
RIMS Kôkyûroku Bessatsu
B57 (2016), 079−084

Annihilators of Laurent coefficients of the complex
power for normal crossing singularity

By

Toshinori Oaku *

Abstract

Let f be a real‐valued real analytic function defined on an open set of \mathbb{R}^{n} . Then the

complex power f_{+}^{ $\lambda$} is defined as a distribution with a holomorphic parameter  $\lambda$ . We determine

the annihilator (in the ring of differential operators) of each coefficient of the principal part of

the Laurent expansion of  f_{+}^{ $\lambda$} about  $\lambda$= -1 in case f=0 has a normal crossing singularity.

§1. Introduction

Let \mathcal{D}_{X} be the sheaf of linear differential operators with holomorphic coefficients

on the n‐dimensional complex affine space X = \mathbb{C}^{n} . We denote by \mathcal{D}_{M} the sheaf

theoretic restriction of \mathcal{D}_{X} to the n‐dimensional real affine space M=\mathbb{R}^{n}
,

which is the

sheaf of linear differential operators whose coefficients are complex‐valued real analytic
functions. Let us denote by \mathcal{D}_{0}=(\mathcal{D}_{M})_{0} ,

for the sake of brevity, the stalk of \mathcal{D}_{M} (or of

\mathcal{D}_{X}) at the origin 0\in M ,
which is \mathrm{a} (left and right) Noetherian ring.

Let \mathcal{D}_{M}^{0} be the sheaf on M of the distributions (generalized functions) in the sense

of L. Schwartz. In general, for a sheaf \mathcal{F} on M and an open subset U of M
,

we denote

by  $\Gamma$(U, \mathcal{F}) = \mathcal{F}(U) the set of the sections of \mathcal{F} on U . Let C_{0}^{\infty}(U) be the set of the

complex‐valued C^{\infty} functions defined on U whose support is a compact set contained

in U . Then  $\Gamma$ (U, \mathcal{D}_{M}^{0}) consists of the \mathbb{C}‐linear maps

u:C_{0}^{\infty}(U) \ni $\varphi$\ovalbox{\tt\small REJECT} \langle u,  $\varphi$\rangle \in \mathbb{C}
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which are continuous in the sense that \displaystyle \lim_{j\rightarrow\infty}\langle u, $\varphi$_{j}\rangle =0 holds for any sequence \{$\varphi$_{j}\}
of C_{0}^{\infty}(U) if there is a compact set K\subset U such that $\varphi$_{j} =0 on U\backslash K and

\displaystyle \lim_{j\rightarrow\infty}\sup_{x\in U}|\partial^{ $\alpha$}$\varphi$_{j}(x)| =0 for any  $\alpha$\in \mathbb{N}^{n},

where we use the notation x= (x1, . . . , x_{n}) , \mathbb{N}=\{0 , 1, 2, . . . \} and \partial^{ $\alpha$} =\partial_{1}^{$\alpha$_{1}}\cdots\partial_{n}^{$\alpha$_{n}} with

\partial_{j} =\partial/\partial x_{j}.
For a distribution u defined on an open set U of M

,
its annihilator \mathrm{A}\mathrm{n}\mathrm{n}_{D_{M}}u in \mathcal{D}_{M}

is defined to be the sheaf of left ideals of sections P of \mathcal{D}_{M} which annihilate u . That is,
for each open subset V of U ,

we have by definition

 $\Gamma$(V, \mathrm{A}\mathrm{n}\mathrm{n}_{D_{M}}u)= { P\in \mathcal{D}_{M}(V) | Pu=0 on V}.

Its stalk \mathrm{A}\mathrm{n}\mathrm{n}_{D_{0}}u at 0\in M is a left ideal of \mathcal{D}_{0}.
Now let f be a real‐valued real analytic function defined on an open set U of M.

Then for a complex number  $\lambda$ with non‐negative real part ({\rm Re} $\lambda$\geq 0) ,
the distribution

f_{+}^{ $\lambda$} is defined to be the locally integrable function

f_{+}^{ $\lambda$}(x) := \left\{\begin{array}{l}
f(x)^{ $\lambda$}=\exp( $\lambda$\log f(x)) \mathrm{i}\mathrm{f} f(x) >0\\
0 \mathrm{i}\mathrm{f} f(x) \leq 0
\end{array}\right.
on U and is holomorphic with respect to  $\lambda$ for {\rm Re} $\lambda$>0.

For each x_{0} \in  U ,
there exist a nonzero polynomial b_{f,x_{0}}(s) in an indeterminate s

and some P(s) \in (\mathcal{D}_{M})_{x_{0}}[s] such that

b_{f,x_{0}}( $\lambda$)f_{+}^{ $\lambda$}=P( $\lambda$)f_{+}^{ $\lambda$+1}

holds in a neighborhood of x_{0} for {\rm Re} $\lambda$>0 . It follows that f_{+}^{ $\lambda$} is a distribution‐valued

meromorphic function on the whole complex plane \mathbb{C} with respect to  $\lambda$ . This is called the

complex power, and for a compactly supported  C^{\infty} ‐function  $\varphi$ on  U ,
the meromorphic

function \langle f_{+}^{ $\lambda$},  $\varphi$\rangle in  $\lambda$ is called the local zeta function (see, e.g., [1]).
By virtue of Kashiwara�s theorem on the rationality of  b‐functions ([2]), the poles of

f_{+}^{ $\lambda$} are negative rational numbers. Let $\lambda$_{0} be a pole of f_{+}^{ $\lambda$} and x_{0} be a point of U . Then

there exist a positive integer m
,

an open neighborhood V of x_{0} ,
an open neighborhood

W of $\lambda$_{0} in \mathbb{C} , and distributions u_{k} defined on V such that

 f_{+}^{ $\lambda$}=u_{-m}( $\lambda-\lambda$_{0})^{-m}+\cdot \cdot \cdot+u_{-1}( $\lambda-\lambda$_{0})^{-1}+u_{0}+u_{1}( $\lambda-\lambda$_{0})+\cdot \cdot \cdot

holds as distribution on  V for any  $\lambda$\in W\backslash \{$\lambda$_{0}\} . To determine the poles of f_{+}^{ $\lambda$} ,
and its

Laurent expansion at each pole is an interesting problem and has been investigated by

many authors.
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From the viewpoint of D‐module theory, it would be interesting if we can compute

the annihilator of each Laurent coefficient as above explicitly. For example, we compared
the annihilator of the residue of f_{+}^{ $\lambda$} at  $\lambda$ = -1 with that of local cohomology group

supported on f=0 in [3].
In this paper, we treat the case where f =0 has a normal crossing singularity at

the origin and determine the annihilators of the coefficients of the negative degree part

of the Laurent expansion about  $\lambda$=-1 . The two dimensional case was treated in [3].

§2. Main results

Let x=(x_{1}, \ldots, x_{n}) be the coordinate of M=\mathbb{R}^{n}.

Proposition 2.1. The distribution (x_{1}\cdots x_{n})_{+}^{ $\lambda$} has a pole of order n at  $\lambda$=-1.

Let

(x_{1}\displaystyle \cdots x_{n})_{+}^{ $\lambda$}=\sum_{j=-n}^{\infty}( $\lambda$+1)^{j}u_{j}
be the Laurent expansion of the distribution (x_{1}\cdots x_{n})_{+}^{ $\lambda$} with respect to the holomorphic

parameter  $\lambda$ about  $\lambda$=-1
,

with u_{j} \in \mathcal{D}_{M}^{0}(M) for j \geq -n . Then for k=0 , 1, . . .

, n-1,
the left ideal \mathrm{A}\mathrm{n}\mathrm{n}_{D_{0}}u_{-n+k} of \mathcal{D}_{0} is generated by

x_{j_{1}}
. .

x_{j_{k+1}} (1\leq j_{1} < . . . <j_{k+1} \leq n) , x_{1}\partial_{1}-x_{i}\partial_{i} (2\leq i\leq n) .

Proof. In one variable t
,

we have

t_{+}^{ $\lambda$}=( $\lambda$+1)^{-1}\partial_{t}t_{+}^{ $\lambda$+1}

=( $\lambda$+1)^{-1}\displaystyle \partial_{t}\{Y(t)+\sum_{j=1}^{\infty}\frac{1}{j!}( $\lambda$+1)^{j}(\log t_{+})^{j}\}
=( $\lambda$+1)^{-1} $\delta$(t)+\displaystyle \sum_{j=1}^{\infty}\frac{1}{j!}( $\lambda$+1)^{j-1}\partial_{t}(\log t_{+})^{j},

where (\log t_{+})^{j} is the distribution defined by the pairing

\displaystyle \langle(\log t_{+})^{j},  $\varphi$\rangle =\int_{0}^{\infty}(\log t)^{j} $\varphi$(t)dt
for  $\varphi$\in C_{0}^{\infty}(\mathbb{R}) .

Let us introduce the following notation:

\bullet For a nonnegative integer  j ,
we set

h_{j}(t)= \left\{\begin{array}{ll}
 $\delta$(t) & (j=0) ,\\
\frac{1}{j!}\partial_{t}(\log t_{+})^{j} & (j\geq 1)
\end{array}\right.
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with \partial_{t}=\partial/\partial_{t} and

h_{ $\alpha$}(x)=h_{$\alpha$_{1}}(x_{1})\cdots h_{$\alpha$_{n}}(x_{n})

for a multi‐index  $\alpha$= ($\alpha$_{1}, \ldots, $\alpha$_{n}) \in \mathbb{N}^{n}.

\bullet For a multi‐index  $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{n}) \in \mathbb{N}^{n} ,
we set

| $\alpha$| =$\alpha$_{1}+\displaystyle \cdots+$\alpha$_{n}, [ $\alpha$] =\max\{$\alpha$_{i} | 1\leq i\leq n\}.

\bullet Set  S(n)=\{ $\sigma$=($\sigma$_{1}, \ldots, $\sigma$_{n}) \in\{1, -1\}^{n} |$\sigma$_{1}\cdots$\sigma$_{n}=1\}.

Since

(x_{1}\displaystyle \cdots x_{n})_{+}^{ $\lambda$}=\sum_{ $\sigma$\in S(n)}($\sigma$_{1}x_{1})_{+}^{ $\lambda$}\cdots ($\sigma$_{n}x_{n})_{+}^{ $\lambda$},
we have

u_{-n+k}(x)= \displaystyle \sum \sum h_{ $\alpha$}( $\sigma$ x) .

 $\sigma$\in S(n)| $\alpha$|=k

In particular, we have

u_{-n}(x)=\displaystyle \sum_{ $\sigma$\in S(n)} $\delta$($\sigma$_{1}x_{1})
. . .  $\delta$($\sigma$_{n}x_{n})=2^{n-1} $\delta$(x_{1}) . . .  $\delta$(x_{n}) .

It follows that \mathrm{A}\mathrm{n}\mathrm{n}_{D_{0}}u_{-n} is generated by x_{1} ,
. . .

, x_{n} . This proves the assertion for k=0

since x_{1}\partial_{1}-x_{i}\partial_{i}=\partial_{1}x_{1}-\partial_{i}x_{i} belongs to the left ideal of \mathcal{D}_{0} generated by x_{1} ,
. . .

, x_{n}.

We shall prove the assertion by induction on k . Assume k \geq  1 and P \in \mathcal{D}_{0}
annihilates u_{-n+k} ,

that is, Pu_{-n+k} = 0 holds on a neighborhood of 0 \in  M . By

division, there exist Q_{1} ,
. . .

, Q_{r}, R\in \mathcal{D}_{0} such that

(2.1) P=Q_{1}\partial_{1}x_{1}+\cdot \cdot \cdot+Q_{n}\partial_{n}x_{n}+R,

R=\displaystyle \sum_{$\alpha$_{1}$\beta$_{1}=\cdots=$\alpha$_{n}$\beta$_{n}=0}a_{ $\alpha,\ \beta$}x^{ $\alpha$}\partial^{ $\beta$} (a_{ $\alpha,\ \beta$}\in \mathbb{C}) .

Since

(2.2) u_{-n+k}(x)=\displaystyle \sum_{ $\sigma$\in S(n)| $\alpha$|}\sum_{=k,[ $\alpha$]=1}h_{ $\alpha$}( $\sigma$ x)+\sum_{ $\sigma$\in S(n)| $\alpha$|}\sum_{=k,[ $\alpha$]\geq 2}h_{ $\alpha$}( $\sigma$ x) ,

we have

u_{-n+k}(x)=2^{n-k-1} $\delta$(x_{1}) . . .  $\delta$(x_{n-k})h_{1}(x_{n-k+1}) . . . h_{1}(x_{n})

=2^{n-k-1} $\delta$(x_{1}) . . .  $\delta$(x_{n-k})\displaystyle \frac{1}{x_{n-k+1}} . . . \displaystyle \frac{1}{x_{n}}
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.on the domain xn -k+1 >0 ,
. . .

, x_{n} >0 . Note that \partial_{i}x_{i} annihilates both  $\delta$(x_{i}) and x_{i}^{-1}
Hence

0=Pu_{-n+k}=Ru_{-n+k}

=\displaystyle \sum_{$\alpha$_{1}=\cdots=$\alpha$_{n-k}=0,$\alpha$_{n-k+1}$\beta$_{n-k+1}=\cdots=$\alpha$_{n}$\beta$_{n}=0}(-1)^{$\beta$_{n-k+1}+\cdots+$\beta$_{n}}$\beta$_{n-k+1}!\cdots$\beta$_{n}!a_{ $\alpha,\ \beta$}
$\delta$^{($\beta$_{1})}(x_{1})\cdots$\delta$^{($\beta$_{n-k})}(x_{n-k})x_{n-k+1}^{$\alpha$_{-}-k+1-$\beta$_{n}-k+1-1}\cdots x_{n}^{$\alpha$_{n}-$\beta$_{n}-1}

holds on \{x \in M | x_{n-k+1} > 0, . . . , x_{n} > 0\}\cap V with an open neighborhood V of the

origin. Hence a_{ $\alpha,\ \beta$}=0 holds if $\alpha$_{1} =\cdots=$\alpha$_{n-k} =0.

In the same way, we conclude that a_{ $\alpha,\ \beta$}=0 if the components of  $\alpha$ are zero except

at most  k components. This implies that R is contained in the left ideal generated by

x_{j_{1}}\cdots x_{j_{k+1}} with 1\leq j_{1} <. . . <j_{k+1} \leq n.

In the right‐hand‐side of (2.2), each term contains the product of at least n-k

delta functions. Hence x_{j_{1}}\cdots x_{j_{k+1}} with 1 \leq j_{1} <. . . <j_{k+1} \leq n ,
and consequently R

also, annihilates u_{-n+k}(x) . Hence we have

0=Pu_{-n+k}=\displaystyle \sum_{i=1}^{n}Q_{i}\partial_{i}x_{i}u_{-n+k}.
On the other hand, since

\partial_{i}x_{i} (x_{1}\cdots x_{n})_{+}^{ $\lambda$}=(x_{i}\partial_{i}+1)(x_{1}\cdots x_{n})_{+}^{ $\lambda$}=( $\lambda$+1)(x_{1}\cdots x_{n})_{+}^{ $\lambda$},

we have

\partial_{i}x_{i}u_{-k}=u_{-k-1} (k\leq n-1, 1\leq i\leq n)

and consequently

0=\displaystyle \sum_{i=1}^{n}Q\partial xu=\sum_{i=1}^{n}Q_{i}u_{-n+k-1}.
By the induction hypothesis, \displaystyle \sum_{i=1}^{n}Q_{i} belongs to the left ideal of \mathcal{D}_{0} generated by

x_{j_{1}}\cdots x_{j_{k}} (1\leq j_{1} <. . . <j_{k} \leq n) , x_{1}\partial_{1}-x_{i}\partial_{i} (2\leq i\leq n) .

Now rewrite (2.1) in the form

P=\displaystyle \sum_{i=1}^{n}Q_{i}\partial_{1}x_{1}+\sum_{i=2}^{n}Q_{i}(\partial_{i}x_{i}-\partial_{1}x_{1})+R.
If j_{1} > 1

,
we have

x_{j_{1}}
. . . x_{j_{k}}\partial_{1}x_{1} =\partial_{1}x_{1}x_{j_{1}} . . .

x_{j_{k}}.
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If j_{1} =1
,

let l be an integer with 2\leq l\leq n such that l\neq j_{2} ,
. . .

, l\neq j_{k} . Then we have

x_{j_{1}}\cdots x_{j_{k}}\partial_{1}x_{1} =x_{j_{2}}\cdots x_{j_{k}}x_{1}\partial_{1}x_{1} =x_{j_{2}}\cdots x_{j_{k}}x_{1}(\partial_{1}x_{1}-\partial_{l}x_{l})+\partial_{l}x_{j_{2}}\cdots x_{j_{k}}x_{1}x_{l}.

We conclude that P belongs to the left ideal generated by

x_{j_{1}}
. .

x_{j_{k+1}} (1\leq j_{1} < . . . <j_{k+1} \leq n) , x_{1}\partial_{1}-x_{i}\partial_{i} (2\leq i\leq n) .

Conversely it is easy to see that these generators annihilate u_{-n+k} since

x_{1}\partial_{1} (x_{1}. . .x_{n})_{+}^{ $\lambda$}=x_{i}\partial_{i}(x_{1}. . . x_{n})_{+}^{ $\lambda$}= $\lambda$(x_{1}. . . x_{n})_{+}^{ $\lambda$}

and each term of (2.2) contains the product of at least n-k delta functions. \square 

Theorem 2.2. Let f_{1} ,
. . .

, f_{m} be real‐valued real analytic functions defined on a

neighborhood of the origin of M=\mathbb{R}^{n} such that  df_{1}\wedge\cdots ∧  df_{m}\neq 0 . Let

(f_{1}. . . f_{m})_{+}^{ $\lambda$}=\displaystyle \sum_{j=-m}^{\infty}( $\lambda$+1)^{j}u_{j}
be the Laurent expansion about  $\lambda$= -1

,
with each u_{j} being a distribution defined on a

common neighborhood of the origin. Let v_{1} ,
. . .

, v_{n} be real analytic vector fields defined
on a neighborhood of the origin which are linearly independent and satisfy

v_{i}(f_{j})= \left\{\begin{array}{ll}
1 & (if i=j\leq m)\\
0 & (otherwise)
\end{array}\right.
Then for k=0 , 1, . . .

,
m-1

,
the annihilator \mathrm{A}\mathrm{n}\mathrm{n}_{D_{0}}u_{-m+k} is generated by

f_{j_{1}} . . . f_{j_{k+1}} (1\leq j_{1} < . . . <j_{k+1} \leq m) ,

f_{1}v_{1}-f_{i}v_{i} (2\leq i\leq m) , v_{j} (m+1\leq j\leq n) .

Proof. By a local coordinate transformation, we may assume that f_{j} = x_{j} for

j = 1
,

. . .

,
m

,
and v_{j} = \partial/\partial x_{j} for j = 1

,
. . .

,
n . Then the distribution u_{j} does not

depend on x_{m+1} ,
. . .

, x_{n} . Hence we have only to apply Proposition 2.1 in \mathbb{R}^{m}. \square 
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