisfies (A) with 1 < p < p;
ford>3 or1<p ford=1,2. Then the Cauchy problem (NLKG) is locally well-posed
in H*(R?) x L2(RY) for arbitrary (u(0,-), 0;u(0,-)) € H'(R?) x L2(R%). More precisely,
the following statememts hold:

e (Ezistence) For any r > 0 and arbitrary data (u(0,-),du(0,-)) € B.(H! x L?),
there exists T = T'(r,u(0,-)) > 0 such that there exists a energy solution u € X (T)
to (NLKG) on [0,T).

e (Uniqueness) Let u € X(T) be the above solution, 0 < Ty < T and v € X(T}) be
another energy solution of (NLKG) on [0,T1). If v(0,-) = u(0,-), then v = ul,1,).

e (Continuity of the flow map) The flow map B,(H' x L?) — X (T), u(0,-) — u is
Lipshitz continuous.

e (Blow-up criterion) Either (i) T(\) = oo or (ii) T(\) < co and

lminf |[(u(t), Ou(t))||gixrz =00, if 1<p<pi ford>3orl<pford=1,2,
t—T(A\)—0

||U|| 2(d+1) = 00, Zf b =Dp1,
L, 27% ([0,T(\)xR%)

18 valid.
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The similar statements also hold in the negative time direction.

Remark 5.1.  In the subcritical case, i.e. 1 < p < p; ford > 3 or 1 < p for
d = 1,2, the existence time of the local solution depends only on the size of the initial
data. On the other hand, in the critical case p = p;, it may depend not only on the size
of the data but also on its profile.

Remark 5.2. In the energy critical, massless and undamped case (p,m,a) =
(p1,0,0), the similar result as Theorem 5.1 holds, even if the inhomogeneous spaces
H'(R?) and W27 are replaced by the homogeneous ones H'(R%) and Wz respec-
tively. Moreover, in this case, global well-posedness in H*(R%) x L?(R%) holds for small
initial data (u(0,-),du(0,-)) in H'(R?) x L*(R%).

Even in the case when there exists a time derivative in the equation (NLKG),
i.e. a # 0, it suffices to consider the Cauchy problem for the following Klein-Gordon
equations without time derivative:

(5.1) 0?0 — Av+v = F(v), (t,z) € [0,T) x R,
‘ v(0,7) = f(x), 0w (0,7) = g(x), T e Rd:

where v = v(t, z) is a C-valued unknown function of (¢,x). Indeed, let u be a solution
to (NLKG). If we set v(t,z) := e*/*u(t, ), then we can easily see that v satisfies

(5.2) O2v — Av +v = (% +m2 4 D +e2tFle 2t), (t,z)€[0,T) x RY,
' v(0,2) = Af(x), Ow(0,2) = A5f+g)(x), r € R4,

If T is bounded, then so are e2?, e~ 2% in (5.2). Thus we can see that the right hand
side of (5.2) also satisfies (A) with the same p. Hereafter we consider the equation (5.1)
instead of the original equation (NLKG) or (5.2). And we convert the equation (5.1)
into the integral equation as follows:

t

53)  ote) = AKWf@) + KOg)+ [ K- 9)F(o(s,a))ds,
0

where K (t) is the free Klein-Gordon evolution group defined by

K(t) := w = f*%f, and 0; K (t) = cos(t(V)) := F ! cos(t{&)) F.

Next we state Strichartz estimates, which is used to treat the case d;iz < p < p; and
d > 3.

Lemma 5.2 (Strichartz estimates (see [7, 27, 26, 18, 21])).
Letde N, s €0,1],2 < q,g <00 and 2 < r, i < 0o be exponents satisfying the scaling
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and admissibility conditions:

1 d d 1 d 1 d-1
—t+-=-—-s==-+=-2 and -+
qg r 2 qg q

1
2r’§+2f— 4

and T > 0. Then the estimates

10:K (8) fll Lo 0,75275) + 10K () flI L3 o,ms2my < Cll fllmzs,
||K(t)g||L§°(0,T;H5) + ||K(t)9||L§(0,T;L;) < Cliglms-1,

/0 K(t — s)F(s)ds < C|F|

LY (0,1:L7)

/t K(t— s)F(s)ds
0

+
Ly (0,T;H™) L1(0,T;L7)

are valid for any f € H*(RY), g € H* Y (R?) and F € Lg/(O,T; L), where C is a

constant independent of T, and ¢’ and 7' are defined by ¢’ := q;ll and 7 = f—fl

We also use the Gagliardo-Nirenberg inequality.

Lemma 5.3 (Gagliardo-Nirenberg’s inequality).
Let v,n € [1,00] and o, f € R with 0 < o < 3. Then the following inequality is valid:

I(=2)2f Lo < CU=AY 2120l 17

where C' is a constant depending only on d,«, B,v,n and 0. Here p > 1 is such that

1 « 1 B\ 1-46
R Y (N
p i’ (77 d>+ v

and the parameter 0 is any from the interval % < 0 < 1, with the following exception:
if the value B — o — % is a nonnegative integer, then the parameter 0 is any from the
nterval % <0 <1.

For the proof of this lemma, see [4] for example. We also need the chain rule for
fractional derivatives.

Lemma 5.4. Let F: C— C be continuously differentiable in the sense of func-

tions in real numbers and o« € (0,1] and 1 < p,v,n < oo are such that % =14 %
Then
IVI*F(u)llze < CIF ()l lI[V |l 2o,

provided that the right hand side is finite, where C' > 0 is a constant independent of u.

For the proof of this lemma, see [3] for example.
Now we give a proof of Theorem 5.1.
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Proof of Theorem 5.1. (Existence) We define the nonlinear mapping J as

Jl(t) =0 K(t)f + K(t)g + /0 K(t—s)F(v)(s)ds.

Let r > 0, (f,g) € B-(H!' x L?) and let M > 0 that will be determined later. We define
the complete metric space

X(T,M) :=={v e X(T);[vlxr) <M},

with the metric

||u—v||Lo<>(0TH1)—I—||8tu—8tv||Loo<0TL2), 1f1<p< fOI‘d>3
o 0r1§pfordz12
U, v) 1= _
=0l gt + 1=Vl oiryeers I 7 <p < 423 for d > 3,
L ||lu — U||LZYI([O,T)><Rd)7 if illi? <p<p; ford>3.

We will prove that J is contractive from X (7', M) into itself if T" is sufficiently small.
Thus by the contraction mapping principle, we can find a energy solution v to (5.3)
Case 1. 1 <p < d 5 ford > 3 or1 < pford=1,2. In this case, the Sobolev
embedding H*(RY) C L?’(R9) holds. Thus we obtain

[Tl o= 0,151y + 10cT [V]l| oo 0,7522) < Colllf | + Mlgllz2) + CIF ()| L2 0,1L2)

< Cor+ OBl 202y < Cor + LT ol gy < Cor + CTMP < M,

and
d(J[u], J[v]) < C||F(u) = F(0)|l0.r:22) < ClufP~™ 4 [0P~H) (w = )|l 20,0522
< C[(Jlu(s )IIsz + [Jv(s )IIsz)IIU( s) —v(s)llzellLro7)
1
< CiTMPtd(u,v) < §d(u,v),
if we choose M, T such as M > 2Cyr and 0 < T < W
Case 2. 1—|—— <p< l-l-dJrl and d > 6. We choose p, 6 such as

11 @d-2p-1) ,
=g o . 0=

dd+1)(p—1)+2
2(d+1)(p+1)

By d;iQ <p<l+ diﬂ < %, we can see 0 € (%, 1). By Lemma 5.3, 5.4 and the

Sobolev embedding H!(R%) C L#5 (R?), we have
IPPRENI g < CUTHE@ILIFO

x

0 1 1—-6
<c||u|| o >||< Jull 72 ullyy = < Clullt
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From this inequality, we obtain
(5.4)
1 _d+3 _d+3
PP g < ONOlll sy < O ull e gy < CoT T 47
t

t,x

By Lemma 5.2 and (5.4), we have

(5.5) V]l Lge 0.0y + 110:T 0]l L= 0.2 + (V) /2T 0] o
< Co(l| fllar + lgllze) + CINTI2F@)| s < Cor + CoT 000 MP < M,
Lt,a:

(d+1)
if we choose M, T such as M > 2Cs3r and 0 < T < (T]\lﬁ_l)%

In the same manner as the proof of (5.4), we can get

P~ (= o) 2wen < [l (u—v) |Gl (u = v)|'35°
L, %3 z
—1y0 0 —11-90 1-0

< [[lul” IILM% [l = [z [lul? IIme% [ = vl

< Clfullt fu — vl .
By Lemma 5.2 and the above inequality, we obtain

d(J[ul, J[v]) < Cl|F(u) = F(v)|| 2ca1)
L, 373 ([0,T)xR%)

t,x

< O (JufP~t + P u = vl 2w
L, 23 ([0,T)xR4)

t,x

< Cull(lu® 5" + IOl lu®) = o@)llzz |l 2w
L, T (0.1)

d+3 —1 —1
< CyT20@n (HU”}ztoo(o,T;Hl) + ||U||Z£§O(0,T;H1))Hu - UHL?O(O»T;L%)

_d+3 1
< CyT 50 MY d(u,v) < 5d(u,v),

2(d+1)
if we choose T such as 0 < T' < (204%) a+3
Case 3. l—l—ﬁ Spgl—l—m and d > 3. In this case, we have 2 < p < dQ—_dQ.

We set 0 := m — 422 € [0,1]. By the interpolation and the Sobolev embedding
2d
H'(R?Y) C Li?(RY), we have

_ 1
(5.6) lollze , o,myxmey < M@l Z2 0O 2 llze.r) < CT?M.
s x Ld—2

x
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By Lemma 5.2, 5.4 and (5.7), we have

||J[U]||L$°(0,T;H1) + ||3tJ[U]||L§°(0,T;L§) + ”<V>1/2J[U]”Lz’yz([O,T)x]Rd)

< Cs(|l £l + llgllz) + CIV)PF)]| 2w
L, 313 ([0,T)xR%)

t,x

1
< Csr + CHU”LQ 2 ([0, T)de)||<v>2U||LZ’,I([0,T)><Rd)

(5.7) < Cyr + C6Td+1 MP < M,
and
d(J[ul, Jlv]) < CI|F(u) — F(v)|| 2wan < O (JufP~t + [P~ (u = )| 2wasn
L, ;H_B ([0, T)xR<) Lt,;H_B

< C(HUHLQ L ([0,T) xR4) + ||v||L9 L ([0 T)X]Rd))Hu - UHL;’YI([O,T)de)
< CGTd_JrlMp_ld(u,v) < §d(u,v),

d+1

if we choose M, T such as M > 2Csr and 0 <T < (W)T

Case 4. 1+ m < p < pp and d > 3. In this case, we have u > 0 and

§ = A= 1(d-2)

S—1) > 0. By the Holder inequality, we have

(5.8) lvllze  (0,7)xre) < TPoll e o,rre) < T°M.

By Lemma 5.2, 5.4 and (5.9), we obtain

1
2

T[]l Loe 0,711y + [10¢ T [V][| o< 0,752 + I{V)
< Cr(If 1 + 19l L2) + CI(V) 2 F(v )”wal)

t,x

Iy (or)xray + 1 [v]ll 220, 7;8)

([0,T) xR4)

1 (e}
< Crr+ C“U”L@ ([0, T)><]Rct)||<v>ZUHLZGC 0,1)xre)y < C7r + CsT*MP < M,
where « is defined by « := B(p — 1) > 0, and

d(J[u], J[v]) < Cl[F(u) = F(v)|| 2@

L, 313 ([0,T)xR%)

t,x

<Ol (JulP~t + o=t
(el RO 220 gy

tac

d(u,v),

Ju — UHL;’YI([O,T)de)

< CsT*MP td(u,v) <

DO

1

if we choose M, T such as M > 2C7r and 0 < T < (W)_
Case 5. p =p; and d > 3. In this case, we have o = 0. Thus we have to modify the
argument of the previous case. For L, M > 0, which will be determined later, we define
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the complete metric space

2(d+1)

XL ) = {0 € L5 (O.1) x ROVl oy < L

||U|| 2(d+1) SM ’
L, 272 ([0,T)R4)

with the metric

d(u,v) == [lu = v[[Ly_(0,1)xR%)-
We prove that J is contractive from X (T, L, M) into itself if T is sufficiently small.
Since (f,g) € H*(R?) x L?(R%), by Lemma 5.2, we can find a small 7' = T'(L, M) > 0
such that

(V) 20K (6) 1l fo.7y ey + 10K () F | s
' L,z ([0,T)xR%)

1 1 .
(5.9) + ||<V>éK(t)g“Lzm([O,T)de) FIE@®9l 20 < - min(L, M).
’ L. 92 ([0,7)xR4)

t,x

Let v € X (T, L, M). In the same manner as the proof of the estimate (5.8), we have
1 1 1
VY2 TWllly | o.myxray < IKV)2OK () f Ly o.1)xray + V)2 E()gllLy  (j0,7)xRa)

T 1
+ Col|v]| " 5as) V)20l (0,1)xra)
L, 72 ([0,T)xR%)

t,x

(5.10) < -L+CyLM72 <L,

N —

if we choose M such as 0 < M < (ﬁ)¥ We also have

[l 2ta+n) <[ oK@ f 20a+1) + [ K#)gll 2+
L, &% ([0,T)xR4) L, 7% ([0,T)xR%) L, 272 ([0,7)xR%)
] 1
+ Crollvll “5tasa (V)2 vllLy (jo.1)xre)
L, 277 ([0,T)xR%)
1
< 5MJrc*loLMﬁ < M,

d—
if we choose L such as 0 < L < ﬁMd_—g
Moreover, in the same manner as the proof of (5.8), we obtain

o) = | [ 5= 90— Fopas

L} . ([0,T)xR%)

_4 _4
< C(llull* 2oz + (vl oz MNw— UHLZJ [0,T) xR%)
L, 272 ([0,T)xR%) L, &% ([0,T)xR4)

< C’gMﬁd(u,v) < %d(u, v).
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(Uniqueness, Continuity of the flow-map) The uniqueness in X (7') and the Lipchitz
continuity of the flow-map can be proved in the same manner as the existence part.
Thus we omit the details.

(Blow-up criterion) The blow-up criterion can be also proved in a standard manner (see
[2] for the subcritical case and see the proof of Lemma 2.11 in [16] for the critical case,
for example). O

Remark 5.3.  The proof of the existence part of Theorem 5.1 implies the lower
estimate of lifespan T'(A) is estimated as T'(A) > CA™ for any A > 0, where C is
independent of . Here w is defined by

4

p—1 if1<p<1+ 3,
AEDED i1 4 2 <p <1+ g4,
w .=
2(p—1) . 4 4d
Sre ift1+ 77 <p <1+ a2
+1 d : 4
\}I;_—l_i lf1+ (d+l)(d—2) <p<pl

In the last case 1 + m < p < p1, w is almost same to ¢ in Theorem 2.4 if we

take k sufficiently close to g. In the other cases, w is quite different from o.
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