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A Laplace transform of Laplace hyperfunctions in
several variables

By

Kohei UMETA*

Abstract

We construct a Laplace transform of Laplace hyperfunctions in several variables with
support in an Ry -conic closed convex cone and it’s inverse transform.

§1. Introduction

H. Komatsu ([3]-[8]) established the theory of Laplace hyperfunctions in one vari-
able in order to consider the Laplace transform of a hyperfunction. Using the theory
effectively, he had succeeded in giving a justification of the Heaviside operational calcu-
lus on a wider class of functions. A Laplace hyperfunction in one variable is presented
by a difference of boundary values of holomorphic functions of exponential type along
the real axis. Recently, N. Honda and the author established a vanishing theorem of
cohomology groups on a Stein open subset with values in the sheaf of holomorphic func-
tions of exponential type in the paper [2]. By the theorem, we can construct the sheaf
of one dimensional Laplace hyperfunctions introduced by H. Komatsu. Furthremore,
in the paper [1], we established an edge of the wedge type theorem for holomorphic
functions of exponential type and gave the sheaf of Laplace hyperfunctions in several
variables. In this note, we announce the construction of a Laplace transform of Laplace
hyperfunctions in several variables and related results without proofs. The detailed
proofs will appear in a forthcoming publication.
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§ 2. The Sheaf of Laplace hyperfunctions B%p in several variables

In this section, we recall the vanishing theorem of cohomology groups on a Stein
open subset with coefficients in holomorphic functions of exponential type and the
definition of the sheaf of Laplace hyperfunctions BQMXP on M. For more details, we refer
the reader to [1] and [2].

Let n € N and M be an n-dimensional R-vector space (n > 1) with an inner
product, and let E be its complexification. We denote by Dg the radial compactification
of E which is defined by the disjoint union of E and the copy ((E\ {0})/R4)oo of the
quotient space (E \ {0})/Ry. Here R denotes the set of positive real numbers. The
radial compactification Dg of E can be identified with the disjoint union of C™ and the
copy S?"loo of §?"~1 where S?"~! is the real (2n — 1)-dimensional unit sphere.

Let © be an open subset in Dg. A holomorphic function f(z) in QN E is said to
be of exponential type if f(z) satisfies the following condition: For any compact subset
K in €, there exist constants Cx > 0 and Hx > 0 such that

(2.1) 1f(2)] < CgeflxlZl (2 e KN E).
Let Z be a subset in Dg. We denote by ClOS})O(Z) the subset in $?"~loo defined by

There exist points {zx} in Z N E such that

2.2 €closl (Z) &
(22) 200 € clos,(2) {zk—>zooin]D)E and |zg1|/|zx] — 1 as k — oo.

Define
(2.3) NL(Z):= 510\ closl (E\ Z).

Definition 2.1. Let Q be an open subset in Dg. We say that € is regular at oo
if NL(Q)=0n5*""1c.

We give both examples of open sets satisfying the regularity condition and other-
wise.

Example 2.2 ([2], Example 3.6). Let D¢ denote the radial compactification of
C. For the set Q := D¢\ {1,2,3,4,...,+00}, we have N1 (Q) = S'oo\ {+00}. Hence
is regular at co. However, for the set 2 := D¢\ {1,2,4,8,16, ..., 400}, Q is not regular
at 0o because of N1 (Q) = S'oo.

We have the vanishing theorem of cohomology groups on a Stein open subset for
0P,
E

Theorem 2.3 ([2], Theorem 3.7). Let Q be an open subset in Dg. If QN E is
pseudo-convex in E and § is reqular at oo, then we have

(2.4) H*(Q, O5P) =0 (k#0).
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The following example shows that the theorem does not holds without the regularity

condition.

Example 2.4 ([2], Example 3.17).  We consider the case n = 2, i.e., E = C? and
Dg = De2. Let (1,0)00 € ((E\ {0})/R4)o0. Set

U= {(zl, 2) € E; |arg(z1)] < % |2 < |zl|},
0= (U)O\{(LO)OO} C Dg.

Note that QN E = U is pseudo-convex in E and € is not regular at co. In this case, we
have H'(Q, O5P) # 0.

We have the edge of the wedge type theorem for Og;p. Let M be the closure of M
in D E-

Theorem 2.5 ([1], Corollary 3.16).  The closed subset M C Dg is purly n-codimentional
relative to the sheaf OpY, i.c.,

(2.5) e (OpP) =0 (k#n).
By Theorem 2.5, we can construct the sheaf of Laplace hyperfunctions on M.
Definition 2.6.  The sheaf of Laplace hyperfunctions on M is defined by
(2.6) B%p = %”%(OBZP) Z@_ Wir-
M

Here wyz is the orientation sheaf #7-(Zp, ) and Zp,, is the constant sheaf on Dg having
stalk Z.

§3. A Laplace transform of I'z—(M,B7")

In this section, we construct a Laplace transform of Laplace hyperfunctions and it’s
inverse Laplace transform. We first get the representation of all the sections of Laplace
hyperfunctions with support in an R -conic closed convex cone in M.

Let Z be a subset in F and a € M. We set

(3.1) Zg:=Z+{a} ={2+a;z€ Z}.

For a subset Z C D, we denote by N (Z) the subset S*" oo\ (E\ Z) in S*" oo,
For an open subset U C F, we define the open subset in Dg

(3.2) U := U U Ny (U).
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Definition 3.1. Let V be an R*-conic open cone in M and Q an subset in M.
Let U be an open subset in Dg. We say that U is a wedge of the type Q x /—1V if,
for any open proper subcone V' of V, there exists an open neighborhood W of Q2 in Dg
such that

(3.3) (M x/—-1V')NnW cC U.
We have the following proposition.

Proposition 3.2. Let K be an Ry-conic closed cone in M and V an linear
proper open cone in M, i.e., V is given by the intersection of finite number of half space
in M. Then there exist an open neighborhood Q of K in M and an open subset U in
Dg such that the following conditions are satisfied:

1. U s a wedge of the type 2 x /—1V.
2. U s stein and reqular at co.

3. U is an open neighborhood of Q\ K in Dg.

Let @ € M and K be an R -conic closed convex cone in M. We consider the
representation of Tz—(M, B2"). Take vectors wo, ..., w, € S"~'. For the dual wj =
{y € M;yw; > 0} of w; and K,, we can take an open neighborhood Q of K, in M
and an open subset U; C Dg of the wedge of the type 2 x \/—_lw; which satisfy the
conditions in Proposition 3.2. We also take a neighborhood U of K, in Dg which is
stein and regular at oo. Set

(3.4) U={U, Uy, ..., Up}, W ={Uo, ..., Un}
Then we have the following representations of T'z—(M, B).

T (M,BSP) = H' (mod ¢, O5)
(3.5) _ Ker{@?:o ngp(nz;éj Ui) — 0%’;"(07:0 Ui}
Im{@j;&k ng(ﬂz;ﬁj, p Ul — @?:0 Oﬁlp(ﬂz# U}
Let us define the Laplace transform for an element f = @?:O F; of the above

representation of FK—G(M, BGHXP). Take a closed cone L C 2 which contains K and fix a
point w € (), ;w;. Set

Dj={x+vV-1lyeE; zeL,y=pxw},

where ¢ is a continuous function from L to Ry U {0}. We can assume that ¢ satisfies
the following three conditions:
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1. p(z) =01in OL,
2. D NE, =0,
3. Ej C Uj.

Then we define the Laplace transform for f = @_, Fj € Tx—(M, B?) by

(3.6) LN =30 [ Fe s,

where o :=sgn ( det(wg, -+, wj—1, Wjt1, - -+, wy) ). Note that the definition of (3.6)

a,inf

does not depend on the choice of L, w and ¢. Let us define the sheaf Op ~. For an

open subset Q in Dg, O%éﬂf(Q) consists of holomorphic functions f(z) on QN E for
which the following estimate holds: For any compact subset K C 2 and ¢ > 0, there
exists Ck ¢ satisfying

(3.7) %% f(2)] < Ck, cel?!, e KNE.

Let a € M and K C M be an R -conic closed cone in M. We denote by K° the dual
open cone of K in E with respect to Re(z§), i.e.,

(3.8) K°:={(e€ E; Re(2¢) >0 for zeK}.

We also denote by K°™ the dual open cone of K in M. Since the function Z(f)(\)
defined by (3.6) belongs to (9]‘5)’Einf(NC>o (K°)), the Laplace transform gives the following
morphism:

(3.9) &L T, (M, BEP) — 05 ™ (Noo(K°)).

We see that the morphism does not depend on the representation of 'z, (M, B%p ).
Hence .Z is well-defined. Next we define the inverse Laplace transform.

Definition 3.3. Let S be an open subset in S?" oo, and U an open subset in
Dg. We say that U has the opening wider than or equal to S at oo if

S C Noo(U).
The following lemma is important.

Lemma 3.4.  The following conditions are equivalent:

1. fe Op ™ (Nu(K°))
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2. There exists an open subset U in E whose opening is wider or equal to Noo(K®)
such that f is holomorphic on U and, for any compact subset K in U, there exists

an infra-linear function ¢ (s) satisfying
e f(2)| < e?x (=D, ze KNE.

3. there exists an infra-linear function ¢(s) and an open subset U in E whose opening
is wider or equal to Noo(K°) such that f is holomorphic on U with

e f(2)| < e, zeU

For f € O%’Einf(Noo(Ko)), we set

]' z
(3.10) fu(z) == T f(N)erdA.

Here the path of the integration T} is given by
(3.11) Toi={A=¢+V-Tne B nesy, €=u(llé |,

where ¥, = {n € M;n = Zj;ék tjw;, t; > 0}, ¢ is an infra-linear function, and £isa
point in K°¥. Then fx(z) does not depend on the choice of ¥ and é .
It follows from Lemma 3.4 that f; is the holomorphic function of exponential type

on (M +v—1(; 4 wy5). Hence we get the morphism
(3.12) S OF M (Noo(K°)) — BEP (M)
by

L= B orf

0<k<n

Then we have the following results.
Lemma 3.5. supp(~(f)) Cc K, for fe¢ O%’Einf(Noo(KO)).
Finally we give our main theorem.

Theorem 3.6. Yo% = idrfa (3, B=P). L oS = idog,Einf(Noo(Ko)).
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