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Detection of singularities in wavelet and ridgelet
analyses
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Abstract

We give two methods of detecting singularities in wavelet and ridgelet analyses. First,
we give a characterization of the generalized two-microlocal Besov spaces in terms of the local
Besov type conditions with dominating mixed smoothness. Secondly, we define microlocal
ridgelet transforms after Candes and Donoho, and give the inversion formula for our ridgelet
transforms.

§1. Introduction

The aim of this article is to give a characterization of the generalized two-microlocal
Besov spaces in terms of wavelets and the inversion formula for the microlocal ridgelet
transforms. In Section 2, we first recall two-microlocal Besov spaces and wavelets from
Jaffard-Meyer [JM] and Moritoh-Yamada [MY]. We then give a characterization of the
more generalized two-microlocal Besov spaces in terms of the local Besov type conditions
with dominating mixed smoothness. We take account of an uncertainty function from
Bony-Lerner [BL, Section 9.1] in the definition of the generalized two-microlocal Besov
spaces. In Section 3, we define microlocal ridgelet transforms after Candes [C] and
Candes-Donoho [CD], where the ridgelet transform is precisely the application of a
one-dimensional wavelet transform to the slices of the Radon transform. If we use
the wavelet transform defined in Moritoh [Mol], we can detect directional singularities
because of its microlocal properties. The main theorem of this section is the inversion

formula for our microlocal ridgelet transforms.

Received March 21, 2015. Revised June 17, 2015. Accepted June 29, 2015.
2010 Mathematics Subject Classification(s): 42C40, 42B35, 44A12, 35A20
Key Words: two-microlocal Besov space, dominating mized smoothness, wavelet, ridgelet, Radon
transform, inversion formula, singularities.
This work is supported in part by JSPS Grants-in-Aid No. 25400138
*Department of Mathematics, Nara Women’s University, Nara 630-8506, Japan.
e-mail: moritoh@cc.nara-wu.ac.jp

(© 2016 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



2 SHINYA MORITOH

The results established in this article have already been given in the author’s talks.
They were invited by Real Analysis Section of Mathematical Society of Japan (at Ehime
University in September, 2013 Autumn Meeting) and by RIMS Symposium on Several
aspects of microlocal analysis (at Kyoto University in October, 2014). We also refer to
the papers [Mo2] and [MT], where the details omitted in this article are to be found.

§ 2. Two-microlocal analysis

We first recall two-microlocal Besov spaces and wavelets from Jaffard-Meyer [JM]
and Moritoh-Yamada [MY]. We then give a characterization of the more generalized
two-microlocal Besov spaces in terms of the local Besov type conditions with dominat-
ing mixed smoothness. We take account of an uncertainty function from Bony-Lerner
[BL, Section 9.1] in the definition of the generalized two-microlocal Besov spaces; the
uncertainty function 1 + |&;] + |22||€| (2,& € R?) corresponds to the uncertainty factor
in Definition 2.6 below.

§2.1. Notation, definitions, and Moritoh-Yamada’s result

Let R™ be n-dimensional real Euclidean space and Z" be the lattice of all points
k= (k1,...,k,) € R™ where the components ki, ..., k, are integers. Let S’ = §’(R")
be the set of all tempered distributions on R™. If f belongs to the Schwartz space
S = S(R™), then

FFE) = f(6) = / @O f(r)dn, € R,

n

denotes the Fourier transform of f. Here (z,&) = Z?:l x;€; is the scalar product of

r=(x1,...,2,) and £ = (&1,...,&,). The inverse Fourier transform F~!g is given by

Flg(a) = g(a) = (2m) " / F@O g(e)de, xR

n

The transforms F and F~! are extended in the usual way from S to S'.
Let {¢;(2)}52 o C S(R™) satisfy

1) supp ¢; C {x € R™; 2771 L o] < 291}, j€Z,
2) for every multi-index « there exists a positive number C,, such that

2| D (2)| < Coy,  jEZ, x €RT,

and
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o

3) > piz)=1,  xeR"\{0}.

j=—00

Here D® in 2) above are classical derivatives. Let s > 0 and 1 < p, ¢ < co. Then the
homogeneous Besov space Bg’q(R") is defined as the set of all tempered distributions f
(modulo polynomials) satisfying

1/q
o0
1F1Bp RN = | > 2NF e FNHILRM) < oo
j=—00
(usual modification if ¢ = oo). Here || - |L,(R™)|| stands for the usual Ly-norm. The
definition of Bf)’ 4(R™) is independent of the choice {¢;(7)}52_.,. See Triebel [T].

Let us now consider an orthonormal wavelet basis on R™. Such a basis is composed
by translations and dilations of 2" — 1 functions (i € {0,1}" — (0,...,0)). We
assume in the following that these wavelets are compactly supported smooth wavelets,
whose supports are included in a ball centered at the origin. See Daubechies [D]. Let
w](l,z (x) = 2"’j/2w(i)(2jx —k), j€Z, keZ" Then the wavelet decomposition of f € S’
will be written

f(z) = Z Z Cik¥ik(@), Cik=(f, Vi)
JEL keZn
where we can forget the index .
Let us recall the fact that f € B;’q(R") if and only if

a/p
Z 9Jq(s+n/2=n/p) ( Z C; k|p> < 0.

JEZL keZn

See Chapter VI, (10.5) in Meyer [M].

After these preliminaries we can define the local Besov spaces B; ,(U) and the
two-microlocal Besov spaces B;:;;/(xo), where U is an open subset in R"” and zo € R".
However, we treat only the case where p = ¢ in Theorem 2.3 below.

Definition 2.1. Lets > 0and 1 <p, ¢ <oo. Then f € §'(R") is said to belong
to the local Besov space B, ,(U) if there exists an F € B;q(R"’) such that f|ly = Flu,
where f|y denotes the restriction of f to U. The norm | f|B; ,(U)| of f is then the
infimum of all possible norms of F'in B,  (R").

Definition 2.2. Let s >0, s’ € Rand 1 < p, ¢ < co. Let zg € R™. Then
f € 8’'(R™) is said to belong to the two-microlocal Besov space B;;;l (xp) if the following
two-microlocal estimate holds:
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1/q

q/p
’ . . . s’ P
141855 o)l = Zzﬂq<s+”/2—”/p>{2 |(1+2[k27 — ] Cj,k\} < co.

jez kezn
(usual modification if p = oo or ¢ = 00).

In order to state the local Besov type conditions in Theorems 2.3 and 2.7 below,
we shall use the following notation: If g(p) is a function of the real variable p, defined
for all positive p, we write g(p) = OWP)(p~*) if and only if

f S pdp — f b SpP—
/0 (9(p)p°) 7—/0 g(p)Pp*Ptdp < 0o

for every positive number R. We can say that the symbol O®) is an L,-version of the
Hormander symbol O(?) used in Theorem 7.1 in [H5].

Moritoh-Yamada’s theorem is stated as follows:

Theorem 2.3. Let s > 0, s < 0, and 1 < p < oo. Let xg € R™. Then
f € S'(R™) belongs to Bg:;/ (o) if and only if there exists a decomposition f = fi1 + fa
such that
fi € By ,(R™),

and
| fol By ({w € R |z — 20| < p})l = OP(p=)  for every p > 0.

Remark 2.4. Theorem 1.2 in [JM] treats the case where p = oo in this theorem.

Remark 2.5. Bony’s two-microlocal space Hg’sl (R™) is an Ly-Sobolev version
of our general function space. See Definition 1.2 and Theorem 2.4 in [Bo]. Moreover,
according to (2.17) of [Bo|, we have the following fact: u € HS’_k(R”), with k& being a
positive integer, if and only if u =, , <} %ua, where uq € He~lel(R™).

§2.2. The first main result

We treat only the case where n = 2. Let us now consider an orthonormal wavelet
basis on R? composed by translations and dilations of 1 (x1)w(z2), where ¥(x) is a
one-dimensional compactly supported smooth wavelet. Let 9 x(z) = 27 P22z — k)
for j € Z,k € Z. Then every f € 8'(R?) will be written

=) Y Cjris (1)U (72),

Jje72? kez?
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where j = (j1,j2) and k = (k1, k2).

Let {¢;(2)}52 o C S(R) satisfy the conditions 1) to 3) with n = 1 in Subsection
2.1. Let s1,89 > 0 and 1 < p1,p2,q1,92 < 0o. Then the homogeneous Besov space
with dominating mixed smoothness SB;q(R2) is defined as the set of all tempered
distributions f (modulo polynomials) satisfying

1£1SBp o(R?)]

1
p2/q1 q2/p2 /22

. . W P1 q1/p1
2J181+J282 (Sojﬁojé‘f) (5(71,5(32) dwl) d: < 0,

-1

J2€Z J1€EZ

(.

where s = (s1,52),p = (p1,p2),a = (q1,92), and

(i 05 f)Y (21, 22) = (05, (£1) 05, (&) F (61, &2))Y (21, 22)

(usual modification if at least one of p1, pa, q1, g2 is equal to oo). This is the homogeneous

counterpart of the space SBj, o(R?), whose definition is given in Definition 2 (ii) of
Section 2.2.1 in Schmeisser-Triebel [ST]. The definition of S Bf;,q(RQ) is independent of
the choice {¢;(7)}52_ -

Let us recall the fact that f € SBS ,(R?) if and only if

p2/d q2/p2

q1/p1
|3 (3 (i) <
j2€Z \ ko€Z \j1€Z \Kk1€Z

where §; = s; +1/2 — 1/p; (i = 1,2). See Bazarkhanov [B] and Vybiral [V]. We
treat only the case where p = q = (p,p) =: p*, 1 < p < oo, for simplicity. We can
define the local Besov space SB,,(Ry, x A,) := SBp. p«(Ry; X Ap) as in Definition 2.1,
where R;, x A, denotes the horizontal strip {(z1,2z2); 1 € R,|z2| < p} for p > 0.
We can also give the definition of the two-microlocal Besov space with dominating
mixed smoothness SB,(,S“S?)’S?’ (R,, x{0}) as in Definition 2.2; Bony-Lerner’s uncertainty
function 1+ |&] + |z2|[€] (z,€ € R?) plays an important role. See [BL, Section 9.1].

Definition 2.6. Let s;,82 > 0, s3 € R, and 1 < p < co. Then f € S’(R?) is
said to belong to the two-microlocal Besov space with dominating mixed smoothness
S B,(,Sl"”)’s3 (Ry, x {0}) if the following two-microlocal estimate holds:

#1882 (R, x {0}
1/p
= Z Z 2(j151+j252)p(1 ¥ |k2|2—j22j1Vj2)83P|Cj’k|P < 00,

JGZZ k€Z2
ko #0
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where j; V jo = max{j1, j2}.

For positive numbers A and B, we write A < B if A < ¢B holds for some positive
constant c. Denoting by F(U,) some function space defined on U, C R? and by V¢ some
subset in R?, we write f € F(U,, V¢) if the Fourier transform f({l,fg) of fe F(Uy,) is
supported in V.

Our main theorem of this section is the following:

Theorem 2.7. Lets; >0,53<0,s+s3>0(i=1,2), and1 <p<oo. Then
f € 8'(R?) belongs to .S’B,(gsl’sz)’s3 (Ry, x {0}) if and only if there exists a decomposition
f=hh+fo+ fs+ fat+ f5 such that

fl € SB;()SIH”)(RQ), f2 € SB;()81+53752)(R2),
fa € SB{stsss2ms)(R2 (¢ € R?; |&4] 2 |&}),

and for every p > 0
112 | SBS H5252) (R, x A, {€ € R% 6] 2 |6 = 0@ (p=29),

1£s | SBE " (R, x A, {€ € R [&1] S 6]} = O (p7>2).

Remark 2.8. The main idea of this theorem is that every f belonging to the gen-
eralized function space SBI()SI’”)’S3 (R;, x {0}) has a good decomposition f = 2?21 fis
where the terms f; and f5 represent the singularities of the function f along the line
R, ; they satisfy the local Besov type conditions in the neighborhood of the z;-axis. As
we recalled in Subsection 2.1, every f € B;;I“;l (z0) has a good decomposition f = fi+ fo,
where the term f5 represents the singularities of the function f at the point 9. The typ-
ical examples in Jaffard-Meyer [JM] are an indefinitely oscillating function of the form
“x),

where the Holder regularity at a point xy depends on the Diophintine approximation

2 sin(1/27), and Riemann’s nondifferentiable function o(z) = Yo (1/n?)sin(mn

properties of xy. Multidimensional version of those singularities considered in [JM] will
be studied in our forthcoming article by means of Theorem 2.7.

Remark 2.9. The two-microlocal Besov space of product type is introduced and
characterized in [MT]. It is associated with the uncertainty functions A\; = 1 + |z;||&|
(i = 1,2); the norm of the wavelet coefficients Cj j, is defined by means of the weighted
coefficients 20151+7282) (1 4 |k |)51 (1 + |k2|)sl2|Cj’k|. We refer to the paper [MT] for
further details.

§2.3. Outline of the proof of Theorem 2.7

We employ the method used in the proof of Theorem 2.3. We denote by C’ the
diameter of the support of the wavelet ¢. Let f € SBZ()SI’Sz)’SB’(RgC1 x {0}). Then its
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wavelet coefficients satisfy

(2‘1) Z Z 2(j1§1+jz§2)p(1 49 4 |k2|2—j22j1Vj2)s3p|Cj’k|P < oo,

JEZ? kez?
ko#0

We write f as

f =( 2.0+ 2D )Cj,wﬁ,kl(xleg,kz(xz) = fi+ fun

Sllpp#’sz€2 50 supp ijka Z0
ko #0 ko #0
If supp ¢j, %, 2 0, then |ks| is estimated from above by some constant comparable to C”.
Therefore, if we decompose fr = fi,1 + f1,2 + f1,3, where the three terms f1 1, fr2 and fi3
correspond to the wavelet decompositions whose coefficients satisfy the three cases (I.1)
k? 7& Oa jl < 07 j2 > jlv (:[2) k2 ;é 0’ jl > Oa j2 > 0 and (13) k? 7é 07 j2 < 05 jl > j23
respectively, then it follows from the conditions on ji, jo and ko, and from (2.1) that

fI,l c SBZ()SI’”)(RZ), f1,2 € SBZ()Sl—’_SS’Sz)(RQ),

fi3 € SB{tsasa=s)(R2 (£ € R ¢ 2 |&|}).

Next we split the wavelet decomposition of fir into three sums fiy = >, +> o+ 3t
For a fixed positive number R, the first, ), corresponds to the wavelets whose
supports do not intersect R,, x Ag, and we can forget this sum.
Next we consider the sum ), whose coefficients satisfy 272 R < 10 C’; in that case,
because |ka| = 272|k2|2772 < 10C”, we can treat the sum Y, in the same way as fi.
Finally we consider the remaining sum ), whose coefficients satisfy 212R >10C".
We decompose Ag into the dyadic strips as follows:

22) Ar= |J {e=(@nm)eR} 27 ' <|m|<27™ = (J D
meZ:2-m<R mEZ: 2m R>1

By using this decomposition (2.2), we can write Y 5 as > 3 = > +> o +> o+ > .,
where the four terms >, = >, . > . > . p x, (* = 1iliil,iv) correspond to the
wavelet decompositions whose coefficients satisfy the following four cases (i) to (iv),
respectively:

. o J1 <0, 2MR > 1, ki€,
(1) Jud2:975; , m: . . ki, ks i
272 R > 10C", m > ji, m > jo, ko272 € Dyy;

.. . . jl > 07 2™R Z 17 kl € Za
(il) J1,J2: : , m: ) o k1, ke ‘
272R > 10C", m >0, j1 +m > ja, k22792 € Dy
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DRI okR> 100", T I m<0,m <, DY) k2772 € D,
(lV) ] ] . j2 >j17 m: QmRZL k kf . klEZ,
D200 R > 100", T | m< o, 1A m < ga, 27 ) ke2792 € Dy,

First, from the conditions on ji, jo and m of ), and ), and from (2.1), it is easy
to see that ), € SBf(,Sl’Sz)(RQ) and ), € SB£81+S3’82)(R2), respectively. Next, because
supp ¥, k, Z 0, the terms corresponding to m > js + L(C’) are negligible. Here L(C")
is a constant depending only on C’. Therefore from the conditions on ji, jo and m of
> > and from (2.1), we have

Z Z Z 2(j151+j2§2)p2(j1—m)S3P|Cj k|P < 00,

jl'jzfiljzzloc,’ m<0’m2ﬁinrf§2jlz’+uc'> kQ:kziI?zEDm’
that is,
(2.3) > 2mesp S S ontsrgiir|cr P < o,
,
J1>d2,d1>m, jg>m—L(C’) k1 €Z

Therefore for p < R, and writing v instead of m in (2.3), we have

D S D T

7“2:5021) J1.d2:292p>10C", ko: ko2 J2 €Dy,
j1>d2,d1>v, ja>v—L(C’) k1€Z

Noting that s3 < 0 and 2793 ~ »~ 27Us3P we obtain

u<v
2 : 9—us3p E E E 2j1(51+53)p2j2§210|0. k|P < 00
7 '
u: 2 R>1, P Y D) / v:u<v<O0, . —J2
= J1,32:272p210C7, ) = ko: k22 €Dy,
u<0 J1>d2 v<j1, v<jo+L(C’) k1 €L

Consequently, we obtain the following integral representation for fs := > ..

R
d
| (2 8B oo Ry A {6 € RE L6 2 D)) 2L < o

which means that the term f, satisfies the desired OP)-condition. A similar treatment
for the term f5 := . is possible.

Conversely since s3 < 0, we have (1 + 271 + |kg|2772271VI2)%3 < 1 A 27153 Therefore,
both fi € SBS**)(R?) and fo € SB{™ T2 (R2) belong to our generalized two-
microlocal Besov space. Let f3 € SB{ 275 (R2 (¢ ¢ R2;|¢,| > |&|}). Then,
since we have 201772)ss — 201Vi2=72)s3 > (1 4 271 4 |ky|2772271V32)%3 for j; > jo and
ko # 0, we obtain that f3 € SBI()S“”)’S3 (R, x {0}).
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The proof that the terms f4 and f5 belong to our generalized two-microlocal Besov
space is omitted. It is similar to the proof of Theorem 2.3. See p. 282 of the paper
[MY]. We also refer to the paper [MT].

8§ 3. Microlocal ridgelet transforms and the inversion formula

We define microlocal ridgelet transforms after Candes [C] and Candés-Donoho [CD],
where the ridgelet transform is precisely the application of a one-dimensional wavelet
transform to the slices of the Radon transform. If we use the wavelet transform de-
fined in Moritoh [Mol], we can detect directional singularities because of its microlocal
properties.

In Subsections 3.1 and 3.2, we recall the definitions and the inversion formulas for
the Radon and wavelet transforms, respectively. After the definition of the microlocal
ridgelet transforms is given in Subsection 3.3, the inversion formula for the microlocal

ridgelet transforms is stated with the outline of the proof in Subsection 3.4.

§3.1. Radon transforms

We first follow Helgason [H]. Let f be a compactly supported, smooth function
on R", where we assume n > 2. For w € S""! and p € R, the hyperplane L(w,p) is
defined as the set {x € R"; (z,w) = p}. Here S" ! denotes the unit sphere in R™.
Note that L(w,p) = L(—w,—p). The collection of all hyperplanes is denoted by P",
being furnished with the obvious topology. Note that the functions on P™ are identified
with the functions ¢ on S"~! x R which are even: ¢(w,p) = p(—w, —p). The Radon
transform Rf(w,p) is defined as follows:

Rf(w,p) = / f(x) de,

L(w,p)

where dz denotes the (n—1)-dimensional Lebesgue measure on L(w, p). For a compactly
supported, smooth function g(w,p) on P", the dual Radon transform R*g(z) is defined
as follows:

Rigle) = [ gl (ow) do,

where dw denotes the area element on the unit sphere S"~!. We denote by §(w, p) the

one-dimensional Fourier transform of g(w,p) with respect to p, and define the operator
A by

(Ag)"(w, ) = [B]" " g(w, D).

Then we have the following inversion formula (3.1):

(3.1) f(z) = Cx' R* AR f(z),
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where the constant Cp = 277"~ 1. If we denote by f (&) the n-dimensional Fourier
transform of f(z), then we have the following formula (the projection-slice theorem):

(Rf) (w,p) = f(hw).

The Radon transform can be defined for distributions in £'(R™), the space of distribu-
tions of compact support, and the inversion formula can be extended to distributions.
See Theorem 5.5 of Chapter I in [H].

§3.2. Wavelet transforms

We recall our wavelet transforms from [Mol]. Our wavelet function ¥ (z) on R"
satisfies the following conditions (i) and (ii):

~

(i) ¥ (§) has a compact support containing (0,...,0, 1) in the interior, and not contain-
ing the origin;

(i) ¢ (z) = ¢¥(pz) for every rotation p with p(0,...,0,1) = (0,...,0,1).

For £ € R" — {0}, let p¢ be any rotation satisfying pe(£/[€]) = (0,...,0,1), and put

Ye(z) = |]"P(|€|pex), or ;/}5(:27) = 1/;(|f|_1p5:%). Then our wavelet transform Wy, f(z, €)
is defined as follows:

Wy f(x, &) = A f@)e(t —x)dt, (z,€) € R" x (R" —{0}).
The inversion formula for our wavelet transforms can be stated as follows:

fle)y=0," Wiy f(t, E)he(x — t) dt dE/|€]"
(3‘2) k4 /»/R"'XR"

=05t [ 1 velo) el

where @g(a;) = e(—x), and Cy = (2m)" [p. [h(€)[2dE/|€]™. Note that this formula
(3.2) gives a microlocalization of the Calderdén formula. See also Theorem 1.2 of Chapter
1 in Frazier-Jawerth-Weiss [FJW].

§3.3. Definition: Microlocal ridgelet transforms

After the preliminaries in Subsections 3.1 and 3.2, we can now define our microlocal
ridgelet transform. By using the wavelet 1, we first define the ridgelet function ¢(w, p)
on "1 x R as follows:

(3.3) p(w,p) == A2 (RY)(w,p), or 4w, p) = [p|" D/ *)(pw).
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For £ € R” — {0}, put

pe(w,p) = €| TD2 p(pew, [€]p), o @e(w,p) = 19|V e (pw).

Let f be a compactly supported, smooth function on R”, where we assume n > 2. Then
the microlocal ridgelet transform of f is defined as follows:

Rof (€)= | f()pelo (o.0) —p)da.

We have an equivalent representation:

R f(w,p;§) =/RRf(w,<J)sOg(w,q—p) dq.

Remark 3.1. Fix a vector { € R"—{0}. Then the microlocal ridgelet transform
Ry f(w,p; &) has its support with respect to w in a neighborhood of the direction &/|¢],
and represents the Radon data of f(x) in a neighborhood of L(w,p). These observations
explain why our ridgelet transform R f(w,p;&) can be said to be a microlocalization
of the Candes ridgelet transform.

§3.4. The second main result: Inversion formula

Our inversion formula, which is a microlocal analogue of the formula for the Candes
ridgelet transform, reads as follows:

Theorem 3.2.  The function f, which is smooth and compactly supported on
R"™, can be recovered from the microlocal ridgelet transform by means of the inversion
formula:

s@ = [ [ Rott e o) - pdpas) ag/iep
where the constant C := CrCy = 2*"7*"~ 1 [, b (€)[2dE /| €|™.

Outline of the proof. Apply the Radon transform to (3.2). Then the projection-
slice theorem yields

34 Rfwp)= O [ Rfw.)x Rie(wo,) xR, ) o) /eI

Apply the pseudodifferential operator A to (3.4) to obtain

(3.5) ARf(w,p) = Cyt | Rf(w,)* Pe(w, ) * pe(w, ) (p) de/I€]",

R~



12 SHINYA MORITOH

where p¢(w,p) = pe(w, —p). Finally, apply the dual Radon transform to (3.5) to obtain

RaRe) =t [ [ [ Rofmeseto ow) - papds] de/leh

that is,

f(x) = c;q;l/

n

[/Sn_l /Rchf(vaf)SO&(wa(x,w) —p) dpdw} de /€|,
l

A microlocalization of the Candes ridgelet spaces is now given. Let s > 0 and
1 < u, v < oo. Then, for every £ € R™ — {0}, the microlocal ridgelet space ’wa (&/1€))
is defined as follows: A function f is said to belong to the microlocal ridgelet space
wa (&/1€]) if there exists a ridgelet ¢ with (3.3) such that the following estimate holds:

00 v/u 1/v
[ / ( / €19 R (w0, s )] o dp) d|§|/|f|] <.
0 Sn—1xR

A further analysis by means of this microlocal space is omitted here. See [Mo2].
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