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A note on multilinear fractional integral operators

By

Yasuo KOMORI-FURUYA*

Abstract

This article is organized in the following way. In Section 1 we state a brief history of mul-
tilinear operators, in particular the bilinear Hilbert transform and bilinear fractional integral
operator. In Section 2 we summarize our recent results in [6].

§1. Introduction

Suppose that I' is a curve in the complex plane C given by z(x) = x + iA(x). We
consider the following classical problem: given a continuous, bounded function f on T,
does there exist a function F(z), analytic in C \ T', such that

Jim F(2(2) + ie) = F(2(z) —ie) = f(2(2)).

Our first approach is to consider the Cauchy integral of f on I': C'f(z fF ! (w) dw.

= 271'1
For z € T', we write

Crf(z) = lim L/em - f(w) dw,

e—+0 271 w—z

C+f(z):€£r£OCf(z+is) and C'_f(z)zel_i)IilOC'f(z—ig),

whenever the limits exist. If both f and I' are sufficiently smooth, we have

fw) — f(2) fz)
Crf(z 27m/ w—z dw + == 2

By similar calculation we obtain the following Plemelj’s formulae:

CHf(2) = Cof(z) +1/2f(z) and O f(z) = Crf(2) = 1/2 f(2).
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By a simple change of variable, the problem is reduced to consider the following singular
integral operator:

=p.v {0 where A’ ©(R?
C’Af(a:)—p../Rlx_y_l_i(A(x)_A(y))dy, here A’ € L°(RY).

This is called the Cauchy integral operator. If we can prove the LP boundedness of C4,
by a standard argument of singular integral operators, we can also prove the bounded-
ness of the maximal Cauchy integral operator

Cyf(x) = sup

e>0

Y

f(y)
/|a:—y|>€ z—y+i(Ax) — A(y)) i

and we can show that C'4f converges almost everywhere when f € LP. C4 can be
written, at least formally, as the following.

0 ) — k
Cafe) = S-S @), where Thf) =pw. [ AEEUE 1),
k=0 R

T4 is nothing but the Hilbert transform H f(z) = p.v. [ f(y)/(z — y) dy, therefore T}
is very important and this is called the Calderén’s commutator, and we denote

Taf(z) =p.v. /Rl Wﬂy) dy.

d

The name “commutator” comes from the formula: T4 = [|D|, M4], where D = —i—

and Ma f(z) = A(z) f(z). Note that -L[H, M4]f(z) + A'(2)H f(z) = Taf(2).
Calderén proposed the next problem.

Calderén’s problem. Prove the L? boundedness of T4 when A’ € L*°(R!) and

1 <p<oo.

To solve this problem he wrote

Taf(x) = /O 1 (p.v. /R 1 alz = ty;f (= y) dy) dt = /O 1 Hy(a, f)(z) dt,

where a = A’ and H,; is called parameterized bilinear Hilbert transforms. Note that
Hy(a, f)(x) = a(x)H f(x) and Hy(a, f)(z) = H(af)(x), therefore

[He(a, f)lle < Cpllallze|lfllr  when ¢=0,1.

By this observation, Calderén conjectured the following:

1
[1Hi(a; f)llr < Cpillallpe|[fllzs  and /Cp,tdt<00~
0

Calderén also considered more general cases where t € RY. Since all the operators H;
behave similarly for any real number ¢, for symmetry reasons the traditional approach
was to consider the following particular formula which corresponds to t = —1.
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Definition 1.1 (the bilinear Hilbert transform).

flx+y)glz —y) .
R1 Yy

H(f,g)(x) =Dp.v.

Calderén conjectured the following:
Calderén’s conjecture. |[[BH(f,g)||rr < C),
and 1 < p,q < oo, but (p,q) # (00, 0).

Calderén’s problem was solved by Coifman and Meyer [2], [3], and the LP bound-

|LP||g||Lq, Whel‘e 1/’]" et 1/p+ 1/q

edness of the Cauchy integral operator was proved by Coifman, McIntosh and Meyer
[1].
Theorem 1.2 (Coifman and Meyer [2], [3]).

[Tallze < Cpll Al flle where 1 <p < oo.

To prove this theorem they wrote Ty as the following bilinear Fourier multiplier
operator. Let a = A’.

Taf(x)= —p.v./1 (/1 a(x +ty) dt)f(:l:—i-y) %

R

Since a(z + ty) = [ a(n)e?™ @I dy f(z + y) le )e2m i@ tYE d¢ and

2miy(E+tn)
p.v. / ———— dy = —sign(€ + tn),
R1 Yy

(1.1) Taf@) = [[ | Fegatmme.nem =< aga,

where m(&,n) = fol sign(€ + tn)dt. Note that this is the restriction of two-dimensional
Fourier multiplier operator to the diagonal. By this observation we define another
bilinear Hilbert transform.

Definition 1.3.

ylayQ )
BH (fi9)(x // r—y1)g(x —y2)dyrdy2, J=1,2,
. |y1|2+|y2|2( 19 = y2) dyady

where Q;(y1,v2) = v /Ui + v3-

Calderdén’ s problem was solved, but Calderén’s conjecture remained unsolved. The
symbol of T4 (see (1.1)) is continuous except for the origin, but that of BH is discontin-
uous on the line £ +71 = 0. Therefore the bilinear Hilbert transform is strongly singular
integral operator, and BH ;j is less singular than BH.

Around 1990 there was no result for the bilinear Hilbert transform, so Grafakos [4]

introduced bilinear fractional integral operators.
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Definition 1.4.

12)  BH.(fg)) = [ BTV ZY),

, O0<a<l,
R! |yt Y “
[z —y1)g(x —y2)
1.3 BH / dyidys, 0 < a < 2.
(13) g (o] + ]

These operators are less singular than BH. However if we have nice estimates for
these operators, we may be able to obtain new knowledge for BH. This is a motive
of introducing bilinear fractional integral operators, but nowadays these operator are
interesting themselves and many studied have been done for bilinear fractional integral
operators. In the next section we shall show our results for BH a-

Calderén’s conjecture was solved in the affirmative when r > 2/3 by Lacey and
Thiele [7], [8].

§2. Endpoint estimates for multilinear fractional integral operators

We recall some elementary properties for the ordinary fractional integral operators.
In the following we consider on R".

Definition 2.1.

Iaf(a:):/R Ady, 0<a<n.

" |.17 _ y|n—a
Proposition 2.2.
Io:LP — L% when 1/¢q=1/p—a/n>0 and p>1,

I,: L' = L% when 1/g=1-a/n,
Io: L - L™,

Multilinear fractional integral operators are defined as follows.

Definition 2.3.

Ji(y) f2(y2) - fn(Ym)
|£C — y1| 4+ |£C _ ym|)mn—a

dy, 0<a<mn.

Inafisforee f)@) =
R
Kenig and Stein [5] proved the next theorem.

Theorem 2.4 (Kenig and Stein [5]).  Let 1/g = >.;" 1/p;i — a/n > 0. If each
pi > 1, then I, o is bounded from LP*(R™) x --- x LPm(R™) to LY(R™). If p; = 1 for
some i and p; > 1 for j # i, then I, o is bounded from LP*(R™) x --- x LPm(R™) to
LO>°(R™).
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In [6] we prove that I, o is bounded from [, LPi to L? even if some p; are equal
to one under additional conditions on a.
We state our results. In the following we always assume that 1 < p; < py; <--- <

Pm < 00

Theorem 2.5. Letp; = - =pr=1,1 < pPry1,---sPm—t < 00 and pp—_i4+1 =
co=ppm =00 for some 0 <k <m—1<m, and l/q:k+2?;7€l4rll/pi—a/n>0.
Assume that

(2.1) kn < a < (m-—I)n.
Then
k m—I m
o (frs o Fo)llee < CTL N TT Whillen T Ifillze.
i=1 i=k+1 i=m—I+1

If k = 0 then we assume that 1 < p; for all i and o > 0. Ifl = 0 then we assume that
pi < oo for all i.

Remark. I, . is not bounded from L'x - x L' X L*>® x --- x L™ to LY.
When ¢ = oo we obtain the following result.

Theorem 2.6. Letp; = =pr=1,1<Dit+1,--,Pm—1 < 00 and ppm—i+1 =

m—I

o =Py =00 for some 0 < k<m—1<m, and k+ ) ;7" 1/p; = a/n. Assume that

(2.2) (k+1)n <a<(m-—IDn.
Then
k m—l1 m
Mmalfeoo Sudllee < CTT AN T Wfilleee TT Ifilles.
i=1 i=k+1 i=m—I+1

If k =0 then we assume that 1 < p; for all i. If | =0 then we assume that p; < oo for
all 1.

Remark. I o is not bounded from L! x - -+ x L1 x LPi x L™ x - x L*® to L.

We shall give a proof of Theorem 2.5 for m = 2. We prove only easy cases: p; =1
and n < a < 2n,or pp =00 and 0 < a < n.

Proof of Theorem 2.5 (m =2). Let 1/g=1+1/ps —a/n and n < a < 2n. Since
| f2(y2)]

|33 _ y2|n—(a—n)

1 I2.0(f1, f2) ()] < [ fall s /Rn dys = | fillLr La—n(lf2]) (2),

and 1/q = 1/ps — (a — n)/n, we have

2.0 (f1, f)llze < Cll Al Lol f2llze
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by Proposition 2.2.
Next we consider the case p; = 00,1/¢ =1/p1 — a/n and 0 < a < n. Since

1
o (|2 =yl + |z —yafrrmme

dyy < C|lfall L= TLa(lf1]) (2)-

Lol f1, £2)(@)] < |l foll /R i) </R
§C||f2||L°<>/ | f1(y1)|

Rn |T — y1|Pme

dy2> diyr

We obtain the desired result by Proposition 2.2. O

The main interest of Theorem 2.5 is the case a = kn. We prove it by induction on
m. The following inequality is essential.

/ |f1(y1) f2(y2)] d
R27

(|y1| + |y2|)n yldy2 S C||f1||Lp||f2||LP/7 1 < p < 00.

We show that the condition (k + 1)n < « in Theorem 2.6 is optimal by giving a
counterexample when n =1 and m = 3. If 1 +1/ps = «a then I3, is not bounded from
L' x LP? x L™ to L>™. Note that o < 2.

Let fi(x) = X(o,1)($)7f2(3?) =z~ /P (10g33)_1X{m210} and f3(z) = 1. Then

/ fiyy) f2(y2) fa(ys) Falys)
rs ([y1]| + [ye| + |ys])3—= 2o

0
dy1dyadys > C/ dys = 00.
10

To prove Theorem 2.6 we use the following inequality.

/ | f1(y1) f2(y2) f3(y3)]
ren (Jy1] + [y2| + ya|)*"

where 1/p1 +1/p2 +1/ps = 1.

dyrdyzdys < C| fillzes || f2ll ez | f3] Lrs
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