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Abstract

Born—Jordan quantization originates from the early quantum mechanics, leading to sharp
time-frequency localization of signals. The related Born—-Jordan transform provides an at-
tractive alternative to short-time Fourier transform. We review the essential time-frequency
analysis, characterizing the Born—Jordan transform within Cohen’s class, and show how all this
works in audio signal processing. Computationally, our Born—Jordan approach is as complex
as using spectrograms (which suffer from arbitrariness of chosen analysis window, resulting
in inferior localization). We relate this to singular integral operators, and compare the Weyl
quantization to the Born—Jordan case.

§1. Introduction

In this treatise, we present sharp stable operations on “signals” of finite energy.
This is achieved by so-called Born—Jordan transform in time-frequency analysis. Time-
frequency analysis is an essential part Fourier analysis, having applications in e.g. audio
signal processing (acoustics, phonetics, sound synthesis), visualization and diagnostics
of medical data (ECG, EEG), analysis of radar signals, seismology, quantum physics etc.
A signal could be “digital” or “analog” (discrete time series or continuous time signal).
We shall start by quickly reviewing the notation and important results for Fourier
integral transform, and we hope that the text will be useful not only to mathematicians
but also to a wide audience in engineering and applied sciences.

The origins of time-frequency analysis are in both quantum mechanics and signal
processing, and these subjects are closely related to each other, as explained e.g. in [9].
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In the sequel, we shall mostly appeal to the signal processing metaphors. Simplifying a
bit, we may think that Fourier analysis answers to the question ”how often” something
happens in a signal. In this vein, time-frequency analysis is a subfield of Fourier analysis,
where we try to answer simultaneously ”when and how often” something happens in a
signal.

For the sake of argument, suppose our signal v : R — C is a piece of music: this
is a function of time variable, and from w it is easy to read “when something happens
in 4”. The dual problem to “when” is “how often something happens in u”: this
can be solved by moving to the Fourier transform @ : R — C, which is a function of
frequency variable. In other words, the Fourier transform w may reveal rhythms and
notes in music u. These separate descriptions u and % in time and frequency are not
enough for demanding operations on signals. Even though the Fourier transform u — u
is invertible, it is not easy to simultaneously see “when and how often something
happens in u” — this is the fundamental problem in time-frequency analysis.

One of the first problems in time-frequency analysis is to decide which transform
and the corresponding energy density to use: there are literally infinitely many candi-
dates available. Leon Cohen’s time-frequency distributions [7, 8, 9] provide infinitely
many alternatives for “energy density” of signal u in the phase-space (time-frequency
plane). Once some preferred density is chosen, we try to understand the correspond-
ing quantization rule, in order to be able to manipulate our functions (or signals) in a
desired way. In these notes, we shall show that the Born—Jordan distribution has
a simple well-motivated characterization within Cohen’s class, and we shall study its
properties. Moreover, we discretize and periodize the related transforms, applying them
to real-life signal processing.

§ 2. Fourier analysis background

Now we review the main properties of Fourier integral transform, where the real
line R =] — 00, 00 is the model for time. We wish to keep the presentation informal
for the benefit of a wide audience in science and engineering: the reader may find the
details of the relevant mathematical analysis in [24, 23, 22]. We use rather straight-
forward discretizations to compute the pictures in this article. In practical applications,
time might be measured in seconds [s], and frequency correspondingly in Hertz [Hz =
1/s] (occurences per second). To make the theory as transparent as possible, time-
like variables will be noted by Latin letters (z,y, -+ € R), and frequency-like variables
by corresponding Greek letters (&,n,- -+ € @) Even though mathematically R is the
same as R, we want to use this distinct time-frequency notation to stress the physical
difference of time z € R and frequency n € R (“When something happens?” versus



110 VILLE TURUNEN

“How often something happens?”). In our notation, the Cartesian product
Rx@:{(x,n): z € R, 776]1@}

is called the time-frequency plane (or the phase space).

An analog signal u is a “nice enough” function v : R — C (later, we may allow
also the Schwartz tempered distributions). For example, at time (or position) = € R,
u(x) € C could be pressure/temperature/luminosity /position/wave function etc. In
Fourier analysis, we describe signals v as “infinite linear combinations” of complex-
valued waves

x> 27N = cos(2mx - m) + isin(27x - ).

Such a wave has frequency n € R (which can also be negative), and this wave has
“weight” u(n) € C (defined by the Fourier transform (2.3)) within signal u, in view of
the Fourier inverse formula (2.7). Signal u has energy density or power |ul? : R — [0, oc]
(physical unit e.g. J/s, Joule per second), meaning that

(2.1) /[b]|u(a:)|2da: € [0,00]

is the energy during the time interval [a,b] C R (physical unit e.g. J, Joule). The
energy of signal u is

(2.2) Juf? := /R () ? d.

Fourier (integral) transform of a “nice enough” analog signal u : R — C is another
analog signal .#u = u : R — C of frequency variable n € R, where

(2.3) an) = / e 2T 4 (y) dy.

What did we mean by “nice enough” signals? At least absolute integrability ||u|/p1 :=
Jg lu(x)| dz < oo is “nice enough” here, because [a(n)| < [p [u(z)| dz. Write u € L'(R)
if ||ul|p: < oo.

Example 2.1. Let |¢| =1 for ¢ € C, and let u : R — C, where

c2me e 2me (#—to) gi2m(@—to) @ when > ¢,

u(zx) =
0 when x < tg.

~

This is a complex-valued “vibration” at frequency a € R, starting at time t5 € R,
decaying at rate € > 0. Then

e—iQTrto"r]

ﬂ(n):Ae_iQWx'"u(x)dlej---d:cz...:c o
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The energy densities |u|? in time and |4|? in frequency are thereby

(2me)2e~4me (@=t)  when x > t,
0 when x < to,

B 1
14 (n— a)?/e?

Ju(z)|* =

a(n)[? for all n € R.

Obviously, u cannot be retrieved back from |u|? and |@|?, but yet U contains essentially all
the information about u: this enables useful time-invariant operations (i.e. convolutions)
on signals. Also, the energy is conserved in the Fourier transform: ||[|? = ||ul|?.

Let us now deal with a class of particularly well-behaving signals: Schwartz test
functions v : R — C are “smooth and rapidly decaying’. More precisely:

Definition 2.2.  Schwartz test function space #(R) consists of those infinitely
smooth functions u : R — C for which

(2.4) lim z"u™(z) =0

|z|—o00

for all m,n e N=1{0,1,2,3,4,5,--- }.
There are many test signals:

Example 2.3. If u € C*°(R) and u(z) = 0 whenever |z| > 1 then u € . (R);
e.g. define u(z) := exp(1/(2? — 1)) for |z| < 1. Also Gaussian signals z eae’ +bae
are examples of Schwartz test functions (when Re(a) < 0, a,b,c € C). Clearly, . (R) C

LY(R) # .7 (R).
Example 2.4. Let k € N, A € C, u,v € .(R), and let ¢ : R — C be a
polynomial. Then Au, u 4+ v, u®), qu,uv € Z(R).

The Fourier transform treats polynomial multiplication and differentiation in a
symmetric fashion: If u € .(R) then @ € .(R), because

(2.5) a'(n) = —i2nv(n), o (n) = +i2mna(n),

where v(z) := zu(z). These formulas motivate the definition of Schwartz test signals.
Hence the Fourier transform gives a linear mapping

(2.6) (u— 1) : ZR) = .Z(R).

Example 2.5. Let u.(z) = ¢ =™ (Gaussian), where & > 0. First,

/ (2.5)

ul(x) = =2emwu(x) == H2mnwn(n) = (/) @' () <= W(n) =w(0)e ™7,
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and integrating in the plane in polar coordinates, here

1/2

u2(0) = /u )da = [//u ) us(y dxdy] v l/m/%e—ﬂzrdedr] =%.

(Especially, u; = u., when u(z) =e —ma’ .) Applying this to for any u € . (R), we find

1 2 . )
— T —7r(y x)? /e _ —enn” +i27z-n —i27y-m
u(z) = lim RU(y) 72 dy = lim e e /R u(y) e dy dn,

which proves the Fourier inverse formula

(2.7) u(z) = / e THTEN T dn.

R

Thus the Fourier transform .% = (u — ) : .7 (R) — .(R) is bijective.

Definition 2.6.  Inner product between signals u,v € (R) is
(2.8) (u,v) := / u(z)v(x)dr € C
R

In the sequel, for clarity, we denote the complex conjugation by A* := X € C.

The inner product is preserved by the Fourier transform: (u,v) = (u,v), because

<a,a>=/@a(n) U —i2m2 g (o dx] dn—// +i2m2n () dyv(z)* da = (u, v).

Especially, Fourier transform preserves energy ||u|® := (u, u) of signal u € .7 (R):
(2.9) Ill* = full*.

Definition 2.7. The convolution of absolutely integrable u,v € L(R) is the
signal ux v : R — C such that

(2.10) uxv(x) = (u*xv)(z):= /Ru(:c —y)v(y)dy.
The reader may then verify the absolute integrability of u * v:
[l vl < flullpr fJvllzr < oo
“Convolution in time” is “multiplication in frequency”, that is
(2.11) u*v(n) = u(n) v(n).
This is a useful property in signal processing. Moreover, for differentiation we have
(2.12) (uxv) =u *v,

if also v’ is absolutely integrable: hence convolution makes signal v smoother. Further-
more, ux v € .(R) when u,v € .Z(R).
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Definition 2.8.  Translation of u € .(R) by time-lag b € R is T'(b)u € . (R),
where

(2.13) T(b)u(x) = u(x —b).

Modulation of u € .(R) by frequency-lag o € R is M(a)u € .#(R), where

(2.14) M(a)u(z) = e @ %y ().
The Fourier transform intertwines between the translations and the modulations:
M(a)s = T(a)u and T'(b)s = M(—b)u, that is
M(a)s(n) =T (a)u(n),

We want to transform an input signal u € ./(R) to the output signal Au = A(u) €
< (R). Suppose A : .Z(R) — Z(R) is linear, i.e.

A(u+v)=A(u) + A(v) and
A(Au) =X A(u)

for all signals u,v € (R) and constants A € C. Linear transform A is formally
presented as an integral operator:

(2.15) Au(z) = /R K 4(z, ) uly) dy,

where K is the Schwartz distribution kernel of A. Notice that integral operator
A S (R) — Z(R) has “essentially unique” distributional kernel K4 (provided that
u — Awu is “naturally continuous” — precise statement in so-called Schwartz kernels
theorem).

Let operator A be time-invariant, meaning T'(b)A = AT'(b) for all b € R, i.e.

(2.16) T(b)Au(z) = AT (b)u(z)

for all signals u and for all z,b € R; in other words, A = T'(—b)AT'(b), which means
/RKA(x, y)u(y)dy = Au(x) = T(=b)AT(b)u(x) = AT(b)u(x + b)
= [ Kala+ ) T0ut) ay
= | Kata+ b uty =)y

:/RKA(:E-I—b,y+b)u(y)dy.
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Thus Ka(z,y) = Ka(x+b,y+0b) for all b, z,y € R, especially K4(x,y) = Ka(z—y,0) =
v(x — y) for some signal v : R — C: hence, Au = wu * v is a convolution.

Test signals v € (R) are “tame”; we shall extend Fourier analysis to “wilder”
signals. “Size” of signal v : R — C is measured by the Lebesgue norms

1/p
1< [e'e]
full o * S5 {/R |u<x>|de] |

If w continuous

|lullL = esssup,cp|u(z)] sup |u(x)] = lim ||u|re.
p—>OO

zeR
We denote u € LP(R), if ||ul/L» < 0o, where spaces LP(R) are so-called Lebesgue spaces,
see details in e.g. [24, 23]|. Then there is the following terminology:

e u e L'(R) is absolutely integrable: [; |u(z)|dz = ||ul[L1.
e u € L?(R) has finite energy: ull* = [g lu(z)? dz = [||u £2]*.
o u € L>(R) is essentially bounded: |u(z)| < ||ul|p~ for almost all z.

Write u = v if ||u — v||r = 0 for u,v € LP(R) (which happens whenever u(z) = v(z)
for almost every z € R). Here .#(R) C LP(R) for all p € [1,00]. Functions u € LP(R)
certainly can be discontinuous. Nevertheless, if u € L*(R) and

then v € L (R) (satisfying |[v||p~ < |Ju||z: clearly), and v' = w in sense that v'(z) =
u(x) for almost all x € R (this is so-called Lebesgue differentiation theorem). If 1 <
p < oo and u € LP(R) then u = u; + Uy, where u; € L'(R) and us € L®(R). Why?
Simply define
u(x) when |u(z)| <1,

Uoo () 1=

0 otherwise.
Thus, if we want to find Fourier transform @ for signal u € LP(R), we need to understand
the special cases p = 1 and p = oo: For p = 1, we already have the nice Fourier integrals;
Case p = oo leads naturally to so-called distributions (which are a generalization of
ordinary functions). Let us try to approximate u € LP(R) by test functions ux € . (R).
If g,v € Z(R), then g % (uv) € (R): this is smoothing by convolution. For k € Z*,
define gg, v € Z(R) by
o () = Gi(n) := e O,

so that ug 1= g * (vyu) € L(R). Now, if 1 < p < oo then

lim ||u—ug||» =0, in other words w = lim u; in LP(R).
k—o0 k—o0
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This means that . (R) is dense in LP(R), when 1 < p < co. But .(R) is not dense in
L>°(R): for instance, think of the constant function 1 € L (R), for which ||u—1|p~ > 1
for every u € .#(R). Thereby we cannot define Fourier transform for v € L*°(R) by
a bounded linear extension of (u — @) : .#(R) — .#(R). However, there is another
method, which discuss soon.

We have the linear energy-preserving Fourier integral transform

(w—7): LS (R) = L (R), [al|* = [|u>
If u € L?(R), by density of . (R) C L*(R), take uj € .(R) so that

lim |ju—ugl| =0, ie. w= limu, in L*R).
k— o0 k—o0

No matter which approximations ux we choose, the energy-preservation guarantees the
uniqueness of the limit

@:= lim ux € L*(R)=L3*R).

k— o0

This defines the linear energy-preserving Fourier transform
(2.17) (wr @) : L*(R) = L2(R), [a]* = [lul>

This is automatically a bijection, and also unitary, which means (u,v) = (u,v) for all
u,v € L?(R), where the inner product is

(u,v) = (u,v) L2(R) —/Ru(:c)v(w)* dz.

Integrals u(n) := / e 127N 4 (1) dz define the Fourier transform for v € L*(R). How-
R

ever, such integrals do not converge absolutely if u ¢ L'(R). For v € L?*(R) and
Y € 7 (R) we have

/ )*dx —/Ru(a:)i\(—x)*dx = /Ru(—x)i\(x)*dw

thus u( ) = u(—=x) for almost every x € R.

Example 2.9. Let u(z) = 1 for |z| < 1/2, and u(z) = 0 otherwise. Then
u e LY(R), and 4 = sinc € L>®(R) is the cardinal sine, where
sin(mn) — for n # 0,

sinc(n) := T
1 for n = 0.

—

Now sinc € L2(R) but sinc ¢ L'(R). However, sinc(z) = ﬁ(aj) = u(—z) = u(+x) for
almost every x € R, so that sinc = u € L2 (R).
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For u € L>*(R), m € N, polynomial r : R — C and ¢ € Z(R), let

(2.18) <ru@”ﬂm::(—1wﬁ/}qu¢*rﬂma¢)dx

R

(where the m™ derivative u("™ makes classically sense if v € .7 (R) — formula (2.18) is
just inspired from formal integration by parts). Here u(™) is called the m™ distribution

derivative of uw € L>*(R). If ry,---,7r, : R — C are polynomials and uy, - ,u, €
L>°(R), then
(2.19) u= Z T 0l

m=1

is called a Schwartz tempered distribution u € '(R). The Fourier transform u €
' (R) = %'(R) is then defined by

n

(2.20) @0 = (0, 8) = 3 (rul0)

m=1

(which is again classically justified if u € .(R)). Now we have obtained the bijective
Fourier transform

(2.21) (u ) . (R) = .7 (R).
The space ./ (R) of tempered distributions is rather large:

Example 2.10. LP(R) C .%'(R) for every p € [1,00]: remember that LP(R) C
LY(R) + L>°(R), and that L!-functions are derivatives of L*-functions. If u € .#’(R)
then the distribution derivatives u(™ € .#/(R) for every m € N.

Example 2.11.  Let u(z) = eg(x) := ¢!?"*F. Then e € L®°(R), and

(@0) = (o) = [ TR pa) do = 5E) = [ Gata) Do) d,

R

where dg :=eg ¢ LP (R) is the Dirac delta distribution at 8 € R.

Think 6, € .’/(R) as a unit mass (or a unit impulse) at x = b. Roughly, d(x) = 0 if
x # b, but beware: Jj is not a function, because if u is a function such that u(z) = 0 for
almost every = € R then [, u(z)v(z)* dz = 0 for all ¢ € .#(R). No function u: R — C
satisfies [p u(x) ¢ (x)* dz = (b)* for all ¥ € 7 (R).

Example 2.12.  Dirac delta d, ¢ LP(R) for any p € [1,00]. Yet here

(5o D) 1= (G0, 0) = $(B)" = /b D) dn = {e—p, ),
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giving 0p = e_p € L°°(R). An alternative, informal computation is

&m%i/%@m*%wwxzeﬂﬂﬂ:ewm»
R

Example 2.13.  Signum function sgn € L*°(R) is defined by sgn(z) := z/|z| for
x # 0. Notice that the derivative

Sgn’(x) = lim Sgn(w + h) — Sgn(w)

R
h—0 h <

exists if and only if « # 0. For distribution derivative sgn’ = sgn),
o' o) =~ ) = = [ sen(e) o) do
= [ vera- [Tvere = w0 vor
Hence the distribution derivative is sgn’ = 24y € .#’(R).

Example 2.14. For ¢ > 0, let us define s. € L'(R) by s.(z) := e Il sgn(x).
Then ||s. — sgn| < /4 0ase— 0", yet

li =
Jim se(z) = sgn(),

and for n # 0 we have
1

sgii(n) = lm () =...= Pt

Thus if r(y) := Wiy for y # 0, then 7(n) = +isgn(—n) = —isgn(n) formally. This
suggests that the Hilbert transform H = (u > Hu) : L>(R) — L*(R), for which
Hu(n) = —isgn(n) u(n),

should satisfy convolution-type singular integral formula

For the absolute convergence of Fourier integrals

u(z) = / e TN G(y) dny = / e / T M u(y) dy d,
R R R

we must have u,u € L'(R), and then u,u are also continuous and belong to all LP-
spaces: this is true certainly if u,u’,u” € L'(R) (or more generally if u,u’ € L*(R)
and v’ € L*(R)). However, we can extend Fourier interpretations beyound LP-spaces to
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tempered distributions. Thus, it is not harmful to write such Fourier integral formulas
for signals outside L!(R), too. For u € .%/(R), in sense of distributions,

/Aem%" u(n)dn = /Aemmn/ ™M u(y) dy iy

R R R

=//Aem”(w‘y)'” dnu(y)dy = /5o(x—y)U(y) dy
RJR R

So, we have the bijective time-to-frequency Fourier transforms
SR) c L*R) c S(R)

b b b
SR) c L[*R) c S (R)

where

~

o Y(R) = .#(R) contains all the smooth rapidly decaying signals.
o [3(R) x> (I@) contains all the finite energy signals.
o #(R) = .%'(R) contains “nearly all the signals we ever meet”.

With these Fourier bijections, we may present the signal
either in time or in frequency,

whatever is convenient for manipulation. But we would like to operate simultaneously
both in time and in frequency

— this is what we shall do in combined time-frequency analysis!

§3. Overview of time-frequency analysis

The main object for us to study here is the infinite family of Cohen class time-
frequency transforms, which are natural sesquilinear translation-modulation invariant
forms, trying to capture the idea of an energy density for a signal. We are especially
interested in the Born—Jordan transform, which was deduced by Leon Cohen in [7]
starting from the Born-Jordan quantization rule derived in [4].

Time-frequency analysis for signal processing is closely connected to the quantum
mechanics. In 1925, the matrix mechanics was created by Werner Heisenberg, Max Born
and Pascual Jordan, see [16], [4], and [5] (discussed e.g. in [26] and [10]). Heisenberg’s
postulates lead to a unique quantization or correspondence rule, so-called Born—-Jordan
quantization.

Other quantization rules were proposed, but all of them violate some of Heisenberg’s
original postulates in matrix mechanics. Of these, perhaps the most famous one is
Hermann Weyl’s quantization from 1927, in [28]. See also Weyl’s monograph [29].
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In 1932 in [30], Eugene Wigner introduced an idealized phase space energy distribu-
tion for quantum statistical mechanics: this is nowadays called the Wigner distribution
(or the Wigner—Ville distribution, referring to Jean-André Ville who introduced it for
signal analysis in [27]). Though the Wigner distribution has many desirable properties,
it is of little use in practical applications due to its sensitivity to noise.

From the 1930s to the 1960s, many fundamental ideas of time-frequency analysis
were introduced, most notably the short-time Fourier transforms and the related spec-
trograms, pioneered by researchers at the Bell Labs during the 2nd World War, and soon
independently Dennis Gabor in [12]. Description of the early history of time-frequency
methods can be found e.g. from [8] and [9]. Much of these developments became special
instances of a wide class of quadratic time-frequency distributions, introduced in 1966 by
Leon Cohen in [7]: roughly speaking, any such distribution is a convolution smoothing
of the Wigner distribution. Each Cohen class time-frequency distribution corresponds
to a quantization rule, and vice versa. Especially, the Wigner distribution corresponds
to the Weyl quantization. One of Cohen’s original examples was the deduction of the
Born—Jordan time-frequency distribution out of the Born—Jordan quantization rule from
[4]. For more information on the Cohen class time-frequency analysis, see [8], [9] and
[14]. In recent years, there has been increasing interest to the Born-Jordan distribution:
see e.g. the results by Paolo Boggiatto, Alessandro Oliaro et al in [2, 3]. Actually, the
author of this article had his first encounter with the Born—Jordan distribution in a
2008 talk by Alessandro Oliaro.

Frequency-like variables will be denoted by the Greek letters &,n,--- € R := R,
corresponding Fourier dually to the time-like variables x,y,--- € R. To connect this
analysis to signal processing applications, usually in the sequel we shall call variable
x the time, and variable y is called the lag (which is actually a shift in time, to be
precise: then x 4 y is a new time instant). The corresponding Fourier dual variable
n = y is called the frequency, and £ = ¥ is called the doppler variable (which is a shift
in frequency, analogous to the lag in time — the name comes from the Doppler effect,
introduced in 1842 by Christian Andreas Doppler).

As before, a signal u is a nice enough complex-valued function of real variable. The
Fourier transform .Zu = 4 € .7 (R) of Schwartz test function u € .%(R) is defined by

)= [ e gy dy,
R
with the inverse Fourier transform .# ~! = (4 — u) by

u(z) = /Aem”'£ u(§) d¢€.

R

So, @ is another signal. The symplectic Fourier transform is F = % @ % 1,

(3.1) F=Z®7 ': YRxR)—= R xR).
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The inverse of the symplectic Fourier transform is F~! = .1 @ .Z.

Fourier transform preserves energy, invertibly taking signals x +— wu(x) of time
variable z € R to signals  — %(n) of frequency variable € R. Then z — |u(z)|? is the
energy density of the signal in time x, and 1 — [i(n)|? the corresponding energy density
in frequency 7. How about finding an energy density (z,n) — d(z,n) in combined time-
frequency (z,n)?

Given a tempered distribution ¢ € /(R x I@) in the time-frequency plane, the
corresponding Cohen class time-frequency transform of nice enough signals u,v : R — C

is
(3.2) Wiy (u,v) = ¢ % W(u,v) : R x R = C,

where the Wigner transform W(u,v) : R x R — C is defined by

(3.3) W(u,v)(z,n) = /}Re_i%y"7 u(x +y/2)v(x —y/2)* dy.

Let us define equivalence u ~ v of measurable functions u,v if u(x) = Av(x) for almost
all x € R, where A € C is a constant with |A\| = 1. Then let [u] := {v: u ~ v} denote
the corresponding equivalence class. The time-frequency distribution of [u] is then

(3.4) Wylu] = ¢ s W(u,u) : Rx R — C

Here, Wy, [u](x,n) can be thought to describe “time-frequency energy density of [u] at
(x,m)” (with respect to convolution kernel ).

A rule of thumb is that the Wigner distribution W[u] = W (u, u) is too sensitive to
noise, so that some -convolution smoothing is needed. On the other hand, e.g. invert-
ibility would be desirable: if u € L?(R), we would still like to recover [u] from Wy [u].
But invertibility is destroyed when smoothing too much: for instance, information is
numerically lost for all the spectrograms (which are related to the short-time Fourier
transform). However, it will turn out that e.g. the Born—Jordan transform is invertible
while it tolerates lots of noise; moreover, the Born—Jordan transform has many other
pleasant properties, and it provides also an attractive computational tool for real-life
applications.

8§4. Unitary transformations and symmetry groups

Vaguely speaking, time-frequency analysis is about investigating families of opera-
tors on the Hilbert space H = L?(R) so that the natural time-frequency symmetries are
taken into account. Let us consider unitary operators A € % (L*(R)), that is bijective
linear mappings A : L?(R) — L?(R) that are isometric, i.e.

(4.1) [Au] = ful]
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For instance, the Fourier transform % : L?(R) — L?*(R) is unitary. Let y,& € R,
p€Rand A € R\ {0}. Let us define T'(y), M (£),U(p), D(N\) € % (L*(R)) (translations,
modulations, units, dilations) by

(4.2) T(y)u(x) :=u(z —y),
(4.3) M (&)u(x) =™ Su(z),
(4.4) U(p)u(x) := e ™u(z),
(4.5) DN u(z) =AY 2u(rx)

Notice that we have group homomorphisms
T,M :R — % (L*(R)),
U:R— % (L*R)),
D :R\ {0} = % (L*(R)).

Clearly, U(p) commutes with all .%, T'(x), M (§) and D(t). Notice also that

(4.6) FT(y)=M(—y)F

(4.7) FME)=T()7,

(4.8) F DN =D(1/)\) .7
Moreover,

(4.9) T(y) M(§) =M T(y) U(=¢-y),
(4.10) DN T(y) =T(y/A) D(X),
(4.11) D(X) M(§) = M(AE) D(A).

Thereby, for instance,

(M (&) T'(yo) D(Xo)) (M (&1) T(y1) D(A1))
= M (&0 + 2o&1) T(yo + Ao 1) D(AoA1) U(=Aoys - &o).-

Heisenberg group. There are several slightly different, yet essentially similar defi-
nitions for Heisenberg groups in the literature, see e.g. [11]. One may begin with e.g.
quantum mechanical considerations or study matrix groups. We shall approach the sub-
ject via commutator relations of unitary operators. Recall that the Fourier transform
intertwines modulations with translations: .# M (§) = T'(£).%#. The Heisenberg group
H is the minimal subgroup of % (L?(R)) containing translations T'(y) and modulations
M) for all y € R and € € R. How to parametrize the Heisenberg group? Noticing

M(q)T(p)U(t —p-q/2)
=T(p) M(q)U(t+p-q/2),
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we define 0 : R x R x R — % (L*(R)) by
(4.12) o(p,q,t) == M(q)T(p)U(t —p-q/2),
for which

o(po,qo0,t0) o(p1,q1,t1)

:U(po +p1,90 + q1,t0 + 11 —

Po-q1 —qo-P1
5 .

Thus we may identify H with R x R x R, endowed with the group operation

p0'ql—qO'p1>

(4.13) (Po, qo, to) (p1.q1,t1) == (po +p1,90 + q1,to + 11 — 5

so o : H — % (L?(R)) is a group homomorphism. The reader should be warned that
the group operation in [11] is given by

9

Po-q1 —(JO'p1>

<p0+p1,QO+ql,to+t1+ 5

this group operation comes from studying p(p,q,t) := M(q)T(—p)U(t + p - q/2) in-
stead of o(p,q,t). Homomorphism o : H — % (L?(R)) could be called the Schrédinger
representation of the Heisenberg group. Explicitly,

4.14 o (p, g, tyu(w) = &m0 2TV 4 (3 — p),
(

(415) p(p’ q, t)u($) _ ei27r:c-q ei27r(t+p-Q/2) u(:c + p)
Nevertheless,

(416) (pa q, t)_l = (_p7 —q, _t)

is the inversion in H, and the center is Z(H) = {(0,0,t) e Rx R x R: t € R}.

Translation-dilation group. Let the translation—dilation group D be the minimal
subgroup of % (L?(R)) containing translations T'(y) and dilations (or scalings) D(\) for
every y € R and A € R\ {0}. Recall that

D(1/s) T(y) = T(sy) D(s),

(T'(yo) D(1/50)) (T'(y1) D(1/51))
=T (yo + soy1) D(1/(s051))-
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Consequently, D can be identified with R x (R\ {0}), endowed with the group operation

(4.17) (Y0, 50)(y1,51) := (Yo + S0Y1,5051)-

The translation-dilation group would lead to time-scale analysis (e.g. continuous wavelet
transforms) — however, in this text we shall deal with the translation-modulation group,
leading to time-frequency analysis (e.g. short-time Fourier transforms). It must be
emphasized that there are time-frequency transforms that are also dilation-invariant!
Examples of these are the Wigner and the Born—Jordan transforms.

§5. STFT (Short-Time Fourier Transform) and spectrogram

Spectrograms are currently the most commonly used time-frequency distributions.
Let us briefly describe them. Let us now view an analog signal v : R — C through a
window, which is another signal w : R — C. The w-windowed Fourier transform (or
STFT, the Short-Time Fourier Transform) for signal w is function G(u, w) : R x R — C,
defined by the formula

—

(5'1) g(u7w)(x777) = Uwi(ﬂ),

where w,(y) = w(y — ). In other words,
O(u,w)(w.m) = [ uly) wly -~ 2)" e 2 dy,
R

Here G refers to Gabor [12]. The natural idea here is that the Fourier transform u(n)
measures the “content” of the signal u at frequency n € R over all time instants,
whereas G(u,w)(x,n) measures the “content” of the signal u at time-frequency point
(z,1m) € R x R (when u is viewed through the window w). It is obviously appropriate to
choose w so that most of its time-frequency content is nearby (x,n) = (0,0), especially

w(z) ~ 0~ w(n) forlarge |z|,|n|.

To normalize energy, it is natural to require |w||? = 1.

Spectrogram (Sonogram). The w-spectrogram (related to the w-windowed Fourier
transform) for signal u : R — C is

(5.2) IG(u,w)]?> : R xR - RT.

Idea here is that |G(u,w)(x,n)[? > 0 is the “energy density” of signal v : R — C at the
time-frequency point (z,7) € R x R (when signal u is viewed through window w).
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Note on time-frequency visualizations. We shall later explain how to discretize
the time-frequency analysis. In the time-frequency pictures in the sequel computed with
Matlab, the time always runs on the horizontal axis from left to right, and the frequency
in the vertical axis from bottom to top; the time and frequency units do not matter
at the moment. All our visualized signals will be real-valued, so that the symmetric
time-frequency distributions for negative frequencies would be mirror images of the
positive frequencies: thus we cut away the negative frequency part of the picture. In the
spectrograms, the energy density is presented by gray-scale: the light gray corresponds
to zero density, and darker gray to higher positive density (and we reserve the whiter
shades of gray for the negative (sic!) energy densities).

Examples of spectrograms. Notice that the windowed Fourier transform and the
corresponding spectrogram heavily depend on the choice of window w! The following
spectrograms depict the same signal (male voice saying the word “Why”, extracted from
the signal from P. C. Hansen’s website [15]). First, here is the waveform of the signal:

Signal (word "Why’), sampling rate 4000 Hz
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Here is the first of the three spectrograms for the signal. It is able to hazily locate

frequencies, but not time-instants:
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Later we will see that the Born—Jordan distribution can perfectly localize both frequen-

cies and time-instants, also in practical cases like here.

Here is the second of the three spectrograms for the signal:
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In the second spectrogram picture, in the case of the medium-wide Gaussian window,
we have slightly increased intensity to enhance the visibility of the underlying fuzzy
grid-like pattern that will become sharp and clear with the Born—Jordan distribution.
Nevertheless, we emphasize that in any spectrogram, the information about the signal
is lost for good, due to too much of diffusion. Also, spectrograms fail to be time-local,
frequency-local, they do not have correct time nor frequency marginals, they are not
scale invariant. They are pointwise positive, though, should that comfort someone.

Here is the third of the three spectrograms for the signal:
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Spectrogram with a narrow Gaussian window
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In the picture above, we can see hazy localizations of sudden snaps. The second spec-
trogram was a sort of an obscure mixture of the first and the third spectrograms.

In these spectrograms for the same signal, the sampling rate is 4000 Hz, and we took 700
samples (attaching enough zeros to the both ends of the signal). On the vertical axis,
each numerical unit corresponds to 2000/700 = 20/7 Hz. In each of these spectrograms,
the time analysis window w is a Gaussian function z +— c¢; exp(—coz?): in the first
picture, this window is widest, and in the third picture the window is most narrow. A
wide window locates frequencies quite well, whereas a narrow window is more capable of
locating sudden transitions in the signal (like gnarly feature in the human voice, caused
by the glottis pulse).

Roughly speaking, the obscurity of spectrograms is due to both “arbitrary” choice of the
time-analysis window and “suffering” twice from the Heisenberg uncertainty principle
in Fourier analysis. For Born—-Jordan time-frequency distribution, we do not have to
choose any time-analysis window, and we shall suffer only once from the uncertainty
principle.

Example 5.1. Let §, be the Dirac delta at the time instant p € R, and let

ea : R = C, where e,(r) = 2™ How does the choice of the window w show
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|2 = and

= |w(p — )
1G(eq, w)(z,n)|* = |@W(a — n)|?, hinting that the spectrograms might look quite hazy.

up in the spectrograms for signals d,,e,? Simply, |G(d,, w)(z,n) |2

Example 5.2.  Suppose we know the windowed Fourier transform G(u,w) to-
gether with w having no zeroes. How do we find signal u? Just take the inverse Fourier
transform of n — G(u, w)(x,n), and do the easy arithmetic. However, the corresponding
2

spectrogram (z,n) — |G(u, w)(z,n)|* is unfortunately numerically not invertible.

§6. Ambiguity transform

The ambiguity transform (or Woodward’s radar ambiguity transform) of signals
u,v € .ZR)is x(u,v) : R x R = C, where

(6.1) x(u, 0) (&, y) = /Re_i%x'g u(z +y/2) v(r —y/2)" dz.

The ambiguity function (or the characteristic function) of signal w is then x[u] :=
x(u,u) : R x R — C, satisfying x[u](&y)* = x[ul(=§,—y). An application of the
Cauchy—Schwarz inequality gives

(6.2) Ix[ul (€ y)| < x[ul(0,0) = [Jull?,

and it is easy to see that

(6.3) Ix[u] (€, 9)| < x[u](0,0)

for all (&,y) # (0,0); this extends from the Schwartz test functions u € .#(R) to hold

—nt? (

for all finite-energy signals u € L?(IR). For instance, if u(t) = e so that u = u), we

have

Xlul(E,y) = % o mE /2

The ambiguity function was first used in radar detection by Philip Woodward, [31].
For instance, suppose we fire a short effectively narrow bandwidth signal ug at time 0
at an object, which moves with radial velocity vy (small compared to the speed ¢ of
light) at relatively short distance dy from us: for simplicity, think of a complex Gaussian
ug(z) = e_“xze_mm'"o, when wug is effectively concentrated nearby frequency 7. The
radar signal ug is reflected from the object back to us as signal u, with approximate time
lag yo := 2dg/c. At frequency 7, the corresponding Doppler shift is £ = —2nvg/c. With
& = —2mpvo/c, find (&, yo) (and thus (vg,dp) that we actually want) approximately
by maximizing the correlation

(& y) = (M ()T (y)uo, u1)l-
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Here the relation to the ambiguity function is the following: forgetting other distortions
assume that uy (z) ~ X e2™Coyg(z — yo) = A M (&)T (yo)uo(z) (for a constant M), so

(M ()T (y)uo, u1)| = |(M ()T (y)uo, A M (§o)T (yo)uo)|
= [ [x[uo](€§ — €0,y — o)
< Al x[10](0,0) = || [Juo .

§7. Wigner transform

Main properties of the Wigner distribution can be found e.g. in [8], [9], [11] and [14].
These properties are important, as the other Cohen class time-frequency distributions
can be regarded as convolution-smoothings of the Wigner distribution.

The Wigner transform W (u,v) of signals u,v is given by

(7.1) W(u,v)(z,n) = /}Re_i%y"7 u(x +y/2)v(x —y/2)* dy.

Clearly, this transform can be defined at least for signals u,v € (R), and it turns
out that W(u,v) : R x R — C is continuous for also u,v € L2(R). For tempered
distributions, treat the integrals in a weak sense, as usual. Now W{u] := W(u,u) is
called Wigner distribution of signal u. For instance, if u(t) = et (so that u = u), we
have

W (z, 1) = V2e 2@+,

Here is the discrete-time Wigner distribution for the same signal that was depicted by
the three different spectrograms in Section 5:
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200 "Why?": Discrete-time Wigner distribution
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This illustrates how sensitive the Wigner distribution is to noise: the signal here was still
rather well-behaving. To reduce the inherent interferences in the Wigner distribution,
we are going to do smoothing by convolution. However, convolution of two Wigner
distributions would lead back to the spectrograms, and we must eventually choose some
other method:
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Convolution of Wigner distributions. Spectrograms are actually obtained as
time-frequency convolutions Wv] * Wu] : R x R — R of signals v, u : R — C, because

Wlv] « Wlul(x,n) //W[’U] x—z,n—w)Wu|(z,w)dz dw
=[] [ermromve =zt yue -z -y
e 2T (2 4 t/2) u(z — t/2)* dt dy dz dw
B /R / BN y(w — 2+ y/2) v(e — 2 = /D) ulz +y/2) u(z — y/2)" dydz

_ / / 270N (0 s)u(e — £)* u(t) u(s)* dt ds
RJR

2
/ e 2T gy (2 — £)* w(t) dt
R
=% (u, w)(z,n)I%,

where the window is given by w(y) := v(—y). Already this hints that there are serious

problems with sharpness in spectrograms: as there is the Heisenberg uncertainty for
each of W[u] and W v], the time-frequency localization in spectrogram |4 (u,w)|? =
Wv] * Wlu| suffers doubly from the uncertainty. For instance, consider the energy-
normalized Gaussian window w(y) = v(—y) = e ™ /2 then we may think that W u)
is the initial spatial temperature distribution for a heat flow, and after a while we see
only the temperature distribution W [v] x Wu| from which the initial data cannot be

numerically recovered.

§ 8. Variants of Gabor transform

A Gabor transform of a signal u € L*(R) with respect to a window w € L?(R) could
arguably be ¢, (u,w) : R x R — C, where a € R and

ga(ua w)(xa 77) = <u7 M(n) T(J}) U(—CLJ} ' 77) w>L2(R)
- /R“(y) w(y — x)* e ETWTA N 4y,

Notice here the close kinship to the short-time Fourier transform! Let & := ¢, /5. Again,
intuitively, here signal u is gazed through the window M (n)T(z)w (or a variant), which
is located around (x,7n) in the phase space if the original signal w is located around
O = (0,0). For instance, when n = 1, w(z) = e~ would be a nice initial window
function for some ¢ € RT.

Why should the case a = 1/2 be especially interesting among the continuum of the
Gabor type transformations? As a first evidence, notice that

(8.1) Y (u, w)(z,n) = (u,o(z,n, 0)w>L2(R) .
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Moreover,
Go(u, w)(x,n) = (u, M (1) T(x) w) 2 (R),
G (f:9) (@ n) = (u,T(x) M(n) w) L2 (r)-
We shall learn more about the case a = 1/2 later. In any case, |9, (u,w)| = |4 (u, w)],

and a straight-forward calculation proves a Moyal-type equality

(82) <ga(u07wO)aga(ulawl»LZ(Rx]ﬁ) = <U07U1>L2(R) <w07wl>z2(R)'

Defining the a-Gabor distribution

(8.3) G, [u] =9, (u,u),
we obtain
(8.4) (Ga[u], Ga[10]) L2y = | (s 0) pory|

Some examples of Gabor distributions of tempered distributions:

Y [5500](5’77 n) = do(x) e—i27r:co-n’
Goleny) (2, m) = 6o(n) e T2 0,

Let us now deduce inversion formulas for the Gabor transforms. Since
/A 2PN G (u, w)(z,m) dn = /A / 2Py (Y (y — 2)* dy dy
R RJR
=u(p+az)w(p+ (a—1)2)",

by setting x = p +az and xg = p+ (a — 1)z, we get

(8.5) u(z) = (1/w(wo)*) /R el2r(l-a)ztazo)n g (y w)(z — zg,n) d.

One easily gets another inversion formula

u(@) = ||w] /R /R 27020 (0 _ 2V g, w) (2, ) d .

8§9. Variants of Wigner transform

The Wigner distribution and the Wigner transform originated in quantum me-
chanics (see [30, 20]). Loosely speaking, the Wigner disribution provides idealized
phase space pictures of signals. The a-Gabor transform ¥, (u, w)(x,n) is a “w-windowed
Fourier transform of u € L?(R)”. Correspondingly, the a-Wigner transform %, (u, w) =
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(F @.F Y9, (u,w) : R xR — C is a “phase space picture of u with respect to w”. Let
us describe this in detail: Recall the a-Gabor transform of u,w € L?(R),

Guww)avn) = [ ul)wly - o) e B0y,
R

The a-Wigner transform of u € L?*(R) with respect to w € L*(R) is the function
Weo(u,w) : R x R — C defined by

(9.1) Wo(u,w)(n,x) = ((35@}35_1)€%(u, w)) (n,x).

That is,

Wa(u, w) // TR FETEE G (u, w) (y, €) dy d€

/// —i2wy-m —|—127rac£ —1271'(t ay)-n () ( _y)*dtdyd£

_/Re 2Ty (2 + ay) w(z + (a — 1)y)* dy.

The (1/2)-Wigner transform gives the Wigner transform: let us denote W (u, w)(x,n) :=
W1 2(u, w)(n,x). Now there is the obvious symmetry in

92) W w)@,§) = [ B ute o+ y/2) ule —/2)" dy
Let the a-Wigner distribution of u € L*(R) be

(9.3) Wolu] = Wa(u,u) : R x R = C.

Noticing that (#,[u])* = #1_a[u], the Wigner distribution

(9.4 Wiyl

is a real-valued function on R x R. Notice also that

(9.5) /@%(u,wmx) dy = u(z) w(z)",

(9.6) /R Wa(u, w)(n, x) de = u(n) w(n)"

One easily obtains a Moyal-type equality

(9.7) <%(u07w0)7%(ulawlnm(@xn@) = <U07U1>L2(R) <w07w1>z2(]R)~

Especially,

(9.8) (Halu], Valw]) 2 @emy = |(ws w) |
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Examples:
Wo(u,w) (1, 2) = u(@) D(n)* =27,
P (u, w)(n, &) = U(n) w(z)* e,
In [11] it is shown that %4 jo[w] > 0 if and only if either w =0 or
w(z) = e—A:c2—|—b-:c+c,
where b,c € C and A > 0. Especially, if w(x) = e~ ™" then
(9.9) ipalul(n,) = V2e 2T,
Let us calculate
Ha M ()T (y)wl(n, )
- /Re_i%t'n M QT (y)w(x + at) (M(E)T (y)w(z + (a — 1)t))" dt

= / e 2 Q278 4y (2 — y + at) w(z — y + (a — 1)t)* dt
R

=Walw](n— &z —y)
=T(&,y) Walw](n, z).

Thus

(9.10) Al W MET (0] o ey = | (1 MEOT ()0 2y |
(9.11) = 1% (u, w)(y, ).

Now

(F & DWa(u,w)) (3. 2) = / 2T (u,w) (1, 2)

= /A / 2T W=Dy (2 4 at) w(z 4 (a — 1)t)* dtdy
R /R
=u(z +ay)w(z+ay —y)"

If we set here x = z + ay and x¢o = z + ay — y, we get the inversion formula
(9.12) u(z) = (1/w(xo)*) /A e2m@=20)E oy (4, w) (€, (1 — a)x + axg) dE.
R

Another inversion formula is obtained from the Gabor inversion:

u(@) = [l / / 2T (0 — ), (u,w) (2, ) dz dny
R JR
= w2 / / Q2T (1 ) / / e 2T 2TV (4 ) (€, ) dé dy dz dny
RJR RJR

= [Jw]| 7 /R/@w(x —2)e 2™y (u,w)(n, x — az) dE dz.
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Let us collect the intuition about the Wigner transform: for a signal u € L?(R), the
Wigner distribution %4 /5[u] : RxR — R is a continuous function which is the frequency-
time distribution of u, witnessed by e.g.

(913)  (Fpalul, V1o [M(T (2)w]) 2 gy = ‘ /R u(y) wy — ) e 2T dy

Here, we may think that M (n)T'(x)w is a window located at (x,7n) in the time-frequency
space, through which the signal u is looked at. An important window is w(z) =
(2mc)/4e~me* where ¢ € RT, for which

Wij2 M ()T (z)w](€, y) = 2~ 2r(ea e /e),

Here, larger ¢ gives better time resolution at the expense of frequency, and vice versa.
Pointwise values # /o[u](n, ) € R carry only limited meaning, the emphasis is on the
averages as in equation (9.13).

§10. What is Cohen’s class?

There is no commonly adopted definition for the Cohen class time-frequency dis-
tributions. Grochenig defines in [14] that a Cohen’s class time-frequency transform for
signals u, v is of the form

(10.1) Wy (u,v) =1« W(u,v),

for a tempered distribution ¢ € /(R x ]@) The corresponding time-frequency distri-
bution is then Wy [u] = Wy (u,u). We already discussed such Wy, in Section 3.

Now let (u,v) — P(u,v) € C be sesquilinear, for u, v in a dense subspace of L(R),
with Plu] := P(u,u) such that

(10.2) P[T(z)M(n)u] = T(x,n)Plu] and |P(u,v)(0,0)] < constant ||ul|||v||.

Here, P(u,v)(0,0) = (Au,v) for a bounded linear operator A : L?(R) — L?(R). Then
applying the Schwartz kernel theorem, Grochenig shows that P(u,v) = Wy (u,v) for
some ¢ € .'(R); also, there are ramifications of this result in [14]. It should be noted
that in the applications we most often encounter symmetric time-frequency transforms,
ie. P(u,v)(0,0) = (Au,v) = (u, Av), as then the energy density Plu] = P(u,u) is
real-valued.

However, while this generality of ¢ would have advantages, in most of the real-
life applications the distribution ¢ := Fi € &%’ (I@ x R) is typically even a bounded
function, and often smooth, though sometimes merely continuous: thus for this text,
let us assume simply the boundedness

(10.3) ¢ =Fip € L°(R x R).
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Actually, in practical examples often there are properties like |¢(€, y)| < ¢(0,0) = 1, but
we will come to the meaning of such extra properties later. We will use two notations
C? = W, for the Cohen class time-frequency transforms:

(10.4) C?(u,v) := Wy (u,v) = * W(u,v),

where ¢ = Fyp € L™ (I@ x R) is the symplectic Fourier transform of ¢ € /(R x I@)
Notice that [|C?u]|| < ||| Lo ||u|/?, as

1C? (u, v)ll = lléx(u, v)I| < l[@llze Ix(u, v)Il = I@llze [lul vl

Let us briefly justify the generic convolution form v x W (u,v) of the Cohen class:
Nice enough 7 : R x R — C defines a time-frequency transform (u,v) — ¥ * W(u,v),
where

v x W(u,v)(z,n)
//l/f (x—t,n—a) W(u,v)(t,a)dt da

:/@/R/Rv,[;(a:—t,n—a)e_‘2m'°‘u(t+a/2)v(t—a/2)*dadtda

:/R/RU(Q)U(Z)* |:/ei271'(z_y)-a P(x — y—;z,n —a)da| dydz.

Let us denote this previous innermost integral

L,z i= [ 0@ 105 0 - a)da,
R

For a time-frequency transform P,

P(u,v)(0,0) = (Au,v) //KAzy Yv(z)" dydz.
By the time-frequency invariance,
P(u,v)(x,n)=P(M_,T_zu, M_,T_,v)(0,0)
= [ ] Kaleo) (Mo Tcul) (T o)

//KA zy)uly + ) v(z +x) Y dy dz

// )* el2m(z— y)”KA(z—:c y —x)dydz.

From this and from L(z,y, z,7), we obtain

_y+z
2

eiQﬂ(z_y).n KA(Z —xy— CC) _ /\eiQTr(z—y)-a ¢(x ,n — a) da.
R
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Hence

Ka(a,b) = ﬁeiz”(“‘b)'<“‘") S22 —a)da = B(a+ba—b)

R 2

This shows that kernels K 4, ¥, 1) contain the same information!

§11. Symbols in -quantization

Ideally, a time-frequency distribution Wy[u| should act as an energy density of
a signal u in the time-frequency plane (phase-space) R x R. Any such energy density
then dictates its own corresponding symbol-to-operator quantization, giving the natural
linear signal processing operators for manipulating the signals in a desired manner: if
we choose our energy density badly, we shall get bad outcomes in our signal processing.

Let us briefly consider how to define linear operators on a Hilbert space H. Clearly,
linear A : H — H can be found by knowing the inner products (Au,v) € C for all
u,v € H. Actually, only (Au,u) € C (for all u € H) is enough — this can be found
from e.g. [22], but for the reader’s convenience we present a short proof here:

Theorem. Let A,B: H — H be linear. Then A = B if for allu € H

(Au,u) = (Bu,u).

Proof. Let C =A— B, u,ve H, A€ C. Now
0= X0 = XNC(u+ \v),u+ ) = |A*(Cu,v) + X\*{Cv,u).

Plug in A € {1,i} to get (Cu,v) =0. Thus A— B=C = 0. O

Quantizations. The Wigner time-frequency transform corresponds to the Weyl quan-
tization 0 — Aw,, defined by the duality

(11.1) (u, Aw,ov) L2(r) := (W (u,v), J)LQ(RX@),

leading to

(11.2) Awov(z) = / /Aei%(x_y)'" v(y) O'(x —2|— Y ,m)dndy.
R JR

More generally, in the i)-quantization, symbol ¢ : R x R—C gives rise to the pseudo-
differential operator AY, where

(11.3) (u, A%v) = (b x W(u,v),0).
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In the Wigner-Weyl case above, we had ¢ = (0,0, i.e. F¥(&,y) = ¢(§,y) = 1. Thinking
of the previous Theorem, the duality (11.3) in the special case (u, AYu) = (¢ * Wu], o)
captures the idea of A¥ being the natural operator corresponding to the time-frequency
weight function o, as ¢ * Wu| acts as an energy density.

1-quantization in terms of Weyl. How is the Weyl quantization connected to the
Y-quantization o — A¥? Now

(u, Afv) = (W (u,v), 0) = {(FY) x(u,0), Fo) = (x(u,v),¢*Fo) = (W(u,v), F~(¢"Fa)).
That is, AY = Ay, where the Weyl operator symbol is

T=F'(¢*Fo) :RxR — C.
Let us now consider some examples of i-quantizations:

Born—Jordan quantization. The Born—Jordan time-frequency transform (u,v)
Q(u,v) = C?(u,v) corresponds to the Born—Jordan quantization, where

(11.4) ¢, y) = sinc(€ - y).

This will be discussed in more detail soon. An alternative way of thinking the Born—
Jordan transform is finding the “arithmetic average” of the a-Wigner transforms. More
precisely,

(11.5)

Qu,v)(z,n) = /0 Wa(u,v)(n,z)da = /0 /Re_iQ”y"7 u(z + ay)v(x + (a — 1)y)* dy da.

This is the approach e.g. in [2] and [3].

Kohn—Nirenberg quantization. The Rihaczek time-frequency transform corre-
sponds to the Kohn—Nirenberg quantization. In this case, Fy(&,y) = (€, y) = ™Y,
leading to

(116)  Alo(z) = / [e12”<w—y>'"v(y>a(a:,mdndy= /Aeim'”@(n)a(wm)dn-
RJR R

The Kohn—Nirenberg quantization on various groups is studied in [24].

Feynman quantization. In the so-called symmetric Feynman quantization,

(11.7) A¥u(x) :/R/@eﬁﬂ(:c—y).nv(y) o(x,n) +o(y,n) dndy.

2
Here ¢(¢,y) = cos(nt - ).
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Anti-Wick quantization. In the similar fashion, as above, taking a spectrogram for
the time-frequency distribution, we obtain the corresponding i-quantization o — Af.
This is called the anti-Wick quantization, if the short-time Fourier transform for the
spectrogram had the normalized Gaussian z e~™"/2 a5 the window function, yield-
ing ¢(&,y) = e~ ™(EH+¥")/2 We could talk about anti-Wick quantization for other window
functions, too. Even though the trivial positivity of spectrograms guarantees the posi-
tivity of the corresponding quantization (i.e. positive symbols give positive operators),
anti-Wick quantization has plenty of bad properties in practise, as the spectrograms fail

to have many nice properties — this issue becomes clear in the sequel.

§12. Properties of different quantizations

Let us now consider properties of 1-quantizations in terms of time-frequency and
ambiguity kernels. The ambiguity kernel ¢ = (F ® .Z 1) is the symplectic Fourier
transform of the time-frequency kernel 1.

We could think that the value C?[u] = Wy[u](z,n) € C is an ”idealized energy
density of signal u at time-frequency (x,n) € R x R — however, single points (z,7) in
the phase-space do not have a physical meaning (think of the uncertainty principle, to
be discussed soon separately): only large-enough time-frequency areas, say greater than
1, are of interest. So, we should not expect an energy density to be pointwise positive
(by which we strictly speaking mean non-negative) but hopefully still real-valued; the
total energy should be positive.

Translation-modulation invariance. Within the Cohen class, translation-modulation
invariance (or time-frequency shift invariance) is guaranteed automatically:

(12.1) v=MEOTYu = Wyl]=T(y,)Wylu],

ie. if v(z) = 2™ Su(z —y) then Wy [v](x,n) = Wy [u](x —y,n—&). This corresponds to
the intuition that if we translate the signal in time-frequency, the corresponding energy
density should be likewise translated.

Scale invariance (dilation invariance). Time-frequency distribution u — W [u]
is scale invariant (or dilation invariant) if

(12.2) Wylol(z,n) = Wylu](Az,1/A)

whenever v(z) = D(A\)u(z) = A\/?u(A\x), where A > 0 (notice the energy conservation
|lv]|? = |Jul|?). This means that ¢(&,y) = f(£ - y) for some f : R — C (almost ev-
erywhere). Scale invariance means that A-speeding up the time results in the natural
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symplectic stretching of the time-frequency distribution, with the same A-factor. In
this sense, the choice of physical time or frequency units does not matter in case of
scale invariant time-frequency distributions. Physical dimensionless quantities, like the
time-frequency areas, should be scale invariant. Let us justify the condition for scale
invariance: Let v(z) = \/2u(\x). Here

Ww[v](f'?,n)=/R/ﬁei2”'5e_12”y'" $(&,y) x[v] (€, y) dE dy

:/ /A/ei27r(m—z)-£ o 12y (€, y)v(z+y/2) v(z — y/2)* dzdE dy
RJR JR

:/ /A/eimr((a:—z).&—y-n) (&Y AuN(z + y/2) u(A(z — y/2))*dz dE dy
RJR JR

:/ /A/emw(()\m—z).é—y-n/)\) ¢()\£’y//\) U(Z+y/2)u(z —y/2)* dz d¢ dy
RJR JR

= [ [ ) (06, /) M6, ) d€ .

For all A > 0 and for all u € L%(R), for this to be equal to
WylulOan/) = [ [ 20w g6 ) aful(e.n) dé

we must have ¢(AE, y/A) = ¢(&,y) for (almost) all (£,y) € R xR, so that o(&y) = f(&y)
for some f.

Realness. The Wigner distribution is real-valued even for complex-valued signals,
so that time-frequency distribution Wy [u] is real-valued whenever the time-frequency
kernel ¢ is real-valued. That is, the ambiguity kernel satisfies

This realness means that real-valued symbols o give symmetric operators, that is

(12.4) (u, A?@L%R) = (A%u, V) [2(R)-

Positivity. In this text, we shall not require the ”idealized energy density” Wy [u]
be pointwise positive; like said, time-frequency points (x,7) € R x R are not physically
meaningful. Of course, all spectrograms are positive, and so are their positively weighted
integral averages: these are the only positive distribution examples within the Cohen
class. However, such positive Cohen class distributions are not computationally sta-
bly invertible. And already Wigner observed that positive sesquilinear time-frequency
transforms fail to satisfy the following marginal properties for time and frequency:
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Time marginals. Time-frequency distribution u — W, [u] has correct time marginals
if

(12.5) /@Ww [l (2, m) dy = [u(@)]?,

which for continuous ¢ means that ¢(£,0) = 1 for all £ € R. In other words, the
energy density in time is the natural |u|?. On the level of the ¢-quantization o — Ay,
this means that frequency-independent symbols correspond to multiplication operators:
o(t,n) = (f®1)(t,n) = f(t) gives the multiplication operator u — fu, i.e.

(12.6) Ay reru(z) = f(o) u(x).

Frequency marginals. Time-frequency distribution v — Wy [u] has correct fre-
quency marginals if

(12.7) /R W lul (2, m) dz = [a(n) .

which for continuous ¢ means that ¢(0,y) = 1 for all y € R. In other words, the
energy density in frequency is the natural |@]?. On the level of the 1-quantization o —
Ay,o, this means that time-independent symbols correspond to convolution operators:
o(t,n) = g(n) gives the convolution operator u — Ay ,u = g * u, i.e.

(12.8) Apaogulr) = g+ ulx) = /R oz — ) uy) dy.

Conservation of energy. Time-frequency distribution u — Wy [u] conserves energy
if

(12.9) _Wylul(z, ) d(z, ) = [[ul?,

RxR
which for continuous ¢ means that ¢(0,0) = 1. Especially, this is guaranteed whenever
having time marginals or frequency marginals.

Uncertainty principle. Uncertainty principle in quantum mechanics refers to the
fundamental impossibility of measuring certain physical quantities simultaneously with
arbitrary precision. Uncertainty principle in Fourier analysis refers to simultaneous

non-localization of a signal and its Fourier transform, often expressed as an inequality
like

(12.10) ol < 4 [ |u<x>|2dx)1/2 ([ |a<n>|2dn)1/2,
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which can be shown by integrating by parts and applying the Cauchy—Schwarz inequal-
ity, noticing that the Fourier transform preserves the energy. In time-frequency analysis,
if we want to have both time marginals and frequency marginals (recall that this means
#(€,0) =1 = ¢(0,y) for all £, y), this amounts to that the time-frequency distributions
of non-zero signals cannot essentially be concentrated in small time-frequency regions.

Time-locality. Time-frequency distribution u — Wy [u] is time-local if the supporting
intervals are respected as follows:

(12.11) supp(Wy[u]) C [a,b] x R whenever supp(u) C [a, b]

for all signals u. This means that the time-lag kernel (%! ® I)¢ satisfies equation
(Z 1@ o(z,y) = 0 whenever |y| < 2|x|.

Let us justify the condition for time-locality. Let ¢ = F : R x R — C be the
ambiguity kernel corresponding to the time-frequency kernel 1) : R x R — C. Here

Wlul(an) = [ [ e2m€eBmm e ) xlul(€.) dé dy
- / / / Q2T E TN (¢, y) e BT u(z + y/2) u(z — y/2)" dzdE dy
R JR JR
N / / e PN o(x — z,y) u(z + y/2) u(z — y/2)* dz dy,
R JR
where ¢ : R x R — C is the time-lag kernel,

((927_1 & I)¢($ - Zvy) = QO(Q? - Zvy)'

Here z + y/2 € [a,b] #  means |z — z| > |y|/2. From this we obtain the condition for
the time-locality:

o(x —z,y) =0 whenever |z —z| > |y|/2.

Frequency-locality (dual property to time-locality). Time-frequency distribution
u — Wylu| is frequency-local if the supporting intervals are respected as follows:

(12.12) supp(Wylu]) C R X [o, B8] whenever supp(u) C [a, f]

for all signals u. This means that the doppler-frequency kernel (I ® .%)¢ satisfies
equation (I ® .F)¢(&,n) = 0 whenever [£] < 2|n|.

Invertibility. Time-frequency distribution u — Wy[u] is invertible if [u] (i.e. sig-
nal modulo unimodular constants) can be recovered back from Wy [u]. Notice that
FWylu] = ¢ x[u], where the symplectic Fourier transform F' is invertible, and [u] can
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clearly be recovered from x[u]. In part of literature, it is erraneously said that the in-
vertibility then means that ¢ does not vanish; but as Cohen in [8] credits Albert Nuttall
for showing that [u] can be recovered if ¢ has nowhere dense zero set (i.e. there are no
open sets where ¢ would vanish) — then the ratio (FWy[u](&,y))/¢(€,y) can be found
by taking limits at zeros of ¢. However, this statement has to be refined a bit: First,
each such a zero point has to be of finite order. Second, ¢ should not rapidly decrease
at infinity: this actually excludes e.g. the so-called Choi-Williams distributions [6], for
which ¢(§,y) = e~ (€¥’/X for constants A > 0 — here ¢ never vanishes, but yet the
division by ¢ is numerically unstable (just like the inverse heat equation is ill-posed in
the sense of Hadamard: there the problem is the frequency-domain division by rapidly
decreasing Gaussians).

Unitarity. Time-frequency distribution u — C?[u] = W, [u] is unitary if it satisfies
Moyal’s formula

(12.13) Wy (u,0), Wy (,9)) 2y = (s ) 2() (0, 9) L2 (R) -

(originally for the Wigner distribution by José Enrique Moyal in [20]). The unitarity
is equivalent to that |¢p(&,y)| = 1 for almost every (£,y) € R x R, see e.g. [17] or
[14]. Certainly, Moyal’s formula is satisfied by the Wigner distribution (corresponding
to the Weyl pseudo-differential quantization). Also, Moyal’s formula is satisfied by
the Rihaczek transform [21] (corresponding to the Kohn—Nirenberg pseudo-differential
quantization), where ¢ (&, y) = e™Y, yielding

(12.14) C?(u,v)(x,n) = e 2™ y(x) B(n)*.

However, according to Cohen and Janssen [8], Moyal’s formula might not be necessary
for signal analysis, and it is not really used in quantum mechanics.

Other properties. In the literature, there are many other more or less desirable
properties for time-frequency distributions, see e.g. [8] and [9]. Let us still mention
reduced interference property, that for the scale invariant case ¢(&,y) = f(£ - y) requires
that |tl|i_r>n f(t) = 0. Also, the nature of the zeroes of f plays a role here.

0o

§13. Born—Jordan characterization

Which time-frequency transform @) = ¢ * W to choose? We shall require:
(1) @ is scale invariant.
(2) Q is time-local.
(3) @ maps “comb-to-grid”.
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More precisely, these conditions mean:
(1) If v(z) = VAu(lz) then Q[v](z, 1) = Qu](Ax,n/)), where X > 0.
(2) 1If supp(u) C [a,b] then supp(Q[u]) C [a, b] x R.
(3) Qz]=02®14+1®5z-1®1.

Notice that condition (3) here (Dirac delta comb-to-grid) is justified by

z(x) = dk(x)

kEZ

— E :eiQka'

kEZ

Spectrograms always violate (1), (2) and (3). We then obtain the following:

Theorem. Scale invariance, time-locality and “comb-to-grid” property are necessary
and sufficient to characterize the Born—Jordan distribution @) in Cohen’s class.

Moreover, Born—Jordan distribution is R-valued, is stably invertible (mod unimod-
ular constants), is frequency-local, preserves energy, has correct marginals both in time
and in frequency, satisfies group delay and instantaneous frequency properties, is easy
to discretize, and has same computational complexity as spectrograms do.

However, Born—Jordan transform is not unitary (this is actually really good), and
not causal, and the corresponding distributions are not positive.

Born—Jordan characterization, proof idea: Now we have

(7 @ F (W Wl)(&y) = o(& y) x[ul(& ).

and we have to show that the ambiguity kernel ¢ = (F ®@ .F 1)y satisfies ¢(&,y) =
sinc(§ - y). The ambiguity function x[u] = (F @ F )W |u] is given by

x[ul(€,y) = /R e Py (w4 y/2) u(z — y/2)" d.

2
— T SO

Gaussian signals have Gaussian ambiguity functions: for example, if u(z) = e
that @ = u, then x[u](&,y) = 27 1/2e 7 +v")/2,
First, the dilation-invariance: if v(z) = vV Au(Az) (where A > 0) then W [v](z,7) =

¥ * Wlu](Az,n/A). This means

(&, y) = P -y)

for some tempered distribution ¢ € ./ (R).
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Second, the time-locality: if supp(u) C [a,b] then supp(y * Wu]) C [a,b] x R.
We see that ¢ must be supported in [—1/2,1/2]. Especially, ¢ extends to an analytic
function @ : C — C, by Schwartz’s Paley—Wiener Theorem [25].

Third, the Dirac comb-to-grid property

VW] =0z014+10;,-1®1

says that
¢ x[0z] = 6z ® o + do ® 6z — Jo @ do,
so that especially
R 1 if k=0,
p(k) = _
0 if keZ\{0}.

Notice that sinc-function has these same values on 7Z, with first order zero at each
k € Z\ {0}. Hence u = @/sinc : C — C is an analytic function.
Finally, o = u* 1[_1 /2 1/9), yielding

Zgox—i-k Z/

keZ kez” [—1/2,1/2]

(e + k- y)dy—/R (a:)dx:ﬂ(O):Siigz())):l

for almost every x € R. Remembering that ¢ is supported on the unit interval
[—1/2,1/2], we see that ¢(z) =1 for almost every x € [—1/2,1/2]. Thus we obtain

. 1z
B(Ey) = / e TV o) de = / eIV dy = sine(€ - y),
R —1/2

and hence ¥ x Wu] = Q[u]: we end up with the Born-Jordan distribution.

Remark. There are infinitely many Cohen class time-frequency distributions for
which exactly two out of conditions (1), (2), (3) would hold.

§14. Born—Jordan transform

The Born—Jordan time-frequency transform Q(u,v) : R x R — C of Schwartz test
functions u,v € . (R) is defined by

. 1 x+y/2
(14.1) Q(u,v)(x,n) = / e 1AMy _ / u(t+y/2)v(t —y/2)* dtdy.
R Y Jz—y/2
Alternatively, Q(u,v) = C?®(u,v) = ¢ * W (u,v), where Fy(£,y) = ¢(&,y) = sinc(€ - ).
Translating, we may also write the integral transform as

Q(u,v)(z,n) = / o 12Ty 1
R

Tty 1
?J/x u(z)v(z —y) dzdy:/o Wo(u,v)(n, ) da.
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The Born-Jordan time-frequency distribution for signal u : R — C is
(14.2) Qu] == Q(u,u) : R x R — R,
Interpretation is that Q[u(x,n) € R is the “energy density” of signal u : R — C at the

time-frequency point (z,7) € R x R.

Example. The Fourier transform of a function can rarely be found explicitly, and this
is the case also for the Born—Jordan transform. Now let us consider the Born—Jordan

transform of u at = = 0, where u(t) := e/, Then

—i27y-n 1 vy *
e — u(t) u(t —y)* dtdy
R T

Y

x=0 i 1 Y
= / o—izmyn 1 / o1t o—1t=vl 1.y
R YJo

— /e—l%y-ne—lyl dy
R

= (1+(2m)*)~.

Qlu](x,n)

Boundedness of density. For all u,v € L?(R), the Wigner transform has bound

(14.3) (W (w, v)(z,n)| < 2[ull [[o].

By the shift-invariance, it is enough to show this boundedness for (x,n) = (0,0). Here

/ u(z)v(—z)*dz
R

For the Born—Jordan transform Q(u,v),

(14.4) |Q(u, v) (@, n)| < 7 [[ull [[v]]

for all (z,n) € R x R. Especially, the Born—Jordan energy density is bounded by

w(z):=v(—%)

W (u,v)(0,0)] =2 2 [(u, w)| < 2|[ul [lv].

1Qu]||L~ < 7 |lul|?>. By the time-frequency shift-invariance, it is enough to check this
for Q(u,v)(0,0). We shall see that Q(u,v)(0,0) = (Au,v), where A : L?(R) — L?(R) is
a self-adjoint (symmetric) operator. Let us find this operator:

z/2
Q(u,v)(O,O)z/R%/_ /2u(t+z/2)v(t—z/2)*dtdz

:/ / Ka(,y)u(y)v(e) dedy = (Au,v),
R JR

where the Schwartz kernel

lv —y|™t if 2y <0,

KA(CE',y) - .
0 if xy > 0.
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Thus

(Au,v) = //KAxy Yo(x)* dydx

:/ / —y_ dyda:—l—/oo/O —“(y)f(x)* dy de
/ / dydx—i—/ / Cl?-l—y dydx.

From this, applying the Hilbert integral inequality

aan) [ [T gy ([ pmeac) ([T owra)

denoting u = u; + us and v = vy + v, where

() u(x) for x >0, () v(z) for x >0,
U\r) = v1(x) =
0 for x < 0, 0 for x < 0,

we get
(14.5)
[(Au, v)] < fluf| foal] + 7 [Jua [ loa]] < 7 [[ull o],

where the last inequality followed as |Ju|? = ||u1||* + |Juz||* and ||v]|* = ||v1]|* + ||Jvz2||*.

Born—Jordan and Hilbert transforms. Let Hu be the Hilbert transform of u, i.e.
the principal value integral

1 1
Hu(x) = p.v. —/ Mdy = — lim uy) dy.
TIJRY —T TO0<e=0Jjy>e Y — 2

For v € L'(R), define S[u] € L'(R) by

St = [ uyute - )" a.
Here [|S[u]]|z1 < |Jul|2., and we have
Qlul(x,n) = = H(S[M (n)u])(z)-

Inversion formula. It is obvious that the Cohen class time-frequency distributions
lose a bit information about signals. Namely, already the Wigner distribution is insen-
sitive to the global phase of the signal: if A € C then W[\u] = |A\|? W[u]. This is not an
essential issue, however. In quantum mechanics, wave functions u are identified modulo
unimodular constants A. For the real-valued signals (such as in acoustics), the only uni-
modular possibilities are A = 41 and A = —1, and here +u and —u are indistinguishable
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by ear: it does not matter to turn the sound wave upside down. Born—Jordan picture
Q[u] gives u modulo unimodular constants:

Qlul(x,n) = (I @ F)Ru(x,n),
where Born—Jordan autocorrelation R[u| is given by

Rlu)(z,y) = (&7 "Qlul(x,y),

Rlu)(2,9) =5 u(x)[2.

For smooth real u, u(x) # 0 (one fixed z),

u(e +h) = 5" 0y R[u](x — kh, ).
u(x) —

The reader may write out the inversion formula in the complex-valued case.

Example 14.1.  Spectrograms become fuzzy (losing information) thanks to dou-
bly suffering from the Heisenberg uncertainty, as spectrograms are convolution of two
Wigner distributions. Also, clarity of spectrograms is inferior partly because of choosing
a time-analysis window, but again this is not a problem for Born—Jordan distribution:
there is no window to choose. In the following Born—Jordan pictures, with the familiar
signal of a man speaking the word “Why?” (excerpt from [15]), the horizontal lines
represent “whistling sounds”, whereas the vertical lines are “snapping sounds”. Again,
the gray-scale colors correspond to the energy density: darker gray means higher posi-
tive density, and lighter gray to negative densities! The total energy is naturally always
non-negative.



BORN—JORDAN TIME-FREQUENCY ANALYSIS 149

"Why?": Discrete-time Born-Jordan distribution
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Just above, in the first of these pictures there was the discrete-time Born—Jordan distri-
bution, and in the second picture we presented the fully periodized discrete Born—Jordan

distribution:
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From a numerical point of view, it requires as much effort to compute any spectrogram
or Born—Jordan distribution (or basically other Cohen class time-frequency distribu-
tions, should one want to do so). In the sequel, the fine resolution of Born—-Jordan
distribution enables designing sharp time-frequency operations on signals. Notice also
that signal u can be stably recovered (modulo unimodular constant) from its Born—
Jordan distribution Q[u]: for any constant A € C it holds that Q[Au] = |A*Q[u], but
from Q[u] we can recover Au for some constant A € C for which |A] =1 (that is, in the
case of a real signal u, we shall recover either +u or —u) — this loss of information
suffices in practise.

Recalling the well-known properties of Born—Jordan. So, Born—Jordan trans-
form is a symmetric time-frequency transform: it is easy to see that Q[u] is real-valued
even for complex valued u. Also the time and frequency shifts work as they should: if

v(z) :=ulzr —y) and w(z) =™ y(x),
then

Q](x,n) = Qlul(z —y,n),
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Notice that the Dirac delta (respectively complex exponential) distributions have ver-
tical (respectively horizontal) Dirac delta lines as their Born—Jordan distributions:

Q0o |(, ) = 05y ()
Q[eno](x, 1) =0y ()

where e, (z) := el2m@ 10 Furthermore, the simple interference behaviour is examplified
by the following: if o < 3, then

Y
Y

1 [a,B] (77)

Qeq + pepl(x,m) = [M?0a(n) + |1l*65(n) +2Re (A p* ea—p(x)) o
where A\, u € C are constants — namely, here the “interference”

1[@,5] (77)
08—«

is uniformly spread in the wide frequency strip [a, 8], but nowhere else. Let us put

2Re (Apr* carp())

strong emphasis on these two facts: first, thanks to this confinement to the [a, (] strip,
this time-frequency transform is frequency-local (Fourier-dual to time-local) — second,
the uniform spread to a wide strip guarantees good cancellation of oscillations in interfer-
ences of complicated signals. For the Born—Jordan transform, the marginal distributions
are natural:

4QM@MM=WWR
[@Mmmm=MM?
R

Hence, the energy is obtained from

/@/RQ[u](xm)dwdn = [|ul?.

Qlu)(n, z) = Qlu](—z,n)

suggests that the Fourier transform turns the time-frequency plane by 90 degrees (that

Property

is, m/2 radians). Even though this follows easily from ¢(&,y) = sinc(€ - y), let us verify
this by a direct calculation:

Proposition. For Born—Jordan transform, Fourier transform turns the time-frequency
plane by the right angle: more precisely,

(146) Q(ﬂ, 6)(777x) = Q(uav)(_xan)'

Especially, Q[u](n, z) = Qu](—x,n).
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Proof. Here,

Q(u,v)(n, x)
_iome. 1 77-1—5/2/\ N .
z/Ae e C'3—/ u(r +&/2)v(r —§£/2)"drd¢
R £/2
1 [nTE/2 . .
/ Simed / / / u(a) v(b)* e 2T (THE/2) @20 (TE/2) qg db dr dE.
R ¢/2 JRJR

By change (a,b) — (t +y/2,t — y/2) of variables, we get
Q(w,v)(n, v)

. 1 [nte/2 .
= / e i2mwE / / u(t+y/2)v(t —y/2)* e 12m(t-E+TY) gy dy dr d€.
R € Jy-¢/2

/ —i27wx-& 1 / —127r(t~§—|—7'-y) dr d£

n—
1 +£/2
:/ —127T(£U—|—t) _/ —127TT-y deg
R § 5/2

Here

R i2my - €
_ —i27ry-ni1 (t)
=¢€ Y] [—z—|yl/2,—z+]y|/2]\Y)>

where 1, ) is the characteristic function of interval [a, b] (for the present discussion, it
does not matter what happens in sets of measure zero, e.g. whether we consider open
or closed intervals). This amounts to

. 1 —x+y/2
Q(u,v)(n,z) = / e i2myn / u(t+y/2)v(t —y/2)" dtdy
R YJz—y/2
=Q(u,v)(—z,n)
proving the result. O

A conjugate bilinear time-frequency transformation. For u,v € .7 (R), let us
define B(u,v) : R x R — C by

B(u,v)(x,n) = /j}o /_Zo U(w) ™ y(1)* dw dt.

Then it is easy to show that

(14.7) B:.ZR)x.Z[R) = L*NC®R x R),
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and that this also extends to a conjugate bilinear mapping
(14.8) B:L*R) x L*(R) = L N C(R x R).

Let us also denote Blu] := B(u,u).

Proposition. Born-Jordan distribution Q[u] = Q(u,u) is related to Blu] by

(14.9) Q[u] = 47 Im(Blu]).

Proof. The mixed partial derivatives of the Born—-Jordan distribution Q[u] give

. x—i—y
0,0 Qut) () = / (—i2ﬂy)$ / u(t) ult — y)* dt dy

= —i27r/ e YN [y + y) u(z)* — u(z) u(z —y)*] dy
R
= 4 Im (@(n) 12T u(x)*)
=47 Im (0,0, Blu|(z, 1)) .
From this, Q[u] = 47 Im(B[u]) for all u € ¥ (R) follows, as both Q[u| and Blu| vanish
when x and 7 tend to —oo. O
Many old known results like continuity @ : L2(R) — L?NC(R x R) are now obvious

by the properties of u — Blu]. One of the benefits of u — Blu| is that it gives a better
understanding of how Born—Jordan distribution behaves with respect to differentiation:

(14.10) B[u'](z,n) = |(2m)* +i27n % Blu)(z,n).

Proposition. Let u € L*(R) have support in [a,b]. Then

(z,1) = Qul(z,n)

is supported in [a,b] x R, is C**! at x if u € C* at x, is C™ in 1.

Proof. The support property is just the time-locality, which could also be verified
by a direct calculation. The infinite smoothness in the frequency variable follows, since
by the Paley—Wiener Theorem, the Fourier transform of a compactly supported square-
integrable function is analytic. Finally, from

0,05 Qi (2, m) = —i2m / 27N O [ 1 y) ula)” — ulz) ulz — y)*] dy
R
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we see that there is a gain of one extra degree of smoothness in time. O

§15. Born—-Jordan quantization

In the Born—-Jordan quantization ¢ — A,, the Born—Jordan pseudo-differential
operator A = A, : ./ (R) — Y (R) with symbol ¢ : R x R — C is defined by the
L2-duality

(15.1) <U7AU>L2(]R) = <Q(uav)70>L2(Rx@)'
Here formally
(15.2) /KA z,y) u(y) dy,
where the Schwartz kernel K 4 formally satisfies
1 Y .
(15.3) Ky(z,y) = / /e‘%(m_y)'”a(t, n) dn dt.
Yy—2Jz JR

Ay is a B/(zm—Jordan localization operator if the/z\ symbol ¢ is the characteristic function
1p : R xR — R of a nice enough set £ C R x R. Then the spreading representation is
T RxR—C

where
(& y) =sinc(€ - y) F1p(&,y) = sinc(€ - y) (F ® F~1)1p(&,y),

and its symplectic inverse Fourier transform \ := F~ 'y = (F 1 @ F)u.
A time-frequency symbol is a nice enough function ¢ : R x R — C. Our next
task is to design integral operator A, such that we obtain “best possible Born—Jordan

approximation”
QlAsv](x,n) ~ o(z,n) Qlv](x,n)
for “all” signals v at all time-frequencies (x,7) € R X R. Operator A, is defined by

formula

(15.4) (u, Agv) := (Q(u,v), 7)

for signals u, v € L?(R) (the L?-inner product on the left for signals in time, the L*-inner
product on the right for functions in time-frequency). Here

(u, Ayv) = ,0)

//qu )(z,m)o(z,m)* dzdn

=L Ly /1 u(ﬂ%)v(iﬁ ) diduwo(z,n)" dz dy

[l o |

y
/ o(z,n)dzdydn| dz.
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Hence

(15.5) Ago(w) = [ [ &2ty afa, o) dydn,

R JR
where amplitude a : R X R — C is defined by a(x,x,n) := o(z,n) and for case x # y as
follows:
1 Y

15.6 = dz.

(15.6) @) = —— [ otz
We obtain

Aqu(z) = /R K4, (2,y) u(y) dy,

where nice enough integral operator A, has kernel function K 4, : R X R—C satisfying

Ky, (z,z) = /Aa(m,n) dn, and in case of z # y:
R

1 Y :
(15.7) Ka, (z,y) = = / /A 2@V 52 ) dndz.
- r JR

Example 15.1.  The following picture shows the discrete-time Born—-Jordan dis-
tribution Q[u] for the noise u generated by the rand command in Matlab:

Discrete—time Born-Jordan distribution
iy HI 7R o B HiaE W lireE i Bl
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I i

il BT

200 400 600 800 1000 1200 1400 1600 1800 2000
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Now, let us choose the time-frequency symbol o : R x R — C so that o(xz,n) = 0 inside
a certain time-frequency rectangle, in whose complement o(z,n) = 1. Then the filtered

signal A,u has the following Born—Jordan distribution Q[Asu]:

Discrete—time Born-Jordan distribution

2000
1800 H

1600

i
e |

200 40 600 800 1000 1200 1400 1600 1800 2000

The chosen original rectangle is clearly visible in the picture above. For comparison,

here is a Gaussian spectrogram corresponding to the previous Born—Jordan distribution:
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Spectrogram with a Gaussian window
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Example 15.2.  Let us assume the time-invariance o(x,n) = g(n) for all (z,n) €
R x R. Of course, then A,u = g % u, because

. 1 Y
) = / / e 2Ty () / g9(n)dzdydn
_ e

// 27@=y)1 4, () §(n) dy dn

= [t an = geute)

R

Example 15.3. Let us assume the frequency-invariance o(x,n) = f(x) for all
(z,m) € R x R. Then the amplitude a(x,y,n) = b(x,y), so that A,u = fu, because

// i2m(z—y)n ,, (y)b(z,y)dydn
b(r,z) = f(z)u(x).

Example 15.4. It is possible to compute fast in the special case 0 = f ® ¢:
Suppose o(t,n) = f(t) g(n) is “nice enough”. Let
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for some p € R, and v(2) := —g(z)/z (for z # 0). Then

x):/@/Rei%(w_y)'"u(y)y%x/: o(t,n)dtdydn
_ /R [% / ") dt] u(y) dy

=vx* (Pu)(z) — ¢(x)(v*u)(x)
= [CU,M‘P]u(x')v

where
Cyu=vx*u, Mgu(x)="(x)u(x).

In discretized computations, multiplications are naturally fast, but so are the convo-
lutions thanks to the fast Fourier transform. Thereby computing A,u is fast in this

case.

Non-injectivity. Let 0 # g € .(R) vanish in a neighborhood of the origin: g(z) =0
when z ~ 0. Define the non-zero symbol o : R x R — C by

o(t,n) = / e 12mEm G127t/ g(5) 2.
R

Then the Schwartz kernel K4 of the Born—Jordan operator A = A, vanishes nearby
the (x,y)-diagonal, because

L
_aj/ [\el2ﬂ(az—y)'no—(t7n)dndt

/ // 2w (x— y)ne i2mzm 127rt/z ( )dZdndt
y—x

— / 127rt/(ac y) dtg(:c - y)
y — T

Ka(z,y)=

where g(x —y) = 0 when z = y. If x # y, we have K(z,y) = 0, because

i27 — i2m — —i2m
b / Y entfay) gp - O Y — 2T et LT
Yy—x

127 127

So here A, = 0: thereby the Born—-Jordan quantization is not injective.

Born—Jordan singular integral operators. For Born—Jordan operator A,, the
Schwartz distribution kernel K = K 4_ is given by

y .
= ! / / 2@V 5 (¢ ) dn dt.
Yy—r Jr JR

K(x
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Here operator A, is symmetric if o real-valued. Operator A, preserves real-valued
signals if

Vt,n: o(t,n)* =o(t,—n).
If o is smooth and compactly supported then K is smooth and rapidly decaying away
from the z = y diagonal:

(y — )00 0) K (x,y) = 050] / / 2@ (1270,) o (tz + (1 — 7)y, n) dndr.

Actually K is smooth and rapidly decaying away from the x = y diagonal if o €
s (R x R), where p > 0.

Boundedness properties. Let us consider L?-boundedness issues for the Born—
Jordan quantization o + A,. Let ||A,| denote the L?-operator norm
14| 2522 = sup { | Aoull - u € L*(R), [u] < 1}.

Recall that in the Born—Jordan quantization, we have

) Y
T) = /A / elz”“”‘”"’ﬂ(y)L / o(t,n)dtdydn.
R JR Yy—x Jg

Smoothness of o not necessary for boundedness A, : L?(R) — L?(R): For instance, if
o(x,n) = f(x)g(n) where f is continuous bounded and g > 0 integrable then

[As | < llollze

40 = [| fote-n 2 [
S||f||%oo/ Ug(x—y) |U(y)|dy]2dx

<117 NGl T e llulZ:

= llollze ull®.

here

2
y)dy| dz

In general, as Ay = ARe(o) +1Amm(s) and (A5)* = Ao, it suffices to study boundedness
properties in the case of symmetric operators A, (i.e. real-valued symbols o). For
symmetric A,,
[Asll= sup  [(u, Asu)l
uel?: [Jul|<1

= sup  [(Qu],0)]|

wel?: ||ul|<1

< sup  [Q][x llollx
weL?: fluf<1
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where X is the dual of a Banach space X. For instance, X = L?(R) gives boundedness,
if o € L?(R x @), in this case, actually A, is even a Hilbert—Schmidt operator with
|Acllrs < |lo]|r2: especially, compactly supported essentially bounded symbols o give
rise to Hilbert—Schmidt operators A, on L?(IR). An open problem is whether X = L!(R)
would do: does ||Q[u]]|z: < Cjul|?? Then namely ||A,|| < C|lo||z~ would hold.

§16. Comparing Born—Jordan to Wigner

How do Born—Jordan and Wigner time-frequency transforms differ? Remember the
characterization of the Born—Jordan energy density u — Q[ul:
(1) Q@ is scale invariant.
(2) @ is time-local.
(3) @ maps “comb-to-grid”:

Q[5z]=5z®1+1®5z—1®1.

What are the corresponding properties for the Wigner energy density u +— Wu]?
(1) W is scale invariant.
(2’) W is time-local.
(3") Wléz] =0z ® 6z + 074172 ® 0z + 0z ® dz41/2 — 074172 ® Oz41/2

=07/2 ® 772 — 074172 ® 07412

Apparently, conditions (3) and (3’) are quite different. It is important to notice that
spectrograms have none of these properties (no scale invariance, no time-locality, no
comb-to-grid, ...).

Let e, (z) = 2™, For a < 3,

a+p

Wikea + pep)(z,n) = IN*da(n) + [1[*3p(n) + 2Re (A" ea—p(2)) do(n — —5—),
QlAea + pepl(z,n) = A0 (n) + |1?65(n) + 2Re (A p* €a—p(x)) 1oz (n)/(B — a).

The interference terms here hint that there is basically no hope for the Wigner distribu-
tion to cancel interferences, whereas the Born—Jordan distribution uniformly smooths
out the interference to a low-amplitude oscillation in a wide time-frequency strip.

Let u(x) = ei2mwe®/2 That is, u : R — C is a linear chirp signal having instanta-
neous frequency wx at time x € R. Then

Wlu](z,n) = do(n — wz),
Q[ul(z,n) =v(n — wx),
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where v(y) = sinc(wy?), i.e. for y # 0

_ sin(rwy?)
U(y) - 7Twy2

While Q[u] is not a sharp line here, it is still quite well concentrated.
Amplitude a : R X R x R — C defines operator Op(a) by

Op(a)u(w) := /@ /R 2@ My (y) a(z, y, ) dy i,
For instance,
X" D" X u(z) = /@ /R e2m @) gy () (2"~ gt dy diy,
where “Heisenberg commutator” [D, X] = (i27) 1,
Xu(z) = zu(x), Du(z) = (i2r) o' (z).

From symbol o : R x R— C, we get (Weyl-)Wigner amplitude

r+y
2

a=aww(z,y,m) = o 1)

and Born—Jordan amplitude

1 Yy
a=aps(z,y,n) = y—_x/w o(t,n)dt.

In reasonable quantizations, polynomial symbols should correspond to differential op-
erators; especially, symbol (¢,7n) — ¢™ should correspond to the multiplication operator
u — X"u for X"u(x) := 2" u(x), and symbol (¢,n) — n™ should correspond to the
differential operator u + D™u where D = (i27) 19 for derivative Ou = u'.

Let o(t,n) = t"n™ with m,n € {0,1,2,3,---}. Then we have amplitudes

z+y\" 0 oml =\ .
U«WW(xayﬂ?):(T) mo=n 272(£)$ o,

£=0
1 v 1 < 0
aBJ(x,y,n): (Tx/ tndt> nm: mn_—I—len— y

— roughly speaking, this states that

xy # yx for Weyl — Wigner,

xy ~ yx for Born — Jordan.
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Let us show that
Op(aww) # Op(apy) <= m,n > 2.

Write 0 := 0/0x. Let m,n € Ng. Then to the symbol (¢,7) — t" 1™ corresponds the
operator

chmﬁ X ﬁamXﬁ
£=0

0 k=0

(cnmm >)( )xont

{chmgé(k) c0<k< n}

=0
uniquely determines coefficients ¢p.me € C.

The data

Here, ¢pme = 1/(n + 1) for the Born—Jordan quantization, and ¢y = 27" ('l}) for
the Weyl quantization. Let us check when the Born-Jordan and Weyl quantizations
give different operators for the same polynomial symbol (t,7) — t™ n". Notice that for
Born—Jordan

1 < 1 < 1 1 1 1
o(R) — ARt — 1 N+ — (k)
n—i—l; n+1;k+1 ¢ n+1k+1(n+) k1l

and for Weyl

EE O 2502

1/ d\"
— (= n = (k) n—k
on (dx) (x+1) —n'"(z +1) .
=1 -
=27 Fpk)
k—1
Here, k+1 = 2% if and only if k € {0,1} (clearly, if & > 2 then 2% = Z 241> Ek+1).
§=0

§17. Discretizing Born—Jordan transform

From the continuous time x € R, we can move to numerical computation by sam-
pling and periodizing (in whichever order):

RPG R 7,
sample J/ J/sample

7/NZ.

pemodzze
A
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At each intermediate level, we have naturally related familiar Fourier transforms: Fourier
integral on R, Fourier series on R/Z, Fourier coefficients on Z, DFT (FFT) on Z/NZ.

Notation for discrete-time Fourier analysis. Let us denote d-dimensional torus
by T¢ := R?/Z4. Finitely supported functions v : Z¢ — C have Fourier transform
Fu=1:T% — C given by

(17.1) U(n) =) e M y(y).

yezZd

Here, u is a trigonometric polynomial. The corresponding inverse Fourier transform
F~1is given by

(17.2) u(y) = / e T2 (n) dn.
']I‘d
As it is well-known, Fourier transform extends here to an isomorphism
F o S(LT) — C(TY),

where .7 (Z%) denotes the space of those functions u : Z¢ — C for which |u(y)| — 0
rapidly when |y| — oo, and C°°(T%) denotes the space of infinitely smooth complex-
valued functions on the torus. Also, Fourier transform extends to an isomorphism

F (2% — LX(TY),
where Hilbert space £2(Z%) has inner product given by

(17.3) (U, v) p2(zay = Z u(y) v(y)",

yeZ4

and Hilbert space L?(T¢) has inner product given by
(17.4) UV )pageey = [ U Vo' dy

In the sequel, to keep notation simple, we shall concentrate on the one-dimensional case
d=1.

Discrete-time Born—Jordan transform. For functions u,v : Z — C, define
discrete-time Born—Jordan cross-correlation R(u,v) : Z x Z — C by

(17.5) R(u,v)(x,0) :=u(x)v(x)",
(17.6) R(u,v)(z,—y) := R(v,u)(z, +y)~,
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where for y > 0 we set

i
L

(17.7) R(u,v)(x,y) := u(lz +t)v(x+t—y)* .

< |

t

Il
=

Here, to achieve more symmetric expression, we could have chosen

1
u(@ +t)o(z+1t—y)"
1

Y

ule +y)o(@)* +u@ele —y)* 1
2y Y«

however, there is no practical reason to use such complicated expression. Let us call
Rlu] := R(u,u) the discrete-time Born—Jordan autocorrelation of u. For u,v € ¥ (Z),
let Q(u,v):Z x T — C be defined by

Q(u,v) == (I ® F)R(u,v),
where [ is the identity operator u — u. In other words,

(17.8) Q(u,v)(z,n) = Z e 2N R(u,v)(x,y).

YyEZ

We call the conjugate bilinear mapping

(u,v) = Q(u,v)

the discrete-time Born—Jordan transform, and Q[u] := Q(u,u) is called the discrete-time
Born—Jordan distribution of u € .#(Z). Notice that Q(v,u) = Q(u,v)*, so that Qu] is
automatically real-valued:

Qu]: Z x T = R.

For Q[u](x,n), variable x € Z will be called time and variable n € T will be called
frequency. Notice that if u(x) = 0 for < @ and = > b then Q[ul(x,n) = 0 for z < a
and x > .

Theorem. If u,v € S (Z) then R(u,v) € .S (Z x Z) and Q(u,v) € C*(Z x T). If
u,v € 3(Z) then R(u,v) € £2(Z x Z) and Q(u,v) € L*(Z x T), with

(17.9) | R(u, v)||e2(zxz) < |ulle2ezy V]l e2(z),
(17.10) 1Qu, V)| L2zxT) < [ullez(zy |V]le2(2)-
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Proof. Let u,v € .(Z). Then for each M > 0 there exist constants ¢y < oo such
that |u(z)|, |v(x)| < ear{x)~™™ for all x € Z, where (0) := 1 and (x) = |z| for z # 0.
Therefore

|R(u,v)(z,0)| = [u(@)| [o(z)] < ciy(x) M,
[ B(u, v)(x, —y)| = [R(v, u)(z, y)],
and if y > 0 then

y—1 y—l

1
|R(u,v)(x,y)| < — Z|ua:—|—t)||v(aj—|—t— )< = Zch—l—t) Mg 4t —y)=™,
Y=o Y=o

From this we obtain
|R(u,v)(z,y)| < cipla) M2 (y)~M/2

showing R(u,v) € .#(Z x 7). Next,

1R (u, )72 zxzy = D D [R(u,v) (@, y)?

rEL YEL
y—1 2
S P + X5 [t yoter -] 4
TEZ xEL Y= 1 t=0
y—1 2
+ZZ " Zv r+t)ulx+t—y)"
xEL Y= 1 t=0
<D 2 @)l
rEZL yYEL
= [lullzz(z) 01172 (z)-
Fourier transform is an isometric isomorphism ¢?(Z) — L?(T), yielding
1Q(u, v)|lL2@zxT) = | R(u,v)|le2(zx2),
proving the last formula in theorem. O

Examples. Let 0, : Z — C be the Kronecker delta at p € Z, i.e. dp(p) = 1 and
dp(z) =0 for x # p. Then R(dp,0p)(x,y) = 6p()do(y), leading to
Qop)(z,m) = dp(z).
Let e, : Z — C be defined by e,(z) := 2™ where a € T. Then R(eq,en)(z,y) =

el2mv@ leading to

Qleal(x;n) = da(n),

where 6, € D(T) is the Dirac delta distribution at o € T.
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Theorem. Born-Jordan has the marginal properties

(17.11) /Q[u](:v,n) dn = Ju(z)[?,
T

(17.12) > Qlul(z,m) = [l
TEL

Proof. First,

ul(x = e 27U Riu)(x = R[u](x,0) = |u(x)]?
@@ man= [ 30 em Re.g) dn = Rlu(w.0) = [u(o)l,

YEZL

and second,

> Qul(@,m) = > e ™ Rlu)(z,y)

TEL €L YEL

_ Z e—iQTFy"’] Z R[u] (x, y)
YEZL TEZ

= Z e i2myn Z u(z)u(z —y)*
YyEL z€EZ

= Z e 2TEN y(2) Z 2T (2 — )
zZ€Z YyEZ

= [a(n)|*.

O

Interference terms. For A, € C and u,v € (Z), notice the quadratic behavior

Q\u + pv] = Q(Au + pv, Au + pv)
= Q(Au, Au) + Q(pw, pw) + Q(Au, pv) + Q(pv, Au)
= [\PQlul + 1*Q[v] + 2Re (A ™ Q(u, v)) .

In signal processing, terms of type Q[u], Q[v] are sometimes called auto-terms, and terms
of type Q(u,v), Q(v,u) are interference terms (or ghost terms); both of these types are
important in understanding time-frequency properties of signals. For instance, if p < ¢

then

(g—p)™! whenp<z<gandy=p-—g,
R(dy,0q)(z,y) =

otherwise,

leading to

—p)lei2rla—p)n  wh <z <
QU )= TP whenp <=

otherwise,
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Hence for p < ¢, we have
(17.13) QDN+ byl n) = NP8,(x) + [uf28,(2) + ghosty (. ),
where ghosti(z,n) # 0 only if p < z < ¢, and when A, u € R we have

cos(2m(q — p) - n)
q—p '

(17.14) ghosty(z,m) = 2\u

Discrete-time Born—Jordan quantization. Next we introduce discrete-time Born—
Jordan quantization o — A, where discrete-time symbol Born—Jordan symbol o is func-
tion o : Z x T — C satisfying some conditions (depending on application), and linear
operator A, maps functions g : Z — C to functions of similar type. This discrete-time
Born-Jordan pseudo-differential operator A, is defined by the Hilbert space duality

(1715) <U7on>£2(Z) = <Q(U, ’U),O'>L2(ZXT),

where

QU 0), 0) gy = 3 /T Qu, v)(z, n) o, m)* .

TEZL

Theorem. Discrete-time Born-Jordan pseudo-differential operator A, satisfies

Asv(z) = Z v(y) / 2@ 4 (2 4y, m) dn,

YEL T

where amplitude a : 7 X 7. x T — C s given by

a(z,z,n)=o(x,n),
a(y,z,n) =a(z,y,n),

and for x <y
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Proof. Straight-forward calculation yields

(u, Agv) 2 (z)
= (Q(u,v),0) L2(zxT)

—Z/qu z,m)o(z,n)* dzdn

2EZ
—Z/Ze_l%w”Ruv)(z w) o(z,m)"dn
z€Z wEZ
—Z/< i —I%wnii (z+t)v(z +t—w)*+
2EZ w=1 =0
++127rw?7%i (Z+t) (z—|—t— )])O’(Z,n)*dﬂ
t=0

*

TEL YEZ
Hence A, satisfies
Agv(z) =) v(y) / 2TV (3 y, ) dy,
YEZ T

where amplitude a : Z x Z x T — C is of the claimed form. O

Examples of symbols and operators. Born-Jordan quantization behaves nicely
for multiplication and convolution operators: Namely, if o(t,n) = ¢(t) then

Agu(z) = ¢(a) u(),

and if o(t,n) = 1,/11\(77) then
=> Pz - = xu(z).
YyEZ

While symbol-to-operator quantization o — A, is clearly linear, it is not injective in
the Born—Jordan case. For instance Ag = 0, but it is easy to check that A, = 0 if

o(t,n) = (—1) 22,

Kronecker delta functions &, : Z — C provide an orthonormal basis for £2(Z); if linear
operator A : £2(Z) — (*(Z) maps 6, to 0y, and A(5,) = 0 when p # pg, then A = A,
for

o(t,n) = (t) o),
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for any ¢ : Z — C satisfying

1 P! 17 lfp = Do,
do — Po Z go(t) - 0. if
t—p , if p # po.

Born—Jordan symbols o : Z x T — C of linear operators A : .#(Z) — .#(Z) can be built
out of this example.

Inversion. Noticing that Q[Mu] = |A\[?Q]u], it is obvious that u — Q[u] cannot be

invertible. However, from Q[u] we can find Au where |A\| = 1: First, here Rlu] =
(I ® FHQ[u] and R[u](z,0) = |u(z)|?>. Now suppose u(zr) — 0 as |z|] — oo (for
instance, in applications u might belong to ¢2(Z)). If u(xg) # 0 then for all y # 0 we
have

(17.16) u(zo +y) = u(jo)* Z LN R[ul(xo — ky, y),
k=0

where the partial difference operator /\; is defined by
(17.17) N R[ul(x,y) == Rul(x + 1,y) — Rlu|(z, y).

In other words, (17.16) returns u provided that we know a point value u(zg) # 0.

Computational issues. Above, we were considering discrete-time signals. For u €
Z(R) and h > 0, define uy, € . (Z) by up(j) := u(jh). Then we may approximate the
Born—Jordan transform of u,v € .#(R) by

Q(u, ) (jho ) = /R e 27N R(u, v)(jh, y) dy

~hy e BT Ruy, o) (4, k)
Kez

=h Q(un,vn) (4, [nh]),

where [nh] = nh + Z € T. Naturally, in practise we handle only signals with finite sup-
port, computing discrete Fourier transforms by FFT (Fast Fourier transform). It should
be noted that then computing discrete Born—-Jordan transform has lower complexity
than computing spectrograms related to short-time Fourier transforms. However, choos-
ing window for short-time Fourier transform is somewhat arbitrary and heavily influ-
ences the corresponding spectrogram; there is no window to choose in Born—Jordan
case.
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On convergence of discretization: From

1 v . .
Rlul(0.9) = / u(t) ult — y)* = / u(ry) u((r — )y)* dr
we see that
a ,
(17.18) \@Rm,y)\ .

Now suppose u € C?(R) such that u(z) = 0 for |x| > L. Let Q[u] denote the trapezoidal
rule approximation to Q[u], where the step-size h = L/N with N € Z". Then

|Q[u](0,0) — Qn[u](0,0)]
L N—-1
—L (=—N
N-1

[ fe+D)R (4+1)h
< S| IR0 - RO ay+ [ R0, = Y| dy
—_N |[/h £h
aras) N1 [p, / (¢+1)h (g2 ., .
<X gl s+ [ 2 Gl ol + 1) a

1 1
= 0L (W= Tl + 5 ol o+ 3 I )

In real-life situations, u rarely vanishes at a point, so relative phases of values can

be effectively found from
Rlu)(x,1) = u(z) u(z — 1)*.

Discretizing frequency is pretty straightforward: For instance,

Asv(z) = Z/Tem(x_y)'" v(y) a(z,y,n)dn

YEZL

N
1 i2w(z—y)-
~D w2 eI N u(y) ale, y, k/N)
k=1

YEZ
1
=D |5 2N a(a,y k/N) | o(y).
YEZL k=1

On discrete ghost terms: Now, if o, 5 € T and a # 3 then

(17.19) Qlrea + pepl(z,n) = |A?6a(n) + |1[?6s(n) + ghosta(z, )

where
R(ca,5)(x,0) = 2@
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and for y # 0

eiQﬂy-B _ ei271-y-a ei27ra:~(a—ﬂ)
R(ea7 65)(337 y) = 127Ty 127‘- 1 _ eiQW(a—B) .

Why did we write R(eq, eg) like this? Suppose —1/2 < ag < oy < 1/2, where o = ap+7Z
and 8 = By +7Z. Let 1[4, 5,) : R — C be the characteristic function of interval [ag, Bo],
and define y : T — C its periodization given by

X(n) - Z 1[040,30](77 - k)

keZ

Now

1— eiQW(a—B) ) ei27rac-(o¢—ﬁ)
—} 127r—1 e A

Qleasen)o) = [x) = (60— a0) + =
When A, u € R, this leads to
(17.20)

ei27rm-(a—B)

ghosta(x,m) = 2Ap [(X(n) — (Bo — ap)) (—27) Im (W) + cos(2mx - (o — fB))

Fully discrete time-frequency analysis. Let N € Z™". For periodic discrete signals
u,v : Z/NZ — C, it is possible to define discrete analogues of the Cohen class time-
frequency transforms in a straight-forward way, when N is odd. Then for instance the
requirement for the correct time and frequency marginals mimics the continuous time
case. We shall investigate these properties in future works. Again, FFT is the key
ingredient in the computations.

§18. Periodic Born—Jordan transform

Let us now consider periodic signals u € C'°°(T), which are Fourier dual to discrete-
time signals u € . (Z):

a(n) = e N u(x),

TEZL

u(x) = /Te“%x'" u(n)dn.

Let us define the periodic Born—Jordan transform Q(u,v) : TxZ — C of periodic signals
u,v € C*(T) via discrete-time Born—Jordan transformation such that

(181) Q(ﬂ, 6)(777x) = Q(uav)(_xan)'
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Denote also Q[u] := Q(u, u). Loosely speaking, (18.1) can be interpreted as turning the
“time-frequency plane” T X Z by 90 degrees to Z x T. Test function space C*°(T) is
dense in L?(T), which has orthonormal basis {e, : p € Z}, where

(18.2) ep(n) 1= 2™P,

Notice that e, = 5/_\17, where d_, : Z — C is the Kronecker delta at —p € Z. Hence by
calculations in the previous section, we obtain Q[e,](n, z) = d,(n), and for p > ¢ that

) (@) _ ) (=) epq(n) wheng<z<p,

(18.3)  Qlep,eq)(m,x) = €p_q(n
( P> Cq P—q p—q 0 otherwise.

Hence for p > ¢, we have
(18.4) Qep + peg)(n,x) = N0, (x) + |p[*d,(x) + ghosta(n, x),
where ghosta(n, z) # 0 only if ¢ < x < p, and when A, u € R we have

2 - (p —
(18.5) ghosta(n,z) = QAMCOS( ™ - (p Q))
p—q
Let H*(T) be the Sobolev space of order s € R: this Hilbert space is the completion of
C*>°(T) with respect to the norm

1/2
@l ey = | D> lu@)?|
YyEZ
where (0) = 1 and (y) = |y| for y # 0.
Theorem. Letu e H*(T), where s > 1/2. Then
(18.6) (n = Q[a)(n, x)) € H*V/(T),
(18.7) Q@) (n, @) — [u(@)?] < esll@l e (r),

where constant cs < oo depends only on s.

Proof. Because s > 1/2,
nean) = ulp)e—p(n)
pEZ
is continuous. Notice that

Qal(n,x) = [u(p)* Qlep,ep) () + > ulp)ula)” Qlep, eq) (1, )

pEZ D,q: P#£q
= |u(z)[* + ghost(n, z),
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where

* 1min ,q} max{p, ($)
ghost(na) = 3 ulp)ula)” ey (g) 2Ll ),
D,q: p#q

For 0 <t < s,u € H*(T) and ¢, (n) := Q[u](n, x), this means

2

r * 11nh1 ,q },max{p, (x)
el <T@+ 30 | 30 ulp)ulg) —mioeea
kEZ:k#0 p,q:p—q=k

<fu(@)? + eus D 2D ) p k)
keZ PEZ

<Ju(@)? + cuee D (R)TTHILD (p)

keZ PEZ

Thus ¢, € H'(T)if0<t,2(r—1—t) < —landt —s < —1. Hencer <s—1/2. O

§19. Examples of discrete-time time-frequency distributions

In this Section, we shall see various discrete-time time-frequency distributions
Plu] = P(u,u) for same human speech signal u (a man speaking “Why do you want to
go alone?”, extracted from the signal in [15]). First, here is the Wigner distribution:
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Wigner distribution
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Even though the Wigner distribution has mathematically nice properties (e.g. there
is no loss of information, as [u] can be recovered from Wul), it is very sensitive to noise
(it has strong interference terms), as can be seen here: therefore the Wigner distribution
is often of no practical use. On the other hand, spectrograms are not sensitive to noise,
but they lose the information by smoothing too much: the following spectrogram with
a Gaussian window can be thought as a melted-down version of the Wigner distribution
(this claim can be made precise by studying a suitably normalized heat equation in the
plane):
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Spectrogram with a Gaussian window
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Moreover, we must remember that the choice of (a more-or-less arbitrary) time-
analysis window in the Short-Time Fourier Transform heavily affects the shape of the
spectrogram.

However, we do not have to lose information while reducing noise-sensitivity (re-
ducing interferences). The Born—Jordan distribution exemplifies this. Recall that the
Born—Jordan transform was characterized by the three natural properties (scale invari-
ance, time-locality, comb-to-grid property). Here we see the outcome, the Born—Jordan
distribution Q|u]:
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Speech: Discrete-time Born-Jordan distribution
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Occasionally it is claimed that there are still interferences in the Born—Jordan
distribution. It is perhaps not even meaningful to exactly define what intereferences
mean. Here in this picture above, “interferences” could be the geometrically sharp
horizontal and vertical lines. Especially in the case of the sharp horizontal lines here,
there are rapid oscillations between positive and negative values, effectively in average
almost zero: by a little bit of smoothing in the next picture, we display a Gaussian
lag-weighted Born—Jordan distribution, also called a time-frequency distribution in the
Zhao—Atlas—Marks family:
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ZAM with a Gaussian window.
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This previous time-frequency distribution, however, already loses a little of the infor-
mation about the signal. Nevertheless, so does the human hearing, as the low and high
frequencies are badly perceived. In the next picture, there is a qualitative attempt to
mimic the loss of accuracy in the low and high frequencies:
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As above, but dimming the low and high frequencies, enhancing the middle
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§ 20. Discrete-time Born—Jordan examples

Example: Whale sounds. In the following picture, there is the Born—Jordan dis-

tribution for a Beluga whale sound from [19]:
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In such signals, there are simultaneously fast and slow spectral developments, which
are rather troubling for spectrograms: Vertical features (snapping sounds, quick tran-
sients) would require very short time-analysis windows wiping out the horizontal features
(whistling sounds), and vice versa.

Of course, instead of spectrograms of time-frequency analysis (given by the Short-
Time Fourier Transform), we could try to use scaleograms of time-scale analysis (given
by the wavelet transform). However, there still would be analogous problems with the
Heisenberg uncertainty, and the more-or-less arbitrary choice of the mother wavelet
would affect drastically the shape of the scaleograms. Moreover, it is good to remember

that the Born—Jordan distribution is automatically also scale invariant!

Example: Speech and MRI. Let us consider human speech with heavy noise
coming from the MRI (Magnetic Resonance Imaging) as recorded by the research group
“Speech & Math” lead by Dr. Jarmo Malinen [1]. In the complete signal, the doctoral
student Mr. Juha Kuortti speaks the Finnish sentence “Ruusu varoo laavaa”. In the
following Born—Jordan picture with low sampling rate of 5512 Hz, we depict the first
syllable “Ruu”:
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Speech with MRI noise.
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In the picture above, there are essentially two different grid-like patterns of rectangles
of unit time-frequency area: the narrow and tall rectangles coming from the MRI, and
the other rectangles coming from the speech. With this knowledge of time-frequency
localization, it is possible to separate the speech from the MRI noise in a sharp fashion.

Example: ECG diagnostics. As another medical application, let us consider elec-
trocardiogram data (ECG). Simplified a bit, a healthy heart should produce a strong
regular grid-like Born-Jordan distribution. We chose an excerpt from the public MIT-
BIH Arrhythmia Database ([18], [13]), deliberately wiping the signal to zero both in the
past and in the future (thereby making the left and right ends of the picture unreliable:
however, there is basically very little distortion there). Here, there is unusual activity

around the time index 170:
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Linear phase-preserving denoising. Now let us consider sampled speech, a male
voice asking “Why do you want to go alone?” (from [15]). The original sampling was
at 8000 Hz, but we sample at only 4000 Hz, taking 4200 samples (i.e. 1050 milliseconds).
Moreover, we add heavy random noise (rand-.5 in Matlab, with energy equal to the
original speech). The following three pictures show the Born—-Jordan energy densities

for the following sounds. First, the noisy original:
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Speech: Discrete-time Born-Jordan distribution
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Then we apply two Born—Jordan localizations. In each of these localizations, the symbol
is a characteristic function of a planar set, which is computed from simple natural
conditions. These two simple conditions basically search those time-frequency regions
where the energy density is “large-enough”. We obtain the enhanced filtered signal with
the following Born—Jordan energy density:
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Speech: Discrete-time Born-Jordan distribution
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Of course, here the quality of the signal has suffered due to the heavy noise. For
comparison, here is the Born—Jordan distribution of the original clean signal, without
adding artificial noise:
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Speech: Discrete-time Born-Jordan distribution
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We would have obtained much better signal reconstruction, had we exploited the in-
formation that there is a speech signal in the background. Such applications will be
considered in future articles.

§21. Closing remarks

Born—Jordan distribution is a ¢

‘well-known but poorly understood” member of the
Cohen class time-frequency distributions, introduced by Leon Cohen in 1966, building on
the 1925 quantum matrix mechanics of Heisenberg, Born and Jordan: we should remem-
ber that the Born—Jordan quantization is the only correct quantization for Heisenberg’s
matrix mechanics.

So, why Born—Jordan is not used that much yet? Superficially it just looks like “one
approach out of infinitely many”. Spectrograms are likely the most used Cohen class
time-frequency distributions, and their positivity may partly explain their popularity,
even though they destroy information; looking at most acoustic spectrograms, it seems
that researchers favor longish time analysis windows, mostly missing “the vertical lines”
of the time-frequency behavior. Of course, the power of tradition is also strong, if people
have grown to use spectrograms. In the literature, there are also occasional mistakes

about the Cohen class properties, e.g. misunderstanding the computational complexity
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and some analytic properties.

Above, we saw that the Born—Jordan distribution provides a reasonable alternative
to spectrograms. The characterization of the Born—Jordan distribution among the Co-
hen class distributions shows its Fourier analytic naturality. The Born—Jordan transform
offers noise-robust yet information-preserving pictures of good clarity, with no arbitrary
window to choose for analysis. The computational complexity for the spectrograms is
the same as for the Born—Jordan distribution, and can be implemented by Matlab with
the usual routines.

Yet there is much to investigate in the Fourier analysis of the Born—Jordan trans-
form, both in the continuous and in the discrete time cases. We shall continue working
in these directions in the future papers.
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