Annihilators of Laurent coefficients of the complex power for normal crossing singularity

By

Toshinori Oaku *

Abstract

Let f be a real-valued real analytic function defined on an open set of \mathbb{R}^n . Then the complex power f_+^{λ} is defined as a distribution with a holomorphic parameter λ . We determine the annihilator (in the ring of differential operators) of each coefficient of the principal part of the Laurent expansion of f_+^{λ} about $\lambda = -1$ in case f = 0 has a normal crossing singularity.

§1. Introduction

Let \mathcal{D}_X be the sheaf of linear differential operators with holomorphic coefficients on the *n*-dimensional complex affine space $X = \mathbb{C}^n$. We denote by \mathcal{D}_M the sheaf theoretic restriction of \mathcal{D}_X to the *n*-dimensional real affine space $M = \mathbb{R}^n$, which is the sheaf of linear differential operators whose coefficients are complex-valued real analytic functions. Let us denote by $\mathcal{D}_0 = (\mathcal{D}_M)_0$, for the sake of brevity, the stalk of \mathcal{D}_M (or of \mathcal{D}_X) at the origin $0 \in M$, which is a (left and right) Noetherian ring.

Let \mathcal{D}'_M be the sheaf on M of the distributions (generalized functions) in the sense of L. Schwartz. In general, for a sheaf \mathcal{F} on M and an open subset U of M, we denote by $\Gamma(U, \mathcal{F}) = \mathcal{F}(U)$ the set of the sections of \mathcal{F} on U. Let $C_0^{\infty}(U)$ be the set of the complex-valued C^{∞} functions defined on U whose support is a compact set contained in U. Then $\Gamma(U, \mathcal{D}'_M)$ consists of the \mathbb{C} -linear maps

 $u:C_0^\infty(U)\ni\varphi\longmapsto\langle u,\varphi\rangle\in\mathbb{C}$

Key Words: complex power, annihilator, distribution.

© 2016 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Received May 17, 2015. Revised August 7, 2015. Accepted August 7, 2015. 2010 Mathematics Subject Classification(s): 32W50, 46F20

Supported by JSPS Grant-in-Aid for Scientific Research (C) 26400123

^{*}Department of Mathematics, Tokyo Woman's Christian University, Tokyo, 167-8585, Japan. e-mail: oaku@lab.twcu.ac.jp

TOSHINORI OAKU

which are continuous in the sense that $\lim_{j\to\infty} \langle u, \varphi_j \rangle = 0$ holds for any sequence $\{\varphi_j\}$ of $C_0^{\infty}(U)$ if there is a compact set $K \subset U$ such that $\varphi_j = 0$ on $U \setminus K$ and

$$\lim_{j \to \infty} \sup_{x \in U} |\partial^{\alpha} \varphi_j(x)| = 0 \quad \text{for any } \alpha \in \mathbb{N}^n,$$

where we use the notation $x = (x_1, \ldots, x_n)$, $\mathbb{N} = \{0, 1, 2, \ldots\}$ and $\partial^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}$ with $\partial_j = \partial/\partial x_j$.

For a distribution u defined on an open set U of M, its annihilator $\operatorname{Ann}_{\mathcal{D}_M} u$ in \mathcal{D}_M is defined to be the sheaf of left ideals of sections P of \mathcal{D}_M which annihilate u. That is, for each open subset V of U, we have by definition

$$\Gamma(V, \operatorname{Ann}_{\mathcal{D}_M} u) = \{ P \in \mathcal{D}_M(V) \mid Pu = 0 \text{ on } V \}.$$

Its stalk $\operatorname{Ann}_{\mathcal{D}_0} u$ at $0 \in M$ is a left ideal of \mathcal{D}_0 .

Now let f be a real-valued real analytic function defined on an open set U of M. Then for a complex number λ with non-negative real part (Re $\lambda \geq 0$), the distribution f_{+}^{λ} is defined to be the locally integrable function

$$f_{+}^{\lambda}(x) := \begin{cases} f(x)^{\lambda} = \exp(\lambda \log f(x)) \text{ if } f(x) > 0\\ 0 & \text{ if } f(x) \le 0 \end{cases}$$

on U and is holomorphic with respect to λ for Re $\lambda > 0$.

For each $x_0 \in U$, there exist a nonzero polynomial $b_{f,x_0}(s)$ in an indeterminate sand some $P(s) \in (\mathcal{D}_M)_{x_0}[s]$ such that

$$b_{f,x_0}(\lambda)f_+^{\lambda} = P(\lambda)f_+^{\lambda+1}$$

holds in a neighborhood of x_0 for Re $\lambda > 0$. It follows that f^{λ}_+ is a distribution-valued meromorphic function on the whole complex plane \mathbb{C} with respect to λ . This is called the complex power, and for a compactly supported C^{∞} -function φ on U, the meromorphic function $\langle f^{\lambda}_+, \varphi \rangle$ in λ is called the local zeta function (see, e.g., [1]).

By virtue of Kashiwara's theorem on the rationality of *b*-functions ([2]), the poles of f_+^{λ} are negative rational numbers. Let λ_0 be a pole of f_+^{λ} and x_0 be a point of U. Then there exist a positive integer m, an open neighborhood V of x_0 , an open neighborhood W of λ_0 in \mathbb{C} , and distributions u_k defined on V such that

$$f_{+}^{\lambda} = u_{-m}(\lambda - \lambda_{0})^{-m} + \dots + u_{-1}(\lambda - \lambda_{0})^{-1} + u_{0} + u_{1}(\lambda - \lambda_{0}) + \dots$$

holds as distribution on V for any $\lambda \in W \setminus \{\lambda_0\}$. To determine the poles of f_+^{λ} , and its Laurent expansion at each pole is an interesting problem and has been investigated by many authors.

From the viewpoint of *D*-module theory, it would be interesting if we can compute the annihilator of each Laurent coefficient as above explicitly. For example, we compared the annihilator of the residue of f_{+}^{λ} at $\lambda = -1$ with that of local cohomology group supported on f = 0 in [3].

In this paper, we treat the case where f = 0 has a normal crossing singularity at the origin and determine the annihilators of the coefficients of the negative degree part of the Laurent expansion about $\lambda = -1$. The two dimensional case was treated in [3].

§2. Main results

Let $x = (x_1, \ldots, x_n)$ be the coordinate of $M = \mathbb{R}^n$.

Proposition 2.1. The distribution $(x_1 \cdots x_n)^{\lambda}_+$ has a pole of order n at $\lambda = -1$. Let

$$(x_1\cdots x_n)^{\lambda}_+ = \sum_{j=-n}^{\infty} (\lambda+1)^j u_j$$

be the Laurent expansion of the distribution $(x_1 \cdots x_n)^{\lambda}_+$ with respect to the holomorphic parameter λ about $\lambda = -1$, with $u_j \in \mathcal{D}'_M(M)$ for $j \geq -n$. Then for $k = 0, 1, \ldots, n-1$, the left ideal $\operatorname{Ann}_{\mathcal{D}_0} u_{-n+k}$ of \mathcal{D}_0 is generated by

$$x_{j_1} \cdots x_{j_{k+1}} \quad (1 \le j_1 < \cdots < j_{k+1} \le n), \quad x_1 \partial_1 - x_i \partial_i \quad (2 \le i \le n).$$

Proof. In one variable t, we have

$$t^{\lambda}_{+} = (\lambda + 1)^{-1} \partial_{t} t^{\lambda + 1}_{+}$$
$$= (\lambda + 1)^{-1} \partial_{t} \left\{ Y(t) + \sum_{j=1}^{\infty} \frac{1}{j!} (\lambda + 1)^{j} (\log t_{+})^{j} \right\}$$
$$= (\lambda + 1)^{-1} \delta(t) + \sum_{j=1}^{\infty} \frac{1}{j!} (\lambda + 1)^{j-1} \partial_{t} (\log t_{+})^{j},$$

where $(\log t_+)^j$ is the distribution defined by the pairing

$$\langle (\log t_+)^j, \varphi \rangle = \int_0^\infty (\log t)^j \varphi(t) \, dt$$

for $\varphi \in C_0^{\infty}(\mathbb{R})$.

Let us introduce the following notation:

• For a nonnegative integer j, we set

$$h_j(t) = \begin{cases} \delta(t) & (j=0), \\ \frac{1}{j!} \partial_t (\log t_+)^j & (j \ge 1) \end{cases}$$

with $\partial_t = \partial/\partial_t$ and

$$h_{\alpha}(x) = h_{\alpha_1}(x_1) \cdots h_{\alpha_n}(x_n)$$

for a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$.

• For a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, we set

$$|\alpha| = \alpha_1 + \dots + \alpha_n, \quad [\alpha] = \max\{\alpha_i \mid 1 \le i \le n\}.$$

• Set $S(n) = \{ \sigma = (\sigma_1, \dots, \sigma_n) \in \{1, -1\}^n \mid \sigma_1 \cdots \sigma_n = 1 \}.$

Since

$$(x_1 \cdots x_n)_+^{\lambda} = \sum_{\sigma \in S(n)} (\sigma_1 x_1)_+^{\lambda} \cdots (\sigma_n x_n)_+^{\lambda},$$

we have

$$u_{-n+k}(x) = \sum_{\sigma \in S(n)} \sum_{|\alpha|=k} h_{\alpha}(\sigma x).$$

In particular, we have

$$u_{-n}(x) = \sum_{\sigma \in S(n)} \delta(\sigma_1 x_1) \cdots \delta(\sigma_n x_n) = 2^{n-1} \delta(x_1) \cdots \delta(x_n).$$

It follows that $\operatorname{Ann}_{\mathcal{D}_0} u_{-n}$ is generated by x_1, \ldots, x_n . This proves the assertion for k = 0since $x_1\partial_1 - x_i\partial_i = \partial_1 x_1 - \partial_i x_i$ belongs to the left ideal of \mathcal{D}_0 generated by x_1, \ldots, x_n .

We shall prove the assertion by induction on k. Assume $k \geq 1$ and $P \in \mathcal{D}_0$ annihilates u_{-n+k} , that is, $Pu_{-n+k} = 0$ holds on a neighborhood of $0 \in M$. By division, there exist $Q_1, \ldots, Q_r, R \in \mathcal{D}_0$ such that

(2.1)
$$P = Q_1 \partial_1 x_1 + \dots + Q_n \partial_n x_n + R,$$
$$R = \sum_{\alpha_1 \beta_1 = \dots = \alpha_n \beta_n = 0} a_{\alpha,\beta} x^{\alpha} \partial^{\beta} \qquad (a_{\alpha,\beta} \in \mathbb{C})$$

Since

(2.2)
$$u_{-n+k}(x) = \sum_{\sigma \in S(n)} \sum_{|\alpha|=k, \, [\alpha]=1} h_{\alpha}(\sigma x) + \sum_{\sigma \in S(n)} \sum_{|\alpha|=k, \, [\alpha]\geq 2} h_{\alpha}(\sigma x),$$

we have

$$u_{-n+k}(x) = 2^{n-k-1}\delta(x_1)\cdots\delta(x_{n-k})h_1(x_{n-k+1})\cdots h_1(x_n)$$

= $2^{n-k-1}\delta(x_1)\cdots\delta(x_{n-k})\frac{1}{x_{n-k+1}}\cdots\frac{1}{x_n}$

82

on the domain $x_{n-k+1} > 0, \ldots, x_n > 0$. Note that $\partial_i x_i$ annihilates both $\delta(x_i)$ and x_i^{-1} . Hence

$$0 = Pu_{-n+k} = Ru_{-n+k}$$

=
$$\sum_{\alpha_1 = \dots = \alpha_{n-k} = 0, \alpha_{n-k+1} \beta_{n-k+1} = \dots = \alpha_n \beta_n = 0} (-1)^{\beta_{n-k+1} + \dots + \beta_n} \beta_{n-k+1}! \cdots \beta_n! a_{\alpha,\beta}$$

$$\delta^{(\beta_1)}(x_1) \cdots \delta^{(\beta_{n-k})}(x_{n-k}) x_{n-k+1}^{\alpha_{n-k+1} - \beta_{n-k+1} - 1} \cdots x_n^{\alpha_n - \beta_n - 1}$$

holds on $\{x \in M \mid x_{n-k+1} > 0, \dots, x_n > 0\} \cap V$ with an open neighborhood V of the origin. Hence $a_{\alpha,\beta} = 0$ holds if $\alpha_1 = \dots = \alpha_{n-k} = 0$.

In the same way, we conclude that $a_{\alpha,\beta} = 0$ if the components of α are zero except at most k components. This implies that R is contained in the left ideal generated by $x_{j_1} \cdots x_{j_{k+1}}$ with $1 \le j_1 < \cdots < j_{k+1} \le n$.

In the right-hand-side of (2.2), each term contains the product of at least n - k delta functions. Hence $x_{j_1} \cdots x_{j_{k+1}}$ with $1 \leq j_1 < \cdots < j_{k+1} \leq n$, and consequently R also, annihilates $u_{-n+k}(x)$. Hence we have

$$0 = Pu_{-n+k} = \sum_{i=1}^{n} Q_i \partial_i x_i u_{-n+k}.$$

On the other hand, since

$$\partial_i x_i (x_1 \cdots x_n)_+^{\lambda} = (x_i \partial_i + 1)(x_1 \cdots x_n)_+^{\lambda} = (\lambda + 1)(x_1 \cdots x_n)_+^{\lambda},$$

we have

$$\partial_i x_i u_{-k} = u_{-k-1} \qquad (k \le n-1, \ 1 \le i \le n)$$

and consequently

$$0 = \sum_{i=1}^{n} Q_i \partial_i x_i u_{-n+k} = \sum_{i=1}^{n} Q_i u_{-n+k-1}.$$

By the induction hypothesis, $\sum_{i=1}^{n} Q_i$ belongs to the left ideal of \mathcal{D}_0 generated by

$$x_{j_1} \cdots x_{j_k}$$
 $(1 \le j_1 < \cdots < j_k \le n), \quad x_1 \partial_1 - x_i \partial_i \quad (2 \le i \le n).$

Now rewrite (2.1) in the form

$$P = \sum_{i=1}^{n} Q_i \partial_1 x_1 + \sum_{i=2}^{n} Q_i (\partial_i x_i - \partial_1 x_1) + R.$$

If $j_1 > 1$, we have

$$x_{j_1}\cdots x_{j_k}\partial_1 x_1 = \partial_1 x_1 x_{j_1}\cdots x_{j_k}$$

If $j_1 = 1$, let l be an integer with $2 \le l \le n$ such that $l \ne j_2, \ldots, l \ne j_k$. Then we have

$$x_{j_1}\cdots x_{j_k}\partial_1 x_1 = x_{j_2}\cdots x_{j_k}x_1\partial_1 x_1 = x_{j_2}\cdots x_{j_k}x_1(\partial_1 x_1 - \partial_l x_l) + \partial_l x_{j_2}\cdots x_{j_k}x_1 x_l.$$

We conclude that P belongs to the left ideal generated by

$$x_{j_1} \cdots x_{j_{k+1}} \quad (1 \le j_1 < \cdots < j_{k+1} \le n), \quad x_1 \partial_1 - x_i \partial_i \quad (2 \le i \le n).$$

Conversely it is easy to see that these generators annihilate u_{-n+k} since

$$x_1\partial_1(x_1\cdots x_n)_+^{\lambda} = x_i\partial_i(x_1\cdots x_n)_+^{\lambda} = \lambda(x_1\cdots x_n)_+^{\lambda}$$

and each term of (2.2) contains the product of at least n - k delta functions.

Theorem 2.2. Let f_1, \ldots, f_m be real-valued real analytic functions defined on a neighborhood of the origin of $M = \mathbb{R}^n$ such that $df_1 \wedge \cdots \wedge df_m \neq 0$. Let

$$(f_1 \cdots f_m)^{\lambda}_+ = \sum_{j=-m}^{\infty} (\lambda+1)^j u_j$$

be the Laurent expansion about $\lambda = -1$, with each u_j being a distribution defined on a common neighborhood of the origin. Let v_1, \ldots, v_n be real analytic vector fields defined on a neighborhood of the origin which are linearly independent and satisfy

$$v_i(f_j) = \begin{cases} 1 & (if \ i = j \le m) \\ 0 & (otherwise) \end{cases}$$

Then for k = 0, 1, ..., m - 1, the annihilator $\operatorname{Ann}_{\mathcal{D}_0} u_{-m+k}$ is generated by

$$\begin{aligned} f_{j_1} \cdots f_{j_{k+1}} & (1 \le j_1 < \cdots < j_{k+1} \le m), \\ f_1 v_1 - f_i v_i & (2 \le i \le m), \quad v_j \quad (m+1 \le j \le n). \end{aligned}$$

Proof. By a local coordinate transformation, we may assume that $f_j = x_j$ for $j = 1, \ldots, m$, and $v_j = \partial/\partial x_j$ for $j = 1, \ldots, n$. Then the distribution u_j does not depend on x_{m+1}, \ldots, x_n . Hence we have only to apply Proposition 2.1 in \mathbb{R}^m . \Box

References

- Igusa, J., An Introduction to the Theory of Local Zeta Functions, American Mathematical Society, 2000.
- [2] Kashiwara, M., B-functions and holonomic systems—Rationality of roots of B-functions, Invent. Math., 38 (1976), 33–53.
- [3] Oaku, T., Annihilators of distributions associated with algebraic local cohomology of a hypersurface, *Complex Variables and Elliptic Equations*, **59** (2014), 1533-1546.