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Abstract

The Hilbert transform is an important transform not only in Mathematics, but also in some

applications. Since a wavelet function has zero average, the Hilbert transform of it is a good
function in many cases. It is well‐known that many wavelet functions, especially important
ones, can be generated from scaling functions in the framework of multiresolution analysis
(MRA . Hence, it is an important problem what is the scaling function from which the Hilbert

transform of the wavelet function is generated. We consider two families of unitary operators.
One is a family of extensions of the Hilbert transform called fractional Hilbert transforms.

The other is a new family of operators which are a kind of modified translation operators.
A fractional Hilbert transform of a given orthonormal wavelet (resp. scaling) function is also

an orthonormal wavelet (resp. scaling) function, although a fractional Hilbert transform of a

scaling function has bad localization in many cases. We show that a modified translation of

a scaling function is also a scaling function, and it generates a fractional Hilbert transform

of the corresponding wavelet function. Further, we show a good localization property of the

modified translation operators. The modified translation operators act on the Meyer scaling
functions as the ordinary translation operators. We give a class of scaling functions, on which

the modified translation operators act as the ordinary translation operators.
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§1. Introduction

We denote the set of real numbers by \mathbb{R}
,

the space of square integrable functions

on \mathbb{R} by L^{2}(\mathbb{R}) ,
the inner product of f, g \in  L^{2}(\mathbb{R}) by \langle f,  g\rangle := \displaystyle \int_{\mathbb{R}}f(x)\overline{g(x)}dx and the

norm of f by \Vert f\Vert := \sqrt{\langle f,f\rangle} . Let us define two unitary operators in L^{2}(\mathbb{R}) :

T_{b} : Translation operator, b\in \mathbb{R}, (T_{b}f)(x) :=f(x-b) ,

D_{a} : Dilation operator, a\in \mathbb{R}_{+}, (D_{a}f)(x) :=a^{-1/2}f(x/a) ,

where \mathbb{R}\pm =\{x\in \mathbb{R}| \pm x>0\} . For  $\psi$\in L^{2}(\mathbb{R}) and (j, k) \in \mathbb{Z}^{2} ,
where \mathbb{Z} denotes the set

of integers, we set

(1.1) $\psi$_{j,k}(x)=(D_{2-j}T_{k} $\psi$)(x)=2^{j/2} $\psi$(2^{j}x-k) .

A function  $\psi$ \in  L^{2}(\mathbb{R}) is called an orthonormal wavelet function, if \{$\psi$_{j,k}\}_{(j,k)\in \mathbb{Z}^{2}} con‐

stitutes an orthonormal basis of L^{2}(\mathbb{R}) . Then, $\psi$_{j,k}, j, k \in \mathbb{Z} are called orthonormal

wavelets. In order to construct an orthonormal wavelet function, a system of subspaces
called a multiresolution approximation or a multiresolution analysis (MRA) ([7],[11])
is used, where an orthonormal scaling function  $\phi$ generates an orthonormal wavelet

function  $\psi$ in a fixed manner. Then, we say  $\psi$ is associated with  $\phi$ . Scaling functions

are important not only for the construction of wavelet functions, but also for step‐

wise decomposition and reconstruction of functions, based on the orthonormal basis

\{$\psi$_{j,k}\}_{(j,k)\in \mathbb{Z}^{2}}.
The Hilbert transform \mathcal{H} ([9], [5] and so on) is a typical example of Calderón‐

Zygmund operator, which has a rich world full of mathematical results. Although it

can be considered in various function spaces, we consider only L^{2}(\mathbb{R}) here. Let \hat{f}( $\xi$) be

the Fourier transform of f :

\displaystyle \hat{f}( $\xi$)=(f)^{\wedge}( $\xi$)=\mathcal{F}[f]( $\xi$) :=\int_{\mathbb{R}}f(x)e^{-i $\xi$ x}dx,
where the operator \mathcal{F} : f\mapsto\hat{f} can be considered to be a bounded operator from L^{2}(\mathbb{R})
onto L^{2}(\mathbb{R}) . The Hilbert transform \mathcal{H}f of f\in L^{2}(\mathbb{R}) is defined by

(1.2) (\mathcal{H}f)^{\wedge}( $\xi$)=-i (sgn  $\xi$ ) \hat{f}( $\xi$) ,

where

sgn  $\xi$= \left\{\begin{array}{l}
1,  $\xi$>0,\\
-1,  $\xi$<0.
\end{array}\right.
The operator \mathcal{H} is a unitary operator of L^{2}(\mathbb{R}) .

The Hilbert transform is also important in many applications. The most famous

application would be the analytic signal. For a real signal (real‐valued function) f ,
the
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complex signal Af=f+i\mathcal{H}f ,
which is called the analytic signal of f ,

has an interesting

properties illustrated later in Section 3.

In many applications of wavelets, Hilbert pairs ( $\psi$, \mathcal{H} $\psi$) of a wavelet function  $\psi$

plays an important role. Since \mathcal{H} is a unitary operator which commutes with trans‐

lations and dilations, if  $\psi$ is an orthonormal wavelet function, then \mathcal{H} $\psi$ is also an

orthonormal wavelet function. The problem is what is the scaling function with which

\mathcal{H} $\psi$ is associated. Let  $\phi$ be a scaling function with which  $\psi$ is associated. Although

\mathcal{H} $\phi$ is the orthonormal scaling function with which the wavelet function \mathcal{H} $\psi$ is asso‐

ciated, the scaling function \mathcal{H} $\phi$ is usually a very bad function as for the localization,
while the wavelet function \mathcal{H} $\psi$ is not. When  $\psi$ is a so‐called Meyer wavelet, which

belongs to the Schwartz class \mathscr{S} and has compactly supported Fourier transform, Toda

and Zhang[14, 15] pointed out that \mathcal{H} $\psi$ is the orthonormal wavelet function associated

with the scaling function  T_{1/2} $\phi$ ,
the half shift of  $\phi$ ,

which has a good localization as  $\phi$.
This was very unexpected and attractive for us. It is a natural question that what is

the wavelet function generated from  T_{c} $\phi$ for  c\neq  1/2 ,
and whether there is any scaling

function with good localization which generates \mathcal{H} $\psi$ in the case of other wavelets than

Meyer wavelets.

In this article, we consider two families of translation‐invariant unitary operators

\mathcal{H}_{c} and  T_{c} $\dagger$ (c\in \mathbb{R}) ,
where \mathcal{H}_{c} is a fractional Hilbert transform ([10], [5]) with \mathcal{H}_{1/2}=\mathcal{H},

and  T_{c} $\dagger$ is a newly defined operator, a kind of modified translation operator. Let  $\phi$ be an

arbitrary orthonormal scaling function, and  $\psi$ be the wavelet function associated with

 $\phi$ . For every  c \in \mathbb{R}
,

we prove that  T_{c} $\dagger \phi$ is also an orthonormal scaling function, and

that \mathcal{H}_{c} $\psi$ is the wavelet function associated with the scaling function  T_{c} $\dagger \phi$ . Further, we

can easily show that  T_{c} $\dagger$ f = T_{c}f if supp \hat{f}\subset [-2 $\pi$, 2 $\pi$] . These clarify the remarkable

situation explained above, since supp \hat{ $\phi$}\subset [-2 $\pi$, 2 $\pi$] for Meyer scaling functions. We also

prove that  T_{c} $\dagger$ has a good localization property under vanishing moments condition.

In the next section, we give a definition and several examples of orthonormal

wavelets. In Section 3, we explain the Hilbert transform, and the analytic signal as

an important application. In Section 4, we give a short sketch of a theory of MRA. In

Section 5, we present the main problems. In order to give our answers to the problems,
we define two families of translation‐invariant unitary operators \mathcal{H}_{c} and  T_{c} $\dagger$ (c\in \mathbb{R}) in

Section 6. In Section 7, our answers to the main problems are given. In Section 8,

good properties of  T_{c} $\dagger$ are given. As an extension of Meyer scaling functions, a family
of scaling functions  $\phi$ satisfying  T_{c} $\dagger \phi$=T_{c} $\phi$ is given in the final section.

§2. Orthonormal Wavelets

If \{$\psi$_{j,k}\}_{(j,k)\in \mathbb{Z}^{2}} is an orthonormal basis of L^{2}(\mathbb{R}) ,
then  $\psi$ is called an orthonormal

wavelet function ([8], [16] and so on), which is referred to as a wavelet function for short
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in this article. As important examples, we give some well‐known examples: the Haar

wavelet, the Shannon wavelet, the Meyer wavelets, and the Daubechies wavelets.

Example 2.1. (1) The Haar wavelet. This would be the oldest orthonormal

wavelet function (Figure 1).

 $\psi$_{\mathrm{H}}(x)= \left\{\begin{array}{l}
1, 0<x< \underline{1}\\
2'\\
-1, \frac{1}{2} <x< 1,\\
0, \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}:
\end{array}\right.
This $\psi$_{\mathrm{H}} has a compact support, but is discontinuous.

$\psi$_{H}(x)

\mathrm{x}

Figure 1. Haar wavelet.

$\psi$_{S}(x)

x

Figure 2. The Shannon wavelet
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(2) The Shannon wavelet. The function (Figure 2)

$\psi$_{\mathrm{S}}(x)=2 sinc (2x) —sinc (x) ,

where sinc (x) := \underline{\sin $\pi$ x} (Figure 9), is awavelet function called the Shannon wavelet. In
 $\pi$ x

this case, $\psi$_{\mathrm{S}}(x-1/2) is also a wavelet function, and it is sometimes called the Shannon

wavelet instead of $\psi$_{\mathrm{S}}(x) . The Fourier transform of $\psi$_{\mathrm{S}} has a simple form (Figure 3).

\hat{$\psi$_{\mathrm{S}}}( $\xi$)= \left\{\begin{array}{l}
1,  $\pi$< | $\xi$| <2 $\pi$,\\
0, \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}:
\end{array}\right.
This $\psi$_{\mathrm{S}}(x) is an entire function, but has a bad localization. In fact, $\psi$_{\mathrm{S}} \not\in L^{1}(\mathbb{R}) , though

$\psi$_{S}( $\xi$)

 $\xi$
-3 $\pi$ -2 $\pi$ - $\pi$  $\pi$  2 $\pi$  3 $\pi$

Figure 3. Fourier transform  $\psi$_{\mathrm{S}}\wedge of the Shannon wavelet.

$\psi$_{\mathrm{S}}\in L^{2}(\mathbb{R}) .

(3) The (Lemarié‐) Meyer wavelets. These wavelet functions belong to the Schwartz

class \mathscr{S} ,
that is, these are of C^{\infty} class and all the derivatives are rapidly decreasing.

As a matter of fact, \hat{$\psi$_{\mathrm{M}}} has a compact support, and hence $\psi$_{\mathrm{M}} is an entire function. It

is known that there is no orthonormal wavelet function  $\psi$ with exponential decay such

that  $\psi$ \in  C^{\infty}(\mathbb{R}) and all the derivatives are bounded ([7] Corollary 5.5.3). Hence, the

Meyer wavelets have a good balance between the smoothness and the localization as

wavelet functions.

We explain the Meyer wavelets more precisely. Take a real‐valued function b( $\xi$) of

C^{\infty} class as

b( $\xi$) \geq 0, b(- $\xi$)=b( $\xi$) ,

supp b \subset [-\displaystyle \frac{8}{3} $\pi$, -\frac{2}{3} $\pi$] \cup [\displaystyle \frac{2}{3} $\pi$, \frac{8}{3} $\pi$],
b( $\pi$+ $\xi$)=b(2( $\pi$- $\xi$)) for | $\xi$| \leq \displaystyle \frac{ $\pi$}{3},

b( $\pi$+ $\xi$)^{2}+b( $\pi$- $\xi$)^{2}=1 for | $\xi$| \leq \displaystyle \frac{ $\pi$}{3},
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$\psi$_{M}(x)

\mathrm{x}

Figure 4. Meyer wavelet $\psi$_{\mathrm{M}}.

b( $\xi$) = |$\psi$_{M}( $\xi$)\wedge|

 $\xi$

Figure 5.  b( $\xi$)= |$\psi$_{\mathrm{M}}( $\xi$)\wedge| for a Meyer wavelet.

and define $\psi$_{\mathrm{M}} by $\psi$_{\mathrm{M}}( $\xi$)\wedge :=b( $\xi$)e^{-i $\xi$/2} (Figure 5). There are some freedom of the choice

of b( $\xi$) . Sometimes, especially in applications, we take b( $\xi$) not necessarily of C^{\infty} class,
but only sufficiently smooth (for example [7], [11]), although  $\psi$\not\in \mathscr{S} then.

(4) The Daubechies wavelets. These are a sequence of orthonormal wavelet func‐

tions  N $\psi$ with compact supports,  N\in \mathbb{N}= {positive integers}, which have the following

properties.

\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}_{N} $\psi$(x)= [-N+1, N].

N $\psi$(x) has N vanishing moments, i.e. \displaystyle \int_{\mathbb{R}}x^{j_{N}} $\psi$(x)dx=0 for j \in \mathbb{Z}, 0\leq j<N.

N $\psi$\in C^{ $\alpha$(N)}(\mathbb{R}) where  $\alpha$(N)\rightarrow 1 as N\rightarrow 1.

 1 $\psi$ is the Haar wavelet function.

§3. Hilbert Transform

Although the Hilbert transform \mathcal{H} is defined on many function spaces in several

ways, it is simply defined on L^{2}(\mathbb{R}) by (1.2). If f is real‐valued, then Hf is also real‐
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Figure 6. Daubechies wavelet functions: N $\psi$, N=2
, 3, 8.

valued and \mathcal{H}f is orthogonal to f : \langle f, \mathcal{H}f\rangle = 0 . Moreover, \mathcal{H} commutes with T_{b} for

every b\in \mathbb{R} and with D_{a} for every a\in \mathbb{R}_{+} . Hence, (\mathcal{H}f)_{j,k} =\mathcal{H}(f_{j,k}) for every j, k\in \mathbb{Z}.

The Hilbert transform is important not only in Mathematics, but also in many

applications. A typical application is a so‐called analytic signal. For a real signal (real‐
valued function) f ,

set \mathcal{A}_{\pm}f = f\pm i\mathcal{H}f . We have \mathcal{A}_{-}f =\overline{\mathcal{A}_{+}f} . The complex signal

\mathcal{A}_{+}f is called the analytic signal, or analytic representation, of f . Mathematically, \mathcal{A}_{\pm}f
are two times the limits as \Im z\rightarrow\pm 0 of the Cauchy extension

F_{\pm}(z)= \displaystyle \frac{1}{2 $\pi$ i}\int_{\mathbb{R}}\frac{f(x)}{z-x}dx, z\in \mathbb{C}, \pm\Im z>0
on the upper (resp. lower) half plane. Namely,

(\displaystyle \mathcal{A}_{\pm}f)(x)=2\lim_{y\rightarrow+0}F_{\pm}(x\pm iy) , x\in \mathbb{R}.
As for Fourier transform, \mathcal{A}_{\pm}f has only positive (resp. negative) frequencies:

\overline{\mathcal{A}_{\pm}f}( $\xi$)=2$\chi$_{\mathbb{R}\pm}( $\xi$)\hat{f}( $\xi$) ,  $\xi$\in \mathbb{R},
where $\chi$_{I} denotes the characteristic function of I :

$\chi$_{I}(x)= \left\{\begin{array}{l}
1 (x\in I)\\
0 (x\not\in I)
\end{array}\right.
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If f is a real signal, the Fourier transform \hat{f} satisfies \hat{f}(- $\xi$)=\overline{\hat{f}( $\xi$)} , and hence \mathcal{A}_{+}f does

not lose any information of f . As a matter of fact, we have f(x) =\Re(\mathcal{A}_{\pm}f)(x) .

For many signals in the real world, the absolute value |\mathcal{A}_{+}f| = |\mathcal{A}_{-}f| of \mathcal{A}_{\pm}f
represents a rough variation of f(x) ,

and the graph of |\mathcal{A}_{\pm}f(x)| can be considered to

be an
\backslash \backslash 

envelope� of the graph of f(x) . Mathematically, it is still a wonder why such a

phenomena occurs. There is no rigorous definition of \backslash \backslash 

envelope� used here, and there

are only many examples.
An easy example is the case of

f(x)=\cos 10x+\cos(10x+ax)= \displaystyle \frac{1}{2}\{e^{i10x}+e^{i(10+a)x}+e^{-i10x}+e^{-i(10+a)x}\}
for a \in (0,10) . (Though f does not belong to L^{2}(\mathbb{R}) ,

we can explain the situation

very well by considering this function itself, rather than modifying it so that it belongs
to L^{2}(\mathbb{R}) . It is easy to extend the definition of the Hilbert transform to a class of

distributions including f(x) . Note that the support of \hat{f} does not include  $\xi$ = 0. ) In

this case, since \hat{f}( $\xi$)= $\pi$\{ $\delta$( $\xi$-10)+ $\delta$( $\xi$-10-a)+ $\delta$( $\xi$+10)+ $\delta$( $\xi$+10+a we have

\mathcal{A}_{+}f(x) = e^{i10x}+e^{i(10+a)x} . Hence |\mathcal{A}_{+}f(x)| = |1+e^{iax}| = 2|\cos(ax/2)| . As is seen

in Figure 7, if a is small, then |\mathcal{A}_{+}f(x)| seems to represent a rough variation of f(x) ,

and the graph of |\mathcal{A}_{+}f(x)| looks like a kind of \backslash \backslash 

envelope� of the graph of f(x) . If a is

large, the situation is very different, and the graph of |\mathcal{A}_{+}f(x)| cannot be seen as an

\backslash \backslash 

envelope� of the graph of f(x) . In many signals, the situation is near the case of small

a
,

and the analytic signal is used to extract a rough variation of the signal. |\mathcal{A}_{+}f| is

sometimes called the amplitude envelope or instantaneous amplitude of f.
The continuous wavelet transform

(W_{ $\psi$}f)(b, a)=\langle f, T_{b}D_{a} $\psi$\displaystyle \rangle=\int_{\mathbb{R}}f(x) $\psi$(\frac{x-b}{a})a^{-1/2}dx, (b, a) \in \mathbb{R}\times \mathbb{R}_{+},

with the wavelet function  $\psi$ ,
is very compatible with the analytic signal. In fact, we

have the following ([1]):

(3.1) (W $\psi$ \mathcal{A}_{\pm}f)(b, a)=(W_{\mathcal{A}\pm} $\psi$ f)(b, a)= \displaystyle \frac{1}{2}(W_{\mathcal{A}\pm} $\psi$ \mathcal{A}_{\pm}f)(b, a)=\mathcal{A}\pm((W_{ $\psi$}f) a))(b)
for (b, a) \in \mathbb{R} \times \mathbb{R}_{+} . If we do not consider the inverse of  W $\psi$ ,

then we need only

 $\psi$, f \in  L^{2}(\mathbb{R}) for the definition of W_{ $\psi$}f and the validity of (3.1), although we imposed
further assumptions on  $\psi$ in [1]. The property (3.1) is an advantage of the continuous

wavelet transform compared to the windowed Fourier transform (or short‐time Fourier

transform). By this property, we can get the wavelet transforms of the analytic signals of

various original signals, by computing once the analytic signal of  $\psi$ ,
without computing

each analytic signal of the original signals.
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2

Figure 7. graphs of  f(thin) and |\mathcal{A}_{\pm}f|( thick) ,
a=1 (above) and a=9 (below).

A pair (f, \mathcal{H}f) of a function (a signal) and its Hilbert transform are often useful

([13], [2] and so on). Chaudhury‐Unser 6] investigated several properties of \mathcal{H} $\psi$ for a

wavelet function  $\psi$.

§4. MRA

In order to construct orthonormal wavelet functions systematically, a concept called

multiresolution analysis (MRA) was developed.
In order to explain the idea of MRA, we begin with the situation where we have

already a wavelet function  $\psi$ . Set

(4.1)  W_{j} =\overline{\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}}\{$\psi$_{j,k}\}_{k\in \mathbb{Z}},
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where \overline{\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}}F denotes the closed subspace of L^{2}(\mathbb{R}) spanned by a set F . We can consider

this space as the space representing the variation of the scale level j . The sequence

\{W_{j}\}_{j\in \mathbb{Z}} of closed subspaces satisfies the following properties.

f\in W_{j} \Leftrightarrow  f(2\cdot) \in W_{j+1}.

W_{j} \perp W_{k} (j\neq k) .

L^{2}(\mathbb{R})=\overline{\oplus_{j\in \mathbb{Z}}W_{j}} , where \oplus denotes the orthogonal direct sum.

Next, we set

(4.2)  V_{j} =\overline{\bigoplus_{l<j}W_{l}}.
We can consider this space as the space representing the variation coarser than the level

j . The sequence \{V_{j}\}_{j\in \mathbb{Z}} of closed subspaces satisfies V_{j+1} =V_{j}\oplus W_{j} and the following.

(i) V_{j} \subset V_{j+1},  j\in Z.

(ii)  f\in V_{j} \Leftrightarrow  f(2\cdot) \in V_{j+1}.

(iii) \displaystyle \bigcap_{j\in \mathbb{Z}}V_{j} =\{0\}.

(iv) \overline{\bigcup_{j\in \mathbb{Z}}V_{j}}=L^{2}(\mathbb{R}) .

Moreover, V_{0} is shift invariant: f \in  V_{0} \Rightarrow  T_{k}f \in  V_{0}, k \in Z. Note that  W_{l} for

l<0 is not necessarily shift‐invariant, and the shift‐invariance of V_{0} does not straightly
follows from (4.2). The shift‐invariance of W_{l} for l \geq  0 is straightforward from the

definition. Hence, U_{0} =\overline{\oplus_{l\geq 0}W_{l}} is also shift‐invariant. Since V_{0} = U_{0}^{\perp} ,
the orthogonal

complement of U_{0} ,
and since the orthogonal complement of a shift‐invariant subspace

is also shift‐invariant, we have the shift‐invariance of V_{0}.
The idea of MRA is the reverse of this, that is, we construct  $\psi$ from a sequence of

closed subspaces \{V_{j}\}_{j\in \mathbb{Z}} . Here is the definition of MRA.

Definition 4.1. If V_{j}, j \in \mathbb{Z}
,

are closed linear subspaces of L^{2}(\mathbb{R}) satisfying
the conditions (\mathrm{i})-(\mathrm{v}) ,

where (\mathrm{i})-(\mathrm{i}\mathrm{v}) is given above and (v) is given below, then the

sequence \{V_{j}\}_{j\in \mathbb{Z}} is called a multiresolution analysis (MRA).

(v) there exists a function  $\phi$ \in  V_{0} such that \{ $\phi$(\cdot-k)\}_{k\in \mathbb{Z}} is an orthonormal

basis of V_{0}.

The condition (v) is stronger than the condition that V_{0} is shift‐invariant.

By the conditions (ii) and (v), we have V_{j} = \overline{\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}}\{$\phi$_{j,k}\}_{k\in \mathbb{Z}} . The function  $\phi$ in

the condition (v) is very important and called an orthonormal scaling function, which
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is referred to as a scaling function for short in this article. In this article, we do not

assume any further conditions to  $\phi$ ,
unless otherwise specified. In particular, it can be

that  $\phi$\not\in L^{1}(\mathbb{R}) ,
and the familiar condition \displaystyle \int_{\mathbb{R}} $\phi$(x)dx= 1 or \hat{ $\phi$}(0) = 1 is not assumed,

may be even meaningless.
If  $\phi$ is a scaling function, then by  V_{0} \subset V_{1} ,

there exists a unique sequence \{h_{k}\}_{k\in \mathbb{Z}}
such that

(4.3)  $\phi$(x)=\displaystyle \sum_{k\in \mathbb{Z}}h_{k}$\phi$_{1,k}(x)=\sum_{k\in \mathbb{Z}}\sqrt{2}h_{k} $\phi$(2x-k) a.e. on \mathbb{R}.

If we set m_{0}( $\xi$) =\displaystyle \sum_{k\in \mathbb{Z}}\frac{h_{k}}{\sqrt{2}}e^{-ik $\xi$} ,
then we habe

(4.4) \hat{ $\phi$}(2 $\xi$)=m_{0}( $\xi$)\hat{ $\phi$}( $\xi$) a.e. on \mathbb{R}.

Each of these equations is called the two scale equation, and m_{0}( $\xi$) is called the low‐pass

filter associated with  $\phi$.
It is well‐known that from a scaling function  $\phi$ we can construct a wavelet function

 $\psi$ as follows. (See, for example, [8], [16].)

Theorem 4.2. Let  $\phi$ be a scaling function and  m_{0} be the low‐pass filter. Let

v\in L_{loc}^{1}(\mathbb{R}) be a  2 $\pi$ ‐periodic function such that |v( $\xi$)| =1 a.e . We set

(4.5) m_{1}( $\xi$)=e^{-i $\xi$}\overline{m_{0}( $\xi$+ $\pi$)}v(2 $\xi$) .

If we define  $\psi$ by

(4.6) \hat{ $\psi$}( $\xi$)=m_{1}( $\xi$/2)\hat{ $\phi$}( $\xi$/2) ,

then  $\psi$ is a wavelet function.

If we expand  m_{1} as m_{1}( $\xi$)=\displaystyle \sum_{k\in \mathbb{Z}}\frac{g_{k}}{\sqrt{2}}e^{-ik $\xi$} ,
then we have

(4.7)  $\psi$(x)=\displaystyle \sum_{k\in \mathbb{Z}}g_{k}$\phi$_{1,k}(x)=\sum_{k\in \mathbb{Z}}\sqrt{2}g_{k} $\phi$(2x-k) a.e. on \mathbb{R}.

This is called the wavelet equation and the  2 $\pi$‐periodic function  m_{1} is called the high‐

pass filter. These m_{1} and  $\psi$ are said to be associated with  $\phi$ . There are many choices

of  v . If we take v( $\xi$)=1 ,
then we say that m_{1} and  $\psi$ are naturally associated with  $\phi$ :

(4.8) \hat{ $\psi$}( $\xi$)=e^{-i $\xi$/2}\overline{m_{0}( $\xi$/2+ $\pi$)}\hat{ $\phi$}( $\xi$/2) .
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Example 4.3. (1) (Haar) Let $\phi$_{\mathrm{H}} =

$\chi$_{[0,1)} (Figure 8). In this case, V_{j} :=

k k+1
{ f\in L^{2}(\mathbb{R}) | constant on [ \overline{2^{j}}, \overline{2^{j}})(k\in \mathbb{Z}) }. Since $\phi$_{\mathrm{H}}(x)=$\phi$_{\mathrm{H}}(2x)+$\phi$_{\mathrm{H}}(2x-1) ,

we

have m_{0}( $\xi$) = \displaystyle \frac{1+e^{-i $\xi$}}{2} . If we take v( $\xi$) = -1
,

then m_{1}( $\xi$) = \displaystyle \frac{1-e^{-i $\xi$}}{2} ,
and we get the

Haar wavelet function $\psi$_{\mathrm{H}} . If we take v= 1
,

then we have a wavelet function with the

different sign, which is the naturally associated wavelet function.

$\phi$_{H}(x)

\mathrm{x}

Figure 8. Haar scaling function.

$\phi$_{S}(x)= sinc (x)

\mathrm{x}

$\phi$_{S}( $\xi$)

 $\xi$

Figure 9. Shannon scaling function  $\phi$_{\mathrm{S}}(x) =\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{c}(x) and its Fourier transform \wedge$\phi$_{\mathrm{S}}( $\xi$) .

(2) (Shannon) Let $\phi$_{\mathrm{S}}(x) = sinc (x) ,
that is, \hat{$\phi$_{\mathrm{S}}}( $\xi$)=$\chi$_{[- $\pi,\ \pi$]}( $\xi$) (Figure 9). In this

case,

V_{j} :=\{\text{∪} \in L^{2}(\mathbb{R}) | supp \hat{f}\subset [-2^{j} $\pi$, 2^{j} $\pi$]\}.
We have m_{0}( $\xi$) = $\chi$_{[- $\pi$/2, $\pi$/2]}( $\xi$) for | $\xi$| \leq  $\pi$

,
that is,  m_{0}( $\xi$) = \displaystyle \sum_{k\in \mathbb{Z}}$\chi$_{[- $\pi$/2, $\pi$/2]}( $\xi$+

2k $\pi$) = $\chi$_{S}( $\xi$) ,
where S = \displaystyle \bigcup_{k\in \mathbb{Z}}[- $\pi$/2+2k $\pi$,  $\pi$/2+2k $\pi$] (Figure 10 Left). In this
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m_{0}( $\xi$) |m_{1}( $\xi$)|

Figure 10. m_{0}( $\xi$) and |m_{1}( $\xi$)| for Shannon wavelet.

case, the naturally associated wavelet function is $\psi$_{\mathrm{S}}(x-1/2) in Example 2.1 (2). In

Shannon�s case, by taking a suitable v( $\xi$) ,
we can omit the factor e^{-i $\xi$} in the definition

of m_{1}( $\xi$) ,
and can take m_{1}( $\xi$) = m_{0}( $\xi$+ $\pi$) ,

which is real‐valued. This leads to the

Shannon wavelet function $\psi$_{\mathrm{S}}(x) in Example 2.1 (2). It is a special property of the

Shannon wavelet (and so‐called MFS wavelets) that both $\psi$_{\mathrm{S}}(x) and $\psi$_{\mathrm{S}}(x- 1/2) are

wavelet functions. Usually, if  $\psi$ is a wavelet function, then  $\psi$(x-1/2) is not necessarily
a wavelet function, while each shift  $\psi$(x-k) (k\in \mathbb{Z}) is a wavelecfunction.

(3) (Meyer) We can get scaling functions by smoothing \hat{$\phi$_{\mathrm{S}}} , which leads to the

Meyer scaling functions. Let $\phi$_{\mathrm{M}} be a function satisfying the following conditions (Fig‐
ure 11).

\hat{$\phi$_{\mathrm{M}}}\in C^{\infty}(\mathbb{R}) , \hat{$\phi$_{\mathrm{M}}}\geq 0, \hat{$\phi$_{\mathrm{M}}} is an even function.

supp \hat{$\phi$_{\mathrm{M}}}\subset [-\displaystyle \frac{4}{3} $\pi$, \frac{4}{3} $\pi$].
\hat{$\phi$_{\mathrm{M}}}( $\xi$) =1 for | $\xi$| \leq \displaystyle \frac{2}{3} $\pi$.
|\hat{$\phi$_{\mathrm{M}}}( $\xi$+ $\pi$)|^{2}+|\hat{$\phi$_{\mathrm{M}}}( $\xi$- $\pi$)|^{2}=1 for | $\xi$| \leq \displaystyle \frac{ $\pi$}{3}.

Then, $\phi$_{\mathrm{M}} is a scaling function and m_{0}( $\xi$) = \wedge$\phi$_{\mathrm{M}}(2 $\xi$) for | $\xi$| \leq  $\pi$
,

that is,  m_{0}( $\xi$) =

\displaystyle \sum_{k\in \mathbb{Z}}\hat{$\phi$_{\mathrm{M}}}(2 $\xi$+4k $\pi$) (Figure 12, Left).
Further, by taking v( $\xi$)\equiv 1 ,

we get

m_{1}( $\xi$) =e^{-i $\xi$}\hat{$\phi$_{\mathrm{M}}}(2 $\xi$+2 $\pi$) for -2 $\pi$\leq $\xi$\leq 0 , (Figure 12, Right)

$\psi$_{\mathrm{M}}( $\xi$)=e^{-i $\xi$/2}\{$\phi$_{\mathrm{M}}( $\xi$+2 $\pi$)+$\phi$_{\mathrm{M}}( $\xi$-2 $\pi$)\}$\phi$_{\mathrm{M}}( $\xi$/2)\mathrm{c}\mathrm{c}\mathrm{c}\mathrm{c}.

This $\psi$_{\mathrm{M}} is a Meyer wavelet in Example 2.1 (3).
(4) (Daubechies) It is not easy to describe how to construct  $\phi$ ([7]). We have a

sequence  N $\phi$, N\in \mathbb{N} ,
of scaling functions with compact supports corresponding to N $\psi$.

We can construct  N $\phi$ satisfying the following.

\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}_{N} $\phi$(x)= [0, 2N-1].
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$\phi$_{M}( $\xi$)

 $\xi$

3 3 3 3

 $\phi$_{M}(x)

x

Figure 11. \wedge$\phi$_{\mathrm{M}}( $\xi$) and $\phi$_{\mathrm{M}}(x) for a Meyer wavelet.

m_{0}( $\xi$)

-2 $\pi$ -\displaystyle \frac{4 $\pi$}{3} -\displaystyle \frac{2 $\pi$}{3} 0 \displaystyle \frac{2 $\pi$}{3} \displaystyle \frac{4 $\pi$}{3}  2 $\pi$

|m_{1}( $\xi$)|

\underline{4 $\pi$} -\underline{2 $\pi$} \underline{2 $\pi$} \underline{4 $\pi$}-2 $\pi$  0  2 $\pi$
 3 3 3 3

Figure 12. m_{0}( $\xi$) and |m_{1}( $\xi$)| for a Meyer wavelet.

N $\phi$\in C^{ $\alpha$(N)}(\mathbb{R}) where  $\alpha$(N)\rightarrow 1 as N\rightarrow 1.

 1 $\phi$ is the Haar scaling function.

The wavelet functions in Example 2.1 (4) are constructed by taking  v( $\xi$)\equiv-1.

We end this section by giving well‐known conditions for a function to be a scaling
function.

Theorem 4.4. Let  $\phi$ \in  L^{2}(\mathbb{R}) . Then,  $\phi$ is a scaling function if and only if
the following three conditions hold ([8] Chapter 7, Theorem 5.2 .
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Figure 13. Daubechies scaling functions:  N $\phi$, N=2
, 3, 8.

(A1) The equality

(4.9) \displaystyle \sum_{k\in \mathbb{Z}}|\hat{ $\phi$}( $\xi$+2k $\pi$)|^{2}=1 a.e . on \mathbb{R}

is satisfied. This condition is equivalent to that \{ $\phi$ (. -k)\}_{k\in \mathbb{Z}} is an brthonormal

system.

(A2) There exists a  2 $\pi$ ‐periodic function  m_{0}( $\xi$) such that \hat{ $\phi$}(2 $\xi$) = m_{0}( $\xi$)\hat{ $\phi$}( $\xi$) a.e . on

R. This condition is equivalent to that there exists a sequence \{h_{k}\}_{k\in \mathbb{Z}} such that

(4.3) holds.

(A3) \displaystyle \lim_{j\rightarrow\infty}|\hat{ $\phi$}(2^{-j} $\xi$)| =1 a.e. on R.

§5. Main Problems

In the case of Meyer wavelets, Toda‐Zhang 14, 15] pointed out the essential part of

the following theorem, which shows that the Hilbert transform of  $\psi$ is associated with

 T_{1/2} $\phi$.

Theorem 5.1. Let  $\phi$ be a Meyer scaling function and  $\psi$ be the wavelet func‐
tion naturally associated with  $\phi$ . Fix arbitrary  b\in \mathbb{R} , and set $\phi$_{b} :=T_{b} $\phi$ . Then we have

the following.

(1)  $\phi$_{b} is also a scaling function.

(2) If $\psi$_{b} is the wavelet function naturally associated with $\phi$_{b} , then the Hilbert transform

\mathcal{H}$\psi$_{b} is the wavelet function naturally associated with T_{1/2}$\phi$_{b}=$\phi$_{b+1/2}.

The statement (1) had already been well‐known in the field of wavelets. (2) was

very unexpected and attractive to us. It is very natural to ask the following questions.



66 Takeshi MANDAI

Main Questions:

[Q1] What happens for T_{c}$\phi$_{b} with c\neq 1/2 ?

[Q2] From which characteristics of the Meyer scaling functions, do the properties de‐

scribed in the theorem come?

[Q3] What happens for other wavelets than the Meyer wavelets?

In order to give our answers, we define two families of unitary operators \mathcal{H}_{c} and

T_{c} $\dagger$, c\in \mathbb{R} ,
in the next section.

§6. Unitary Operators \mathcal{H}_{c} and  T_{c} $\dagger$

In this section, we define two families of unitary operators \mathcal{H}_{c} and T_{c} $\dagger$, c\in \mathbb{R} . The

operators \mathcal{H}_{c} are extensions of the Hilbert transform, called fractional Hilbert transforms

([10], [5] and so on).

Definition 6.1. We define unitary operators \mathcal{H}_{c} on L^{2}(\mathbb{R}) by

(6.1) \mathcal{H}_{c}=(\cos c $\pi$)I+(\sin c $\pi$)\mathcal{H}, c\in \mathbb{R},

where I is the identity operator. In other words,

(6.2) (\mathcal{H}_{c}f)^{\wedge}( $\xi$)= {\cos c $\pi$-i(\sin c $\pi$) sgn  $\xi$ } \hat{f}( $\xi$)=e^{-ic $\pi$(\mathrm{s}\mathrm{g}\mathrm{n} $\xi$)}\hat{f}( $\xi$) .

We have \mathcal{H}_{1/2} = \mathcal{H} ,
and \mathcal{H}_{c} is called a fractional Hilbert transform. Here, we use a

different parametrization from the definition in [5] for the compatibility with the other

family of operators T_{c} $\dagger$.

If f is real‐valued, then \mathcal{H}_{c}f is also real‐valued. Further, we have

(6.3) \langle f, \mathcal{H}_{c}f\rangle =(\cos c $\pi$)\Vert f\Vert^{2},

which means that the \backslash \backslash 

angle� between f and \mathcal{H}_{c}f is c $\pi$.

The family \{\mathcal{H}_{c}\}_{c\in \mathbb{R}} constitutes a one‐parameter group of unitary operators: \mathcal{H}_{c}\mathcal{H}_{d}=

\mathcal{H}_{c+d}, \mathcal{H}_{0} =I . Further, we have \mathcal{H}_{c+1} =-\mathcal{H}_{c}, \mathcal{H}_{c+2} =\mathcal{H}_{c}, \mathcal{H}_{1} =-I, \mathcal{H}_{c}^{*} =\mathcal{H}_{c}^{-1} =

\mathcal{H}_{-c} ,
where U^{*} denotes the adjoint operator of U.

We also have the commutativity with translations and dilations:

(6.4) \mathcal{H}_{c}T_{b}=T_{b}\mathcal{H}_{c}, \mathcal{H}_{c}D_{a}=D_{a}\mathcal{H}_{c} for b, c\in \mathbb{R}, a\in \mathbb{R}_{+}.

In particular, \mathcal{H}_{c}(f_{j,k}) =(\mathcal{H}_{c}f)_{j,k}, j, k\in \mathbb{Z}.

The unitary operators \mathcal{H}_{c} are natural operators in the sense of the following proposi‐
tion. A limited version was given in [5, Theorem 3.1], where the domain of the operators

consists of only real‐valued functions.
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 $\tau$( $\xi$)

Figure 14.  $\tau$( $\xi$) .

Proposition 6.2 ([3]). Let U be a unitary operator which is commutative with

T_{b}, D_{a} for every b\in \mathbb{R}, a\in \mathbb{R}_{+} . Then, we have the following.

(1) There exist constants  $\theta$, c\in \mathbb{R} such that U=e^{i $\theta$}\mathcal{H}_{c}.
(2) If further U maps real‐valued functions to real‐valued functions, then there exists

c\in \mathbb{R} such that U=\mathcal{H}_{c}.

(3) Moreover, if \langle Uf,  f\rangle =0 for every real‐valued f ,
then U=\pm \mathcal{H}_{1/2} =\pm \mathcal{H}.

Next, let us define the unitary operators  T_{c} $\dagger$ ,
a kind of modified translation opera‐

tors.

Definition 6.3. Set

 $\tau$( $\xi$)= (| $\xi$|-2 $\pi$ \displaystyle \lfloor\frac{| $\xi$|}{2 $\pi$}\rfloor)\mathrm{s}\mathrm{g}\mathrm{n} $\xi$= $\xi$-2 $\pi$(\mathrm{s}\mathrm{g}\mathrm{n} $\xi$) \displaystyle \lfloor\frac{| $\xi$|}{2 $\pi$}\rfloor (Figure 14),

where \lfloor x\rfloor = \displaystyle \max\{n \in \mathbb{Z} n \leq x\} . We define unitary operators T_{c} $\dagger$, c \in \mathbb{R}
, by

(T_{c} $\dagger$ f)^{\wedge}( $\xi$)=e^{-ic $\tau$( $\xi$)}\hat{f}( $\xi$) .

If f is real‐valued, then T_{c} $\dagger$ f is also real‐valued. The family \{T_{c} $\dagger$\}_{c\in \mathbb{R}} constitutes

a one‐parameter group of unitary operators:  $\tau$_{cd} $\dagger \tau \dagger$ = T_{c+d}^{ $\dagger$}, T_{0}^{ $\dagger$} = I . Further,  T_{c} $\dagger$ are

commutative with the translations (but not with the dilations):  T_{b}T_{c} $\dagger$ =$\tau$_{c} $\dagger \tau$_{b}, b, c\in \mathbb{R}.

Remark. (1) If c=k is an integer, then e^{-ik $\tau$( $\xi$)} =e^{-ik $\xi$}
,

and hence T_{k}^{ $\dagger$} is just
the translation: T_{k}^{ $\dagger$} =T_{k}, k\in \mathbb{Z}.

(2) If supp \hat{f}\subset [-2 $\pi$, 2 $\pi$] ,
then T_{c} $\dagger$ f=T_{c}f, c\in \mathbb{R} . So, in a sense,  T_{c} $\dagger$ is the translation

in a low frequency domain.

(3) In the signal processing community, filter design is important. Selesnick[12] designed
a low‐pass filter corresponding to \mathcal{H} $\psi$ . This low‐pass filter turned out to be the low‐pass
filter associated with the scaling function  T_{1/2}^{ $\dagger$} $\phi$.

At the end of the next section
,

we give several graphs of  T_{1/2}^{ $\dagger$} $\phi$ and related functions.
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§7. Our answers to Main Problems

In this section, we consider general scaling functions. We assume the following.

AssumptionF  $\phi$ is a scaling function, and  $\psi$ is the wavelet function

naturally associated with  $\phi$.

By the commutativity (6.4), the unitary operator \mathcal{H}_{c} preserves the MRA structure,

and hence we have the following.

Proposition 7.1. For every c\in \mathbb{R} , we have the followings.

(1) \mathcal{H}_{c} $\phi$ is a scaling function.

(2) \mathcal{H}_{c} $\psi$ is the wavelet function naturally associated with \mathcal{H}_{c} $\phi$.

Unfortunately, \mathcal{H}_{c} $\phi$ has bad localization in general. In particular, if  $\phi$\in L^{1}(\mathbb{R}) and

c \not\in \mathbb{Z} ,
then \mathcal{H}_{c} $\phi$ \not\in L^{1}(\mathbb{R}) . In fact, \hat{ $\phi$} is continuous and \hat{ $\phi$}(0) \neq  0 ,

hence \overline{\mathcal{H}_{c} $\phi$}( $\xi$) has a

jump at  $\xi$=0 . In Figures 15, 16 and 17, the graphs of \mathcal{H}_{1/2} $\phi$=\mathcal{H} $\phi$ for several  $\phi$ are

illustrated.

The following is our answer to the main problems. Note that  T_{c} $\phi$ (c \not\in \mathbb{Z}) is not

necessarily a scaling function.

Theorem 7.2 ([3]). For every c\in \mathbb{R} , we have the following.

(1)  T_{c} $\dagger \phi$ is a scaling function.

(2) \mathcal{H}_{c} $\psi$ is the wavelet function naturally associated with  T_{c} $\dagger \phi$.

By the property of  T_{c} $\dagger$ stated in Remark (2) after Definition 6.3, we have the

following corollary.

Corollary 7.3. If supp \hat{ $\phi$}\subset [-2 $\pi$, 2 $\pi$] ,
then  T_{c} $\phi$ is a scaling function. Fur‐

ther, \mathcal{H}_{c} $\psi$ is the wavelet function naturally associated with  T_{c} $\phi$.

The scaling function  T_{c} $\dagger \phi$ does not have so bad localization in many cases. In

particular, if  $\phi$ is a Meyer scaling function, then  T_{c} $\dagger \phi$ =  T_{c} $\phi$ \in \mathscr{S} . We give more

properties of  T_{c} $\dagger$ in Section 8.

This theorem gives answers to the main questions in Section 5.

[Ansl] In the case of Meyer wavelets, \mathcal{H}_{c}$\psi$_{b} is naturally associated with T_{c}$\phi$_{b}=T_{c+b} $\phi$,
c, b\in \mathbb{R} . (Now we have  $\psi$_{b}=\mathcal{H}_{b} $\psi$ and hence \mathcal{H}_{c}$\psi$_{b}=\mathcal{H}_{b+c} $\psi$. )

[Ans2] supp \hat{ $\phi$}\subset [-2 $\pi$, 2 $\pi$] implies that  T_{c} $\phi$ is a scaling function, and \mathcal{H}_{c} $\psi$ is associated

with  T_{c} $\phi$ . (Corollary 7.3.)

[Ans3] In general, \mathcal{H}_{c} $\psi$ is naturally associated with  T_{c} $\dagger \phi$ . (Theorem 7.2.)
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Figure 15. Case of Meyer wavelets. Left:

Right:  $\psi$ (solid), \mathcal{H} $\psi$ (broken)
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 $\phi$ (solid), \mathcal{H} $\phi$ (broken),  T_{1/2}^{ $\dagger$} $\phi$ (dash‐dot .
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Figure 16. Case of Daubechies wavelets N=2 . Left:  2 $\phi$ (solid), \mathcal{H}_{2} $\phi$ (broken),  T_{1/2^{2}}^{ $\dagger$} $\phi$
(dash‐dot . Right:  2 $\psi$ (solid), \mathcal{H}_{2} $\psi$ (broken)

In Figures 15‐17 ,
we show the graphs of  $\phi$, \mathcal{H} $\phi$=\mathcal{H}_{1/2} $\phi$, T_{1/2}^{ $\dagger$} $\phi$,  $\psi$ ,

and \mathcal{H} $\psi$=\mathcal{H}_{1/2} $\psi$
for the case of the Meyer wavelets and the Daubechies wavelets. In the case of Meyer

wavelets, we have  T_{1/2}^{ $\dagger$} $\phi$=T_{1/2} $\phi$ . In the case of Daubechies wavelets,  T_{1/2^{N}}^{ $\dagger$} $\phi$ approaches

 T_{1/2N} $\phi$ as  N\rightarrow 1
,

since \hat{N $\phi$} concentrate in [-2 $\pi$, 2 $\pi$] as seen in Figure 18. In Figure 17,

 T_{1/2^{8}}^{ $\dagger$} $\phi$ looks as if  T_{1/28} $\phi$ . In both cases, the scaling functions \mathcal{H} $\phi$ \not\in  L^{1}(\mathbb{R}) have bad

localization.  T_{1/2}^{ $\dagger$} $\phi$ and \mathcal{H} $\psi$ have far better localization than \mathcal{H} $\phi$ . We give a rigorous
result about localization in Section 8.
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Figure 17. Case of Daubechies wavelets N=8 . Left:  8 $\phi$ (solid), \mathcal{H}_{8} $\phi$ (broken),  T_{1/2^{8}}^{ $\dagger$} $\phi$
(dash‐dot . Right:  8 $\psi$ (solid), \mathcal{H}_{8} $\psi$ (broken)

|_{2^{\wedge}} $\phi$( $\xi$)|

 $\xi$

|_{8} $\phi$( $\xi$)|

 $\xi$

Figure 18. Fourier transforms of Daubechies scaling functions: |_{2}\hat{ $\phi$}|, |_{8}\hat{ $\phi$}|

§8. Properties of  T_{c} $\dagger$

In this section, we give several properties of  T_{c} $\dagger$ , especially localization property.
Let \mathscr{S}' be the space of tempered distributions on R. The operator (1+|D|^{2})^{s/2}, s\in \mathbb{R},
is defined as \{(1+|D|^{2})^{s/2}f\}^{\wedge}( $\xi$) = (1+| $\xi$|^{2})^{s/2}\hat{f}( $\xi$) for f \in \mathscr{S}' . From now on, the

derivatives are considered in the distribution sense.

As for smoothness, T_{c} $\dagger$ f and \mathcal{H}_{c}f have the same smoothness as f in the following
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sense. For s \in \mathbb{R} , set H^{s} = \{ f \in \mathscr{S}' | (1+|D|^{2})^{s/2}f \in L^{2}(\mathbb{R})\} ,
which is the Sobolev

space of order s . The following is almost trivial by the boundedness of e^{-ic $\tau$( $\xi$)} and

sgn  $\xi$.

Proposition 8.1. Let s\geq 0 . If f\in H^{s} ,
then T_{c} $\dagger$ f\in H^{s} and \mathcal{H}_{c}f\in H^{s}.

Next, we measure the order of localization of f(x) by the index r \in \mathbb{N}\cup\{0\} such

that (1+| |)^{r}f\in L^{2}(\mathbb{R}) ,
which is equivalent to f^{\hat{(}j)} \in L^{2}(\mathbb{R}) , 0\leq j \leq r.

For r\in \mathbb{N}\cup\{0\} and s\in \mathbb{R} ,
we set

H_{r}^{s} :=\{f\in \mathscr{S}' | (1+| |)^{r}(1+|D|^{2})^{s/2}f\in L^{2}(\mathbb{R})\}
= { f\in \mathscr{S}' | (\cdot)^{j}(1+|D|^{2})^{s/2}f\in L^{2}(\mathbb{R}) for 0\leq j\leq r }

(8.1)
= { f\in \mathscr{S}' |\partial_{ $\xi$}^{j}\{(1+| $\xi$|^{2})^{s/2}\hat{f}( $\xi$)\} \in L^{2}(\mathbb{R}) for 0\leq j\leq r }
= { f\in \mathscr{S}' | ( 1+| |^{2} ) \hat{f}^{(j)} \in L^{2}(\mathbb{R}) for 0\leq j\leq r }:

The condition f\in H_{r}^{s} implies an estimate of decreasing order of f as follows.

Lemma 8.2. If f\in H_{r}^{s} ,
then there exists a constant C such that

|(1+|D|^{2})^{s/2-1/4- $\epsilon$}f(x)| \displaystyle \leq \frac{C}{(1+|x|)^{r}}, x\in \mathbb{R}.
In particular, if s> 1/2 ,

then f\in H_{r}^{s} implies

|f(x)| \displaystyle \leq \frac{C}{(1+|x|)^{r}}, x\in \mathbb{R}.
Proof. Note that (1+ | . |^{2})^{-1/4- $\epsilon$} \in  L^{2}(\mathbb{R}) for every  $\epsilon$ > 0 ,

and hence f \in  H_{r}^{s}
implies that (1+|\cdot|^{2})^{s/2-1/4- $\epsilon$}f^{\hat{(}j)} \in L^{1}(\mathbb{R}) for 0\leq j \leq r . This is equivalent to \partial_{ $\xi$}^{j}\{(1+
| $\xi$|^{2})^{s/2-1/4- $\epsilon$}\hat{f}( $\xi$)\} \in  L^{1}(\mathbb{R}) for 0 \leq  j \leq  r

,
which implies (\cdot)^{j}(1+ |D|^{2})^{s/2-1/4- $\epsilon$}f \in

 L^{\infty}(\mathbb{R}) for 0\leq j\leq r . Thus, there exists a constant C such that

|(1+|D|^{2})^{s/2-1/4- $\epsilon$}f(x)| \displaystyle \leq \frac{C}{(1+|x|)^{r}}, x\in \mathbb{R}.
\square 

We found that the vanishing moments property of  $\psi$ is closely relevant to the

localization not only of \mathcal{H}_{c} $\psi$ ,
but also of  T_{c} $\dagger \phi$ . For  r\in \mathbb{N} ,

we say that a wavelet function

 $\psi$ has  r vanishing moments if (1+|x|)^{r-1} $\psi$(x) \in L^{1}(\mathbb{R}) and

\displaystyle \int_{\mathbb{R}}x^{j} $\psi$(x)dx=0, 0\leq j<r.
The Haar wavelet has one vanishing moment, the Meyer wavelets have 1 vanishing mo‐

ments, and the Daubechies wavelet  N $\psi$ has  N vanishing moments. As for the Shannon
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wavelet, we have $\psi$_{\mathrm{S}} \not\in  L^{1}(\mathbb{R}) ,
and hence we cannot consider the integral in the usual

sense.

Note that if r\in \mathbb{N} and f\in H_{r}^{0} ,
then (1+|\cdot|)^{r-1}f\in L^{1}(\mathbb{R}) and hence \hat{f}\in C^{r-1}(\mathbb{R}) ,

which allows us to talk about \displaystyle \int_{\mathbb{R}}x^{j}f(x)dx and f^{\hat{(}j)}(0) for 0\leq j <r . The following is

a variant of a well‐known result, and it can be proved in the same way as in [4], though
the assumptions are a little different.

Theorem 8.3. Assume that r \in \mathbb{N} and  $\phi$,  $\psi$ \in  H_{r}^{0} . Then, \hat{ $\phi$} and \hat{ $\psi$} are of
C^{r-1} class. Also assume that

(8.2) there exists l_{0} \in \mathbb{Z} such that \hat{ $\phi$}( $\pi$+2l_{0} $\pi$)\neq 0.

Then, m_{0} is also of C^{r-1} class. Further,  $\psi$ has  r vanishing moments if and only if each

of the following conditions is satisfied.

(1) \hat{ $\psi$}^{(j)}(0)=0, 0\leq j<r.

(2) m_{0}^{(j)}( $\pi$)=0, 0\leq j<r.

(3) \hat{ $\phi$}^{(j)}(2k $\pi$)=0, 0\leq j<r, k\in \mathbb{Z}\backslash \{0\}.

Thus, we can consider the condition (3) as a moment condition.

Remark. The assumption (8.2) is a technical condition, and it is satisfied in

most cases where \hat{ $\phi$}\in  C^{0}(\mathbb{R}) . It is well‐known that if  $\phi$ is a scaling function, then we

have

(8.3) \displaystyle \sum_{k\in \mathbb{Z}}|\hat{ $\phi$}( $\xi$+2k $\pi$)|^{2}=1 a.e. on \mathbb{R}.

But this holds only a.e. in  $\xi$ ,
and it does not necessarily imply (8.2), even if \hat{ $\phi$}\in C^{0}(\mathbb{R}) . If

we further impose some conditions which imply the uniform convergence of the series in

(8.3), then we can show that (8.3) holds for every  $\xi$ ,
and hence (8.2) holds. For example,

the condition that there exists a constant  $\epsilon$>0 such that  $\phi$\in H_{1/2+ $\epsilon$}^{1/2+ $\epsilon$} implies the uniform

convergence. In fact, if  $\phi$\in H_{1/2+ $\epsilon$}^{1/2+ $\epsilon$} ,
then we have (1+|D|^{2})^{1/4+ $\epsilon$/2} $\phi$=(1+|x|)^{1/2+ $\epsilon$}(1+

|D|^{2})^{1/4+ $\epsilon$/2} $\phi$\times (1+ |x|)^{-1/2- $\epsilon$} \in  L^{2} \times  L^{2} \subset  L^{1} . Hence, (1+| $\xi$|^{2})^{1/4+ $\epsilon$/2}\hat{ $\phi$}( $\xi$) \in  L^{\infty},
which implies that there exists a constant C such that (1 + | $\xi$|^{2})^{1/4+ $\epsilon$/2}|\hat{ $\phi$}( $\xi$)| \leq  C.

We have only to show the uniform convergence of (8.3) on [- $\pi$,  $\pi$] ,
which follows from

|\hat{ $\phi$}( $\xi$+2k $\pi$)|^{2} \leq \displaystyle \frac{C}{(1+| $\xi$+2k $\pi$|)^{1+2 $\epsilon$}} \leq \displaystyle \frac{C(1+| $\xi$|)^{1+2 $\epsilon$}}{(1+2|k| $\pi$)^{1+2 $\epsilon$}}.
Now, we fix r\in \mathbb{N} and s\in \mathbb{R} with s\geq 0 . We show that the localization condition

 $\phi$ \in  H_{r}^{s} together with the moment condition (3) in Theorem 8.3 are preserved by T_{c} $\dagger$.
We also give a similar result about \mathcal{H}_{c} ,

whose proof is similar and simpler. As for

\mathcal{H}=\mathcal{H}_{1/2} ,
a similar result on localization was obtained in [6].
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Theorem 8.4 ([3]). Let r\in \mathbb{N} and s\in \mathbb{R}, s\geq 0.

(1) If f\in H_{r}^{s} and if f^{\hat{(}j)}(2k $\pi$) =0 for 0\leq j <r, k\in \mathbb{Z}\backslash \{0\} , then T_{c} $\dagger$ f also satisfies the

same conditions, that is, T_{c} $\dagger$ f\in H_{r}^{s} and (\overline{T_{c}^{ $\dagger$}f})^{(j)}(2k $\pi$)=0 for 0\leq j<r, k\in \mathbb{Z}\backslash \{0\}.
(2) If f \in  H_{r}^{s} and if f^{\hat{(}j)}(0) = 0 for 0 \leq  j < r

,
then \mathcal{H}_{c}f also satisfies the same

conditions, that is, \mathcal{H}_{c}f\in H_{r}^{s} and (\overline{\mathcal{H}_{c}f})^{(j)}(0) =0 for 0\leq j <r.

Remark. (1) We can also show the following by similar (and easier) proofs.

(i) If \hat{f}\in C^{r-1}(\mathbb{R}) and if f^{\hat{(}j)}(2k $\pi$)=0 for 0\leq j<r, k\in \mathbb{Z}\backslash \{0\} ,
then \overline{T_{c}^{ $\dagger$}f}\in C^{r-1}(\mathbb{R})

and (\overline{T_{c}^{ $\dagger$}f})^{(j)}(2k $\pi$) =0 for 0\leq j<r, k\in \mathbb{Z}\backslash \{0\}.

(ii) If \hat{f}\in  C^{r-1}(\mathbb{R}) and if f^{\hat{(}j)}(0) = 0 for 0 \leq  j < r
,

then \overline{\mathcal{H}_{c}f} \in  C^{r-1}(\mathbb{R}) and

(\overline{\mathcal{H}_{c}f})^{(j)}(0)=0 for 0\leq j<r.

We first proved these, but we are not satisfied with these, because the condition \hat{f}\in
 C^{r-1}(\mathbb{R}) is not a good condition as a localization condition of f.

(2) We restricted ourselves to the case s \geq  0 since we defined the operators  T_{c} $\dagger$
and \mathcal{H}_{c} only on L^{2}(\mathbb{R}) . We can extend the results to the case s < 0 by extending the

operators  T_{c} $\dagger$ and \mathcal{H}_{c} on H^{s}.

Example 8.5. (1) In the case of Meyer wavelets, we can apply our theorem

for all r, s\in \mathbb{N} ,
and hence we have T_{c} $\dagger \phi$, \mathcal{H}_{c} $\psi$\in \mathscr{S} by Lemma 8.2. Although T_{c} $\dagger \phi$, \mathcal{H}_{c} $\psi$\in

\mathscr{S} is almost trivial by the definition, this shows that Theorem 8.4 has enough power to

derive this strong property.

(2) If  $\phi$=  N $\phi$ and  $\psi$ =N $\psi$ are the Daubechies scaling function and wavelet function,
then we can apply our theorem for  r=N and s=0 . In particular, \mathcal{H}_{cN} $\psi$ has also  N

vanishing moments.

If N \geq  3 ,
then we can apply our theorem for r =N and s = 1

,
since it is known

that N $\phi$, N $\psi$\in C^{1}(\mathbb{R}) for N\geq 3 . In particular, there exists a constant C such that

|(T_{c}$\dagger$_{N} $\phi$)(x)| \displaystyle \leq \frac{C}{(1+|x|)^{N}}, |(\mathcal{H}_{cN} $\psi$)(x)| \leq \frac{C}{(1+|x|)^{N}},
by Lemma 8.2.

For N = 2
,

we can show that 2 $\phi$,  2 $\psi$ \in  H_{2}^{1/2+ $\epsilon$} (see [3] for details). Thus, we can

use our results for r=2 and s=  1/2+ $\epsilon$ . This implies that there exists a constant  C

such that

|(T_{c^{2}} $\dagger \phi$)(x)| \displaystyle \leq \frac{C}{(1+|x|)^{2}}, |(\mathcal{H}_{c2} $\psi$)(x)| \leq \frac{C}{(1+|x|)^{2}},
by Lemma 8.2.

For N = 1 (Haar), we can have only that (1+|x|)T_{c}$\dagger$_{1} $\phi$, (1+|x|)\mathcal{H}_{c1} $\psi$ \in  L^{2}(\mathbb{R}) ,

which implies T_{c}$\dagger$_{1} $\phi$, \mathcal{H}_{c1} $\psi$\in L^{1}(\mathbb{R})\cap L^{2}(\mathbb{R}) .
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(3) As for the Shannon wavelet, since $\phi$_{\mathrm{S}}, $\psi$_{\mathrm{S}} \not\in  H_{1}^{0} ,
we cannot use our theorem.

Just like $\phi$_{\mathrm{S}}, $\psi$_{\mathrm{S}} themselves, we have T_{c} $\dagger \phi$_{\mathrm{S}}, \mathcal{H}_{c}$\psi$_{\mathrm{S}} \not\in L^{1}(\mathbb{R}) for every c\in \mathbb{R}.

§9. A generalization of the Meyer scaling functions

If supp \hat{ $\phi$}\subset [-2 $\pi$, 2 $\pi$] ,
then we have  T_{c} $\dagger \phi$=T_{c} $\phi$ . In this last section, we give a class

of scaling functions with this pboperty, which generalizes the Meyer scaling functions.

Definition 9.1 ([3]). A scaling function  $\phi$ \in  L^{2}(\mathbb{R}) is called a generalized

Meyer scaling function if supp \hat{ $\phi$}\subset [-a_{1}, a_{2}], 0<a_{1} <2 $\pi$, 0<a_{2} <2 $\pi$, a_{1}/2+a_{2} \leq 2 $\pi$,

 a_{1}+a_{2}/2\leq 2 $\pi$ . A wavelet function associated with a generalized Meyer scaling function

is also called a generalized Meyer wavelet function. Note that the condition (A1) in

Theorem 4.4 implies  a_{1}+a_{2} \geq  2 $\pi$
,

and the equality holds only if |\hat{ $\phi$}| =$\chi$_{[-a_{1},a_{2}]} . The

region of possible (a_{1}, a_{2}) is illustrated as the gray region in Figure 19.

a_{2}

Figure 19. The region of (a_{1}, a_{2}) . The boundary is included except (2 $\pi$, 0) , (0,2 $\pi$) .

Note that the Shannon wavelet is a generalized Meyer wavelet by our definition.

The Meyer scaling functions are the case when a_{1} = a_{2} = (4/3) $\pi$ ,
and the Shannon

scaling function is the case when  a_{1} =a_{2} = $\pi$.

In the definition above, it is assumed that  $\phi$ is a scaling function. The following

gives the conditions for a function to be a generalized Meyer scaling function.

Proposition 9.2 ([3]). A function  $\phi$\in  L^{2}(\mathbb{R}) is a generalized Meyer scaling

function if and only if the following three conditions hold (Figure 20 .
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Figure 20. Graph of |\hat{ $\phi$}( $\xi$)| for a generalized Meyer scaling function.

(\mathrm{g}\mathrm{M}1) supp \hat{ $\phi$}\subset [-a_{1}, a_{2}], 0<a_{1} <2 $\pi$, 0<a_{2} <2 $\pi$, a_{1}/2+a_{2} \leq 2 $\pi$,  a_{1}+a_{2}/2\leq
 2 $\pi$, a_{1}+a_{2} \geq 2 $\pi$.

(\mathrm{g}\mathrm{M}2) |\hat{ $\phi$}( $\xi$)| =1 a.e . on [a_{2}-2 $\pi$, 2 $\pi$-a_{1}].

(\mathrm{g}\mathrm{M}3) |\hat{ $\phi$}( $\xi$)|^{2}+|\hat{ $\phi$}( $\xi$-2 $\pi$)|^{2}=1 a.e. on [2 $\pi$-a_{1}, a_{2}].

Note that (\mathrm{g}\mathrm{M}1) implies -2 $\pi$< -a_{1} \leq a_{2}-2 $\pi$<2 $\pi$-a_{1} \leq a_{2} <2 $\pi$ ,
and the width

of the support of \hat{ $\phi$} is not greater than a_{1}+a_{2} \leq (8/3) $\pi$ . Also note that the conditions

depend only on the absolute value of \hat{ $\phi$}, and hence if  $\phi$ is a generalized Meyer scaling
function and if | $\alpha$( $\xi$)| = 1

,
then  $\alpha$(D) $\phi$ is also a generalized Meyer scaling function. In

particular, if  $\phi$ is a generalized Meyer scaling function, then  T_{c} $\phi$ is also a generalized

Meyer scaling function, which also follows from that  T_{c} $\phi$=T_{c} $\dagger \phi$.
Let  $\phi$ be a generalized Meyer scaling function, and  $\psi$ be the wavelet function

naturally associated with  $\phi$ . If  $\phi$\in \mathscr{S} ,
then the three functions T_{c} $\dagger \phi$=T_{c} $\phi$,  $\psi$ ,

and \mathcal{H}_{c} $\psi$
also belong to \mathscr{S} ,

while \mathcal{H}_{c} $\phi$\not\in L^{1}(\mathbb{R}) unless c\in \mathbb{Z}.

The generalized Meyer wavelet functions have the following properties.

Proposition 9.3. If  $\phi$ is a generalized Meyer scaling function, then any as‐

sociated wavelet fu nction  $\psi$ has the following properties (Figure 21 .

(gMwl) supp \hat{ $\psi$}\subset [-2a_{1}, a_{2}-2 $\pi$]\cup[2 $\pi$-a_{1}, 2a_{2}].

(\mathrm{g}\mathrm{M}\mathrm{w}2) |\hat{ $\psi$}( $\xi$)| =1 a.e . on [2a_{2}-4 $\pi$, -a_{1}]\cup[a_{2}, 4 $\pi$-2a_{1}],

(\mathrm{g}\mathrm{M}\mathrm{w}3) |\hat{ $\psi$}(2 $\xi$+4 $\pi$)| = |\hat{ $\psi$}( $\xi$)| a.e . on [-a_{1}, a_{2}-2 $\pi$], |\hat{ $\psi$}(2 $\xi$-4 $\pi$)| = |\hat{ $\psi$}( $\xi$)| a.e . on

[2 $\pi$-a_{1}, a_{2}], |\hat{ $\psi$}( $\xi$)|^{2}+|\hat{ $\psi$}( $\xi$-2 $\pi$)|^{2}=1 a.e . on [2 $\pi$-a_{1}, a_{2}].

This proposition easily follows from (4.5) and (4.6).
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|\hat{ $\psi$}( $\xi$)|

Figure 21. Graph of |\hat{ $\psi$}( $\xi$)| for a generalized Meyer wavelet function.
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