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Multi-microlocalization

By

Naofumi HONDA? Luca PRELLI*and Susumu YAMAZAKI*™*

Abstract

The purpose of this paper is to report on the foundations of multi-microlocalization, in
particular, to give the fiber formula for the multi-microlocalization functor and estimate of

microsupport of a multi-microlocalized object. We also give some applications of these results.

§1. Multi-specialization

In this section we recall some results of [3]. We first fix some notations, then
we recall the notion of multi-normal deformation and the definition of the functor of

multi-specialization with some basic properties.

8§1.1. Notations

Let X be a real analytic manifold with dim X = n, and let x = {My,..., My} be
a family of closed submanifolds in X (¢ > 1). Throughout the paper all the manifolds
are always assumed to be countable at infinity. We set, for N € x, «(N) := ) M;.
NGM;
Here ¢(N) := X if there exists no j with N & M;. We set, for N € x and p € N,

NR,(N) := {M; € x; p€ M;, N ¢ M; and M; ¢ N}.
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Let us consider the following conditions for y.

H1 Each M; € x is connected and the submanifolds are mutually distinct, i.e. M; #
M;, for j # 7'

H2 For any N € x and p € N with NR,(N) # 0, we have
(1.1) | M, | +T,N=T,X.
M;€ENR,(N)
H3 M; # «(M;) for any j € {1,2,...,¢}.

Note that, if x satisfies the condition H2, the configuration of two submanifolds must

be either 1. or 2. below.
1. Both submanifolds intersect transversely.
2. One of them contains the other.

It follows from Proposition 1.2 [3] that, at every p € ﬂﬁ-:le, there exist a system
of local coordinates (x1, x2, ..., x,) and subsets Iy,..., I, C {1,...,n} such that M, =
{zr=0; kel;} for j=1,...,¢. Furthermore, these I, ..., I, satisfy the conditions

(i) either I; G Iy, It & I; or I; N I}, = () holds for any j # k,
(1.2)
(ii) U I | & I for any j.
L.GI;

Hence, for any j € {1,2,...,¢}, the set

(1.3) L=0,\| | L

I GI;

is not empty. For convenience, we set Iy = I := {1,...,n}\ (Uﬁ:l Ij) . Then, in local

coordinates, we can write the coordinates (x1,...,x,) by

(1.4) (2O, ™ . 2®),

where 2/) denotes the coordinates (xi)z'efj (j =0,...,¢). We also define, for j €
{0,1,...,¢}

(1.5) jj:{k’E{l,...,E}; jjgfk}:{kE{l,...,g}; Ijglk}
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Note that, with this notation, we have Jo = 0 and

§1.2. Multi-normal deformation

In [3] the notion of multi-normal deformation was introduced. Here we consider a
slight generalization where we replace the condition H2 with the weaker one. Let y =
{Mi,..., M} be a family of closed submanifolds of X. We say that y is simultaneously
linearizable on M = My N ---N My if for every x € M there exist a neighborhood V' of z
and a system of local coordinates (z1,...,2y) there for which we can find subsets I;’s
of {1,...,n} such that each M; NV is defined by equations z; = 0 (i € I;). Note that
if y satisfies the condition H2, then it is simultaneously linearizable. Now, through the

section, we assume that x is simultaneously linearizable on M.

First recall the classical construction of [4] of the normal deformation of X along
M. We denote it by X a, and we denote by ¢; € R the deformation parameter. Set
QMI = {(x; t1) ; t1 # 0} and define Mg = (pM1|§M )~1 M. Then ]\A/fg is a closed

1

smooth submanifold of X M, - Now we can define the normal deformation along M;, M>

as X My M,y = (X M1) . Then we can define recursively the normal deformation along
X as

X =Xn,,. M, = (XMl,...,Mg_l)]N’\‘/!“é-

Set Sy = {t1,...,ty =0}, M = ﬂle M; and Q, = {t1,...,t; > 0}. Then we have the

commutative diagram

(1.7) Sy — 5 ¥ +—=2Q,
I %
M

Let us consider the diagram (1.7). In local coordinates let I,...,I, C {1,...,n}
such that M; = {z, = 0; k € I;}. For j € {0,...,¢} set ty, = szejj t, where
tr,...,treRand t; =1. Thenp:)?—>X is defined by

ahareniat

SLUAN

(x(o),x(l) AP ,te) — (tjox(o),tjlx(l), . ,tj[x(e)).

Definition 1.1. Let Z be a subset of X. The multi-normal cone to Z along x
is the set C\(Z) =p~1(Z) N S,.
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Let us consider the canonical map Tas;¢(M;) — M; — X (j =1,...,£), and then,
we write for short

Tar (M) =T M T M. e x T My).
X1Si<t ;L (M) vy 1);; M L( 2); % ML (Mp)

When x satisfies the conditions H1, H2 and H3 we have S, ~  x Ty (Mj).
X,1<5<¢

Example 1.2. Let us see two typical examples of multi-normal deformations in

the complex case. Let X = C? (~ R* as a real manifold) with coordinates (21, 22).

1. (Majima) Let x = {M;, My} with M; = {z; = 0} and My = {22 = 0}. Then x
satisfies H1, H2 and H3. We have I, = {1}, I = {2}, J; = {1}, Jo = {2} (in R?,
if 21 = (x1,22) and 29 = (v3,24) we have I} = {1,2}, I, = {3,4}, J1 = Jo = {1},
Js = Jy ={2}). The map p: X — X is defined by

(21,22; t1,t2) — (t121,t222).

Remark that the deformation is real though X is complex. In particular ¢;,ts € R.
We have o(M;) = (M) = X and then the zero section S of X is isomorphic to
T, X ; T, X.

2. (Takeuchi) Let x = {M;, Ms} with M = {0} and My = {z2 = 0}. Then y satisfies
H1, H2 and H3. We have I; = {1,2}, I, = {2}, J; = {1}, Jo = {1,2} (in R*, if
z1 = (x1,29) and 2o = (x3,x4) we have Iy = {1,2,3,4}, I, = {3,4}, J, = Jo = {1},
Js = Jy ={1,2}). The map p: X — X is defined by

(21, 29; t1,t2) — (t121,t1t222).

We have (M) = My, o(Ms) = X and then the zero section S of X is isomorphic
to TMlMg X TMZX-
b's

Example 1.3. Let us see three typical examples of multi-normal deformations

in the real case. Let X = R? with coordinates (x1, z2,73).

1. (Majima) Let x = {My, Ma, M3} with My = {x; = 0}, My = {xo = 0} and
M3 = {x3 = 0}. Then x satisfies H1, H2 and H3. We have I, = {1}, I, = {2},
Is = {3}, Jy = {1}, Jo = {2}, Js = {3}. The map p: X — X is defined by

(1, %2, x3; t1,t2,t3) — (t121, taxa, t3xs).
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We have «(M;) = 1(My) = 1(Ms) = X and then the zero section S of X is isomorphic
to TM1X X TM2X X TM3X-
X b'e

2. (Takeuchi) Let x = {M;, My, M3} with M, = {0}, My = {22 = z3 = 0} and
M3 = {x3 = 0}. Then x satisfies H1, H2 and H3. We have I = {1,2,3}, I, = {2, 3},
Iy = {3}, Jy = {1}, Jo = {1,2}, J5 = {1,2,3}. The map p: X — X is defined by

(x1,x9,x3; t1,ta,t3) — (t1x1, tataxe, titatsxs).

We have (M) = Ma, 1(My) = Ms, «(Ms) = X and then the zero section S of X is
isomorphic to Ty, Mo X Tpr, M3 X Th, X.
X b's

3. (Mlxed) Let X = {Ml,MQ,Mg} with M1 = {O}, M2 = {332 = 0} and M3 = {.’133 =
0}. Then x satisfies H1, H2 and H3. We have I = {1,2,3}, I, = {2}, Is = {3},
Jy={1}, Jo ={1,2}, J3 = {1,3}. The map p: X — X is defined by

(21,2, x3; t1,t2,t3) — (t1x1, titaxs, titsxs).

We have ((M;y) = My N M3, «(M3) = «(M3) = X and then the zero section S is
isomorphic to Thas, (Ma N M3) X T, X X Thrr, X.
b's b's

Example 1.4. For well understanding, let us give an example of mixed type in
X = R* with coordinates (z1,22,73,74). Let x = {My, Moy, M3, My} with M; = {0},
My = {x9 = 23 =0}, M3 = {x3 = 0} and My = {x4 = 0}. Then x satisfies H1, H2 and
H3. We have I) = {1,2,3,4}, I = {2,3}, Is = {3}, I, = {4} and J; = {1}, Jo» = {1, 2},
Js ={1,2,3}, Jy={1,4}. The map p: X — X is defined by

(21,22, x3; t1,t2,t3) — (t1x1, titexs, titatzws, titaxy).

We have «(My) = Mo My, 1(Ms) = M3, «(M3) = «(My) = X and then the zero section
S is isomorphic to T, (Mo N My) X Tar, M3 X T, X X T, X.
X X X

When y satisfies conditions H1, H2 and H3, the zero-section S, becomes a vector bundle
over M. However, in general, the simultaneously linearizable condition is not enough to
assure the existence of a vector bundle structure on S, , as the following example shows.
The important exceptional case where x does not satisfy H2 but S, has a vector bundle

structure is studied in § 3.1.
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Example 1.5.  Let X = R? with coordinates (z1, 22, 3), and let x = {M;, Ms}
be a family of closed submanifolds in X defined by M; = {22 = x3 = 0} and
My = {x1 = 23 = 0}. Then S, is locally isomorphic to R? with coordinates (&1, &2, &3).
Let f = (f1, f2, f3) : X — Y be a coordinates transformation on X to its copy Y
with coordinates (y1, y2, y3) which sends M; and M, to their copy’s defined by the
same equations {y2 = y3 = 0} and {y1 = y3 = 0} respectively. Then the associated
coordinates transformation from S, to its copy S, with coordinates (11, 72, 13) is given
by

_ 0N
n = 8_331(0)51’
_0f2
N2 = 8_372(0)52’
df3 0% f3

N3 = 8—373(0)53 + 021025 (0)&1&.

Hence S, is not a vector bundle over M = {0}.

From now on we assume conditions H1, H2 and H3. Let ¢ € () M; and p; = (¢; &)
1<5<¢

be a point in Thr;t(Mj) (j = 1,2,...,¢). Weset p=p1 X ... xpe€ x Tp,u(My),
X X X,1<5<0

and p; = (g; éj) € T'h; X denotes the image of the point p; by the canonical embedding
Tar;e(Mj) — Ta, X. We denote by Coney j(p) (j = 1,2,...,¢) the set of open conic

cones in (Th; X)q =~ R?~dmM; that contain the point fj € (Th; X)q Rn—dimM;

Definition 1.6. We say that an open set G C (T'X), is a multi-cone along x

with direction to p € ( X TMjL(Mj)) if G is written in the form
X,1<5<¢ q

G= (] m4(Gj)  Gj & Coney,(p)
1<j<t
where 7 4 : (T'X), — (Tar; X)q is the canonical projection. We denote by Cone, (p)

the set of multi-cones along y with direction to p.

For any ¢ € X, there exists an isomorphism ¢ : X ~ (T'X), near ¢ with ¢(q) =
(g; 0) that satisfies ¢ (M;) = (T'Mj), for any j =1,...,¢.

Let Z be a subset of X. When y satisfies H1, H2 and H3 we also have the following
equivalence: p ¢ C,(Z) if and only if there exist an open subset ¢(¢) € U C (T'X ), and
a multi-cone G € Cone, (¢« (p)) such that ¢»(Z) NG NU = 0 holds.
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Example 1.7. We now give two examples of multi-cones in the complex case.

Let X = C? with coordinates (21, 22).

1. (Majima) Let My = {z; = 0} and My = {z2 = 0}. Then Cone, (p) for p = (0,0; 1,1)
is nothing but the set of multi sectors along Z; U Zs with their direction to (1,1).

2. (Takeuchi) Let My = {0} and My = {22 = 0}. Forp = (0,0; 1,1) € Thy, Mo xXT1, X,
b's
it is easy to see that a cofinal set of Cone, (p) is, for example, given by the family

of the sets

{1, m2)5 Im| < €lnz|, m1,m2 € S}sst,e>o0,

where S is a sector in C containing the direction 1.

Example 1.8. We now give three examples of multi-cones in the real case. Let

X = R? with coordinates (71,2, x3).

1. (Majima) Let My = {z1 = 0}, My = {z2 = 0} and M3 = {x3 = 0}. For p =
(0,0,0; 1,1,1) € TM1X§TM2X;<<TM3X, it is easy to see that Cone, (p) = {(R*)3}.

2. (Takeuchi) Let M; = {0}, My = {z2 = 23 = 0} and M3 = {z3 = 0}. For
p=1(0,0,0; 1,1,1) € Ty, My X T, M3 x T, X, it is easy to see that a cofinal set
X X
of Cone, (p) is, for example, given by the family of the sets

{(€1,62,€3); |E2| + €3] < €1, €3] < €2, €3 > O} eso-

3. (Mixed) Let My = {0}, My = {z2 = 0} and M3 = {z3 = 0}. Forp = (0,0,0; 1,1,1) €
T, (Mo Ms) ;<( Th, X ;<{ T, X, a cofinal set of Cone, (p) is, for example, given by
the family of the sets

1(61,62,€3);5 |€2| + |€3] < €61, &2 >0, §3 > O} eso.

Example 1.9. We now consider the case of Example 1.4. Let X = R* with
coordinates (x1,x2,x3,24). Let My = {z1 = 0}, My = {3 = 23 = 0}, M3 = {z3 = 0}
and My = {.’L‘4 = 0} For p = (0,0,0,0; 1,1,1, 1) € T, (M2 N M4) X Ty M3z X Th, X X

X X X

T, X, a cofinal set of Cone, (p) is, for example, given by the family of the sets

{(€1,62,83,&4); €] + |€a] < €€1, €3] < €62, &3 > 0, £4 > 0}eso.
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This definition is also compatible with the restriction to a subfamily of x. Namely,
let k < ¢ and K = {ji1,...,Jx} be a subset of {1,2,...,¢}. Set xx = {M;,,...,M;,}
and Sk = T, 15 (My,) X T, tx (M) X M. Let Z be a subset of X. Then we
have
Cy(Z)NSkg =Cy (Z) N Sk.

Remark that we assume that conditions H1, H2 and H3 are satisfied, in the weak
condition of simultaneous linearizability Sy has no vector bundle structure in general

and the definition of S does not make sense.

§1.3. Multi-specialization

Let k be a field and denote by Mod(kx.,) (resp. D%(kx.,)) the category (resp.
bounded derived category) of sheaves on the subanalytic site X,,. For the theory of
sheaves on subanalytic sites we refer to [5, 6]. For the theory of multi-specialization we

refer to [3]. Let x be a family of submanifolds satisfying H1, H2 and H3.
Definition 1.10.  The multi-specialization along y is the functor

vyt DP(kx,,) = D'(ks,..), F s 'RIop ' F.

xsa

We can give a description of the sections of the multi-specialization of F € D°(kx__):

let V' be a conic subanalytic open subset of Sy. Then:

H/ (V; 3 F) ~ lim B (U; F),
U

where U ranges through the family of open subanalytic subsets of X such that C, (X \

U)NnV =0. Let p = (¢; &) €  x  Ta,u(My), let B C (T'X), be an open ball of
X,1<5j<¢

radius € > 0 with its center at the origin and set

Cone, (p, €) :== {G N B,; G € Cone,(p)}.

Applying the functor p=': DP(kg ,) — D%(ks,) (see [6] for details) we can calculate

the fibers at p €  x  Th;0(M;) which are given by
X,1<5<¢

(HIp~ ' F), ~ lim H (W F),

—
w

where W ranges through the family Cone, (p, €) for € > 0.
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If there is no risk of confusion, in the rest of the paper we will use the notation

Uy = p_lyi‘l: Db(kxsa) — Db(ksx).

§ 2. Multi-microlocalization

In this section we introduce the functor of multi-microlocalization as the Fourier-
Sato transform of multi-specialization. We then compute its stalks as inductive limits

of sections supported on convex subanalytic cones. We refer to [2] for the proofs.

§2.1. Definition

Now we are going to apply the Fourier-Sato transform to the multi-specialization.
We refer to [4] for the classical Fourier-Sato transform and to [7] for its generalization
to subanalytic sheaves. First, we need a general result: Let 7;: E;, — Z (1 <i < /) be
vector bundles over Z, and let E be the dual bundle of E,. We denote by A, and V, the
Fourier-Sato and the inverse Fourier-Sato transformations on E; respectively. Moreover
we denote by A7 and V; the Fourier-Sato and the inverse Fourier-Sato transformations
on E respectively. Set E := F, ; é E, and E* := EY ; >Z< E; for short. Let
7: E — Z be the the canonical projection. Set P/ := {(n,§) € E, X Ef; (n,&) < 0}.
Further set

P =P x---x P, PT:=Ex E*\ P,
z  z z

and denote by p): P — E, pb: P — E* and p: Pt — E,, pj: Pt — E* the
canonical projections respectively. Let F' and G be multi-conic objects on E and E*
respectively. Then we set for short Ag (resp. V) the composition of the Fourier-Sato
transforms A; (resp. the composition of the inverse Fourier-Sato transforms V) on FE;
for each i € {1,...,¢}.

Let F and G be multi-conic objects on E and E* respectively. Then F"E and
GVE are independent of the order of the Fourier-Sato transformations A; and inverse

the Fourier-Sato transformations V; respectively. It follows that
* !
GVE = Rp|.pyG.

We shall need some notations. For a subset K = {iy,...,ix} C {1,...,¢}, set
XK = {M;; i€ K}, S; =T, (M;) x M (j=1,...,¢) and
X
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Let S% be the dual of Sk:
SK = TMiIL(Mil) ;é U ;:, TMlkL(Mzk) = Sil ]>\2_- : X}Slk *
Given C;; € S;;, j=1,...,k, we set for short Cx := C;; x--- X C;, C Sk. Define Ak
X X
as the composition of the Fourier-Sato transformations A;, on S;, for each iy € K.
Let I,J C {1,...,4} be such that I U J = {1,...,¢}. We still denote by m: St x
M

S

S7 — M the projection. We define the functor v u3? by

v st s D (kx,,) 3 F — v3*(F)" € DP(ks, x §%)un)-

1

Composing with the functor p=*, we set for short

When I = (), we obtain the functor of the multi-microlocalization: Set A := Ay, ¢ for

short.
Definition 2.1. The multi-microlocalization along y is the functor

15 DP(kx,,) 3 F = vA(F)" € DP(ks;,,)-

X xsa

As above, we set for short
. —1 sa, b b
py = p py s D7 (kx,,) = D7 (ks ).

§2.2. Stalks

Let X be a real analytic manifold and consider a family of submanifolds xy =
{My, ..., M} satisfying H1, H2 and H3. Let S = T, ¢(M;) XX T, t(My). Locally
p € Sisgiven by p=p1 x --- xpp = (q; €V, ... €0 with £€F) € Ty o(My). Set
M = ﬂ§:1 M;. Let 7; : Ta;t(M;) < Th; X denote the canonical injection and let
mj + S — Ta,0(Mj) be the canonical projection.

Set S* := Ty, (M) Xooe X Thp,t(My). Let V=V Xooo X Ve be a multi-conic open
subanalytic subset in S*, and let 7 : S* — M denote the canonical projection. We set,
for short, V° := Vp ;<( e ;<( V' the multi-polar cone in S.

Now we are going to find a stalk formula for the multi-microlocalization given by a

limit of sections with support (locally) contained in closed convex cones. As the problem
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is local, we may assume that X = R™ and ¢ = 0 with coordinates (z1,...,x,), and that
there exists a subset I, (k= 1,2,...,¢) in {1,2,...,n} with the conditions (1.2) such
that each submanifold My is given by {z = (z1,...,z,) € R"; ; = 0(i € I})} . Recall
that fk was defined by (1.3) and that we set M = N M}, and nj, = ﬂfk Then locally

we have
X=Mx(Ny XxNygx---xNy)=M x N,

where Ny is R™ with coordinates z(*) = (z;) Set, for k € {1,...,¢},

i€ly”
T ={i €{l,.... 05 I; & I},

(2.1) Jor:={je{l,....0}; I; 2 I},
Ty =1{7€{l,.... ¢} ;NI =0}.

Clearly we have

(2.2) kel ol G o) o,

and, by the conditions H1, H2 and H3, we also have

(2.3) Jop U{RYU Jop U Ty = {1,2,..., £},

Let p=py x---xpp=(q; €V, ... £0) ¢ Thp, t(My) X ... X Ty, (M) and consider the
x x ¢

following conic subset in N

2 =0 (4 € J<x U Jyp),
(2.4) Yo =< (@)1, 0 € N; 2 € R (j € Je),
(@D e®) >0 (j=k)

Note that, if £%) = 0, then ~;, is empty.

Example 2.2.  We now compute 7 of (2.4) on the complex case in the following

two typical situations. Let X = C? with coordinates (21, z2).
1. (Majima) Let M; = {z; = 0} and My = {22 = 0}. Then
m ={(z1,0); Re (z1,m) > 0},
72 ={(0, 22); Re (z2,m2) > 0}.

2. (Takeuchi) Let M; = {0} and My = {22 = 0}. Then

71 =1{(21,0); Re (21,m) > 0},
Yo ={(21,22); Re (22,m2) > 0}.
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Example 2.3.  We now compute 7y of (2.4) on the real case in three typical

situations. Let X = R3 with coordinates (z1,x2,3).

1. (Majima) Let My = {x; = 0}, My = {x2 = 0} and M35 = {xz3 = 0}. Then

Y1 =1{(21,0,0); (z1,&1) > 0},
72 =1{(0,22,0); (x2,&) > 0},
73 =1(0,0,23); (3,&3) > 0}.

2. (Takeuchi) Let My = {0}, My = {z2 = 23 = 0} and M35 = {z3 = 0}. Then

1 =1{(21,0,0); (x1,&1) > 0},
Y2 = {(z1,72,0); (w2,&2) > 0},
v3 = {(z1, 22, 23); (x3,&3) > 0}.

3. (Mixed) Let M; = {0}, My = {x2 = 0} and M3 = {x3 = 0}. Then

71 =1{(21,0,0); (x1,&1) > 0},
Y2 = {(71,72,0); (2,82) > 0},
vs ={(21,0,x3); (x3,&3) > 0}.

Theorem 2.4. Letp = p; X --- xpp = (q; €D, ..., 6©) € S*, and let F €
D®(kx..). Then we have

(2.5) H*(u, F), ~ lim HE(U; F).

—
G,

-

Here U is an open subanalytic neighborhood of q in X and G is a closed subanalytic

¢

subset in the form M X (Z Gk> with Gy, being a closed subanalytic convex cone in N
k=1

satisfying Gy \ {0} C vk, where v is defined in (2.4).

Now let us consider the mixed cases between specialization and microlocalization.

Let I,J C {1,...,¢} be such that TUJ = {1,...,¢}, and let p = p; X -+- X py =

(q; €M, ... €0) = (q; &1,€5) € St x S%. Locally we may identify Sy with its dual. Set
X

for short vy, iy, == p~!

Vsa,usa
Xrxag:®
As in Theorem 2.4 we can find a family which (locally) consists of convex cones

defining the stalk formula in the mixed case.
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Theorem 2.5. Letp = p1 x --- xpg = (q; EM,... . £©0) € Sy x S7, and let
X
F € D(kx.,). Then we have

(2.6) H* (v pi, F)p = i

-
G,W.

Here W, = W N B,, with W € Coney(q; £1,07), Be is an open ball of radius € > 0

HE (W, F).

L
containing q and a closed subanalytic subset G = M x (Z Gy | with Gy, being a closed
k=1
subanalytic convex cone in N satisfying Gy \ {0} C vk, where i is defined in (2.4).

8§ 3. Multi-microlocalization and microsupport

In this section we give an estimate of the microsupport of the multi-microlocalization.
The main point is to find a suitable ambient space: this is done (via Hamiltonian iso-
morphism) by identifying 7S, with the normal deformation of 7*X with respect to a
suitable family of submanifolds x*. We refer to [2] for the proofs.

§3.1. Geometry

Let X be a real analytic manifold and consider a family of submanifolds y =
{M,,...,M,} satisfying H1, H2 and H3. We consider the conormal bundle 7*X with
local coordinates (z(®, 21, ... 20, ¢©) M) @) where z() = (le, ..
I; = {j1,---,Jp} etc. We use the notations in § 2.1; for example, we set S; :=
T, 0(M;) ;<{M Let I,J C {1,...,¢} be such that I U J ={1,...,¢}. Recall that

. ,a:jp) with

S. =5 x---x9

X 'y X7

S¥=8Tx-.--xS8;

b% lX X £
SrxSh=( x S)x( x 8%.
Far=7 (M,z‘EI Z)M M,jeJ 3)

Then we consider a mapping

Hpp TS, 2 (29,2W, 2@ 0 W )
= (@0, @D)icr, (€9)e0; 19, (€D)ier, (—2Y))je0) € T*(S; % 57)-
Note that H;; is induced by the Hamiltonian isomorphisms 7S ; = T*S% and it gives

a bundle isomorphism over M; that is, H;; does not depend on the choice of local

coordinates.
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Hence, using Proposition 5.5.5 of [4] repeatedly, we obtain:

Proposition 3.1.  Let I,J C {1,...,¢} be such that I UJ = {1,...,0}. Then,
under the identification given by H;;, for any F € D®(ky) it follows that

T8 T (5, X S5)
U U
S0, (F)) = SS(v 1y, (F)):

In particular, it follows that

YA —
U U
SS(, (F)) = SS(1 (F)).

Next, we study the relation between the normal deformations of T*X with respect
to x* == {T3, X,...,Ty;,X} and of X with respect to x. We denote by fi)/(x* =
T*X Tip, X Tiy, X the normal deformation of 7" X with respect to x* and by S,- its
zero-section. Set x := (z(®) 2 . 2®) .= (O V) £®)and t = (t,... ).
We have a mapping

—~—

T*X e 3 (25§ 1) = (el t); pe(§ 1) € THX
defined by

po (s t) = (tjox(o),tjlx(l), e ,tjla:(f)),

pe(&s t) = (860 t56W, 560,

where f]c =A{1,...,0}\ jj (j =0,1,...,¢). In particular jg ={1,...,¢} since jo = 0.

In particular ¢; =1 and tjg =ty -t

Theorem 3.2.  As wvector bundles, there exist the following canonical isomor-
phism:
Sy =TS, ~T"S7.

Example 3.3. Let X = C? with coordinates (z1,22) and consider T*X with
coordinates (z; ) = (21, 22; 1, M2). Set t = (t1,t2) € (R*)2.



MULTI-MICROLOCALIZATION 107
1. (Majima) Let M; = {z1 = 0} and Ma = {22 = 0}. Then x* = {T}; X, Ty, X} and
we have a map
T*X - T*X,
(25 73 8) = (= (25 )5 (5 1)),
which is defined by
p=(z; 1) = (t121, t222),
toy (1 1) = (tamy, t1mz).
By Theorem 3.2, we have Sy >~ T*(Th, X % Th, X) =T (Th, X X Ty, X)-
2. (Takeuchi) Let My = {0} and My = {22 = 0}. Then x* = {T}; X, Ty, X} and we
have a map
T*X — T°X,
(25 15 €)= (pz(25 1); (0 1)),
which is defined by
p=(z; 1) = (t121, titaz),
oy (n; 1) = (tamy, m2).
By Theorem 3.2, we have Sy >~ T (T, M2 X T, X) = T* (T, Mo X Ty, X)-
Example 3.4. Let X = R3 with coordinates (21, 22, z3) and consider T* X with
coordinates (z; &) = (w1, 22, 73; &1,€2,€3). Set t = (t1,ta,t3) € (R*)3.

1. (Majima) Let M; = {xz; = 0}, My = {x2 = 0} and M3 = {z3 = 0}. Then
X* = {15, X, T3, X, Ty, X} and we have a map

T*X — T°X,
(@3 & 1) = (pa(2; 1); pe(&; 1)),
which is defined by
po (x5 t) = (121, toxa, t3xs),
pe (& t) = (tatséa, titada, tatals).

By Theorem 3.2, we have S} ~ T (T, X X Thgy X X Ty X) = T (Thy, X X Ty, X X
X X X X
Ti X).
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2. (Takeuchi) Let M; = {0}, My = {z2 = z3 = 0} and M3 = {x3 = 0}. Then
X = A{T3, X, Ty, X, Ty, X } and we have a map

T*X - T*X,
(z; & 1) = (o (23 t); pe(&5 1)),

which is defined by

po (x5 t) = (ti1, titaxa, titataxs),
pe(&; t) = (tatséa, t3€2,€3).

By Theorem 3.2, we have Sy ~ T*(Ta, Ma X Thr,M3 X Tr, X) =~ T* (T, Ma
bl X
Tir, Ms % Tip, X).

b X

3. (Mixed) Let M; = {0}, My = {2 = 0} and M3 = {x3 = 0}. Then x* =
(T, X, Ty, X, Ty, X} and we have a map
T*X - T*X,
(5 & 1) = (pa (3 £); pe (&5 1)),

which is defined by

po (25 t) = (t121, titoxa, titsxs),
e (&5 ) = (tatzéa, t3€a, t2€3).

By Theorem 3.2, we have S ~ T* (T, (MaNM3z) X T, X X Tag, X) = T (Tyy, (M2
X X
Ms) x Tip, X % Tjy, X).

§3.2. Estimate of microsupport

In this section we shall prove an estimate for the microsupport of the multi-
specialization and multi-microlocalization of a sheaf on X. We refer to [4] for the
theory of microsupport of sheaves.

Since the problem is local, we may assume that X = R" with coordinates (z1,...,x,).
Let I (k=1,2,...,¢) in {1,2,...,n} such that each submanifold Mj is given by

{r=(z1,...,2p) ER"; 2, =0 € I})}.
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Theorem 3.5.  Let F € D°(kx) and take a point
0 1 4 0 1 4 *
poz(xé),xé),...,x(()); 5(() ), (()),..., (())) eT*s,.
Assume that py € SS(vy(F')). Then there exist sequences

{(Cl,ka sy Cli,k)}zil C (R+)€7

(@ o) 6760, 60 C ss(R),
such that
kli_)ngocj,k:oo, (j=1,...,0),
kli_{go(%(fo)vm/(gl)cjl,ka e 7$](€2)ng,/€; f/iO)Cka gl(fl)cjf,k’ e ’glie)cjg,k)
= (@, 20,2l el el e,

¢ R .
where ¢, =[] cjr, J5 :={1,..., £} \ Jj and cjp = [] ¢j for any J C{1,... ¢}

j=1 JjeJ
Then, an estimate of the microsupport of multi-specialization and multi-microlocalization

of sheaves on X follows from Theorem 3.5:
Theorem 3.6. Let F € D%(kx). Then

SS(vx (F)) = SS(, (F)) € Cy+(SS(F)).

§4. Microfunctions along y

In this section, thanks to the vanishing results of [2] we introduce multi-microlocalized
objects along y which are natural extensions of sheaves of microfunctions and holomor-

phic ones.

§4.1. The result for some family of real analytic submanifolds

Let X = C™ with coordinates (21 = 7 + V=1y1, ..., 2p = Ty + \/—_1yn) and
G =& ++v—1n; (i = 1,...,n) the dual variable of z; = x; + v/—1y;. Let I (j =
1,2,...,¢) be a subset of {1,2,..., n} which satisfies the conditions (1.2), and set
Iy ={1,...,n}\ (Ule Ij). Let Ig be a subset of I := 1<L3J<€Ij and I¢ := I\ Ig. Define,
for i € I, the function ¢;(2) in X by

(Z) - Z; (Z S I@),
BT VT (e Iy
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Then we define the closed real analytic submanifolds
Nj Z:{ZGX;(]Z'(Z):O,’L'GIJ'} (]:1,,6),

and set
XZZ{Nl,...,Ng}, N=N;N---NNy.

In what follows, we regard the function ¢; as the complex coordinate variable z; if
i € Ic and as the imaginary coordinate variable /—1y; if i € Ig. In the same way, p; is
regraded as the dual variable of ¢;, that is, p; denotes (; if i € I¢c and /—1n; if i € Ip.
As usual convention, we write by ¢\9) (resp. pl)) the coordinates g;’s (resp. p;’s) with

iel j- Under these conventions, the coordinates of S5 are given by

(q(O); p(1)7 ctc p(E))ﬂ

where ¢(9) denotes the set of the coordinate variables z;’s (i € Iy) and x;’s (i € Ig). Let
0, = (qu;ps) = (qio); pgl), ce pg)) € S}. Recall the definition of J*(6.), that is,

J*0.) ={je{l,.... 0} P =0forall a e J<;}
={je{l,.... ¢} pfka) = 0 for all @ with N; C N, }.

We set

(4.1) )= |J L c{1....,n}

JEJT*(04)

Then we define the integer N(6.) by
(4.2) N(0x) = #1 + #(I"(6.) N Ic),

where # denotes the number of elements in a set. Note that #1 is equal to Codim¢ N,

i.e., the complex codimension of the maximal complex linear subspace contained in V.
Theorem 4.1. We have
HY (i (0%, ))o. =0 (k # N(6.)).
We also have the similar results for OE( and Ox
Theorem 4.2.  We have
H*(11y (F))o. =0 (k # codimg N = #1I),

where F is either O%_ or Ox.
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§4.2. The typical examples

As the results given in the previous subsection has been considered in a fairly

general situation, we here describe the corresponding results for typical cases.

We first consider the corresponding result for families of complex submanifolds, i.e.,
I = I¢. Let X be a complex manifold and x = {Z1, ..., Z,} a family of closed complex
submanifolds of X which satisfies the conditions H1, H2 and H3. Set Z = Z;N---N Z,.
Let p=(¢; ¢) = (¢; ¢, ...,¢0) ¢ S%. Remember that the subset J*(p) of {1,...,/}
was defined by

J*(p):={j € {1,...,£}; (Y =0 for all @ with Z; C Z,}.

We also define J*(p) by the subset of J*(p) that consists of the minimal elements with
respect to the order relation k < j <= Z;, C Z; for k,j € J*(p). Now we define the
integer N (p) by

(4.3) N(p) = codim¢ Z + Z codime Z;.

JET*(p)

Then the following result immediately comes from Theorem 4.1.
Corollary 4.3.  We have

H* (1, (0X,)p =0 (k # N(p))-

We also have

H*(uy (F))p =0 (k # codime Z),

where F is either O% or Ox.

Definition 4.4.  The sheaf of holomorphic microfunctions along x in S} is de-
fined by

(4.4) C;lf = 11y (Ox) Z® ors:[codime Z],
SX

where org: denotes the orientation sheaf of S7. We also define CE’f and C;lf’w by replac-

ing Ox in the above definition with O% and O% respectively.
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Note that C;If and C§’f are really sheaves on S} . We also note that C;lf’w is a complex.

It is, however, concentrated in degree 0 outside the zero section, i.e., {(z; ¢ C(‘))) S

Sz; ¢) £ 0.

Next we consider the corresponding result for the case I = Ig. Let M be a con-
nected real analytic manifold and X its complexification. Let ©1, ..., ©y be real
analytic vector subbundles of TM which are involutive, that is, [61, 03] € Oy for any
vector fields 61,60, € ©,. We denote by @(,E C T'X the complex vector subbundle over
X that is a complexification of ©; near M. Now we introduce the conditions for O’s

which are counterparts of the ones H1, H2 and H3. Set, for 1 < k </,
NR(IC) = {] S {1, . ,é}; @j g_ O, Ok g_ @J}

Then we assume that, for any ¢ € M and any k with NR(k) # 0,

(TM)q = (@k)q + m (@j)q

JENR(k)
We also assume that, for simplicity, O’s are mutually distinct, i.e., Ok, # O, if
k1 # ko.
Let Nar,; € X (j = 1,...,¢) be the union of the complex integral submanifolds
of the involutive complex vector bundle @;C» C T'X passing through each point ¢ € M,
that is,

N, j = U L(65, q)
qeM

where L’(@;C-, q) denotes the complex integral submanifold of ©; passing through the
point ¢g. Set

X ={Nm 1, - Na e}, Nay:=NpyiN---N Ny CX.
Corollary 4.5.  Let p € S5. Then we have
H*(11y (F))p =0 (k # codimg Nas),
where F is either O%_, O% or Ox.

Definition 4.6.  The sheaf of microfunctions along y with holomorphic param-

eters is defined by

(4.5) CNux = My (Ox) Z@ ors: [codimg N,
SX
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where org: denotes the orientation sheaf of S7. We also define C{,M and Cy, . by

b X
replacing Ox in the above definition with O% and O¥ respectively.

Note that these are really sheaves in S}, that is, they are concentrated in degree 0

everywhere.

8§ 5. Applications to D-modules

In this section, we consider applications of the multi-microlocalization to D-module
theory. We refer to [2] for the proofs.
§5.1. Uchida’s Triangle

First, recall the notations of §2.1; for example, let 7,: B, — Z (1 < i < /) be a
vector bundle over Z, and let E be the dual bundle of E,.

Theorem 5.1 (cf. [12]).  Let F be a multi-conic object on E. Then there exists
the natural isomorphism
T!RT!F = Rpl*pQ'(FAE)a

and the natural morphism F — T!RT! F is embedded to the following distinguished tri-

angle:

F — T!RT!F — Rpf*p;!(FAE) 1,

Therefore, we obtain the following;:

Theorem 5.2.  Let X be a real analytic manifold, and assume that the family
x = {M,}._, of submanifolds in X satisfies conditions H1, H2 and H3. Set M :=
ﬂle M,. Then, for any F € D(kx.,), there exists the following distinguished triangle:

(5.1) v, (F) — 7 'RIy(F) ®w§3}7)1( — Rp, (p3) "1, (F) ®wfa7)1( +,.
By Theorem 3.6, under the identifications TS} = T*S, = Sy, we have
SS(p1, (F)) = SS(v, (F)) C C,« (SS(F)).

In particular we obtain supp ., (F) C Sy N C,.(SS(F)). Thus we obtain:

Corollary 5.3. If S; NC,«(SS(F)) =0, then v, (F) = TR, (F) ®wf@7)1(.
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§5.2. Solutions of D-modules

Let X be a complex manifold, and let x = {Y;}¢_, be a family of closed complex
submanifolds of X which satisfies the conditions H1, H2 and H3. Set Y := ﬂle Y,. As
usual, let Dx be the sheaf of holomorphic linear differential operators on X. Let M be
a coherent D y-module, and let Ch M denote the characteristic variety of M. Then, for
F = RHomDX(M, Oy ), it is known that SS(F') = Ch M. From (5.1), we have

RHomp (M,v,(Ox)) = 7~ RHomp (M, RIy(Ox)) @ w3
= Rp{.(n3) " RHomp (M, 1, (0x)) 8w/ .

Let f: Y — X be the canonical embedding. We define the inverse image of M by
L
DfM: =0y ® f~M.

[710x
Theorem 5.4.  Assume that Y is non-characteristic for M. Then
RHomp (M,v, (Ox)) = T_lRHOmpy(Df*M,Oy)
~ 7 Lf _1RH0mDX(./\/l, Ox).

Let M be a real analytic manifold, and let x = {N,;}¢_; be a family of closed
real analytic submanifolds of M which satisfies the conditions H1, H2 and H3. Set
N = ﬂle N,;. We consider the multi-normal deformation Mx along y. Let X be the
complexification of M, and Y the complexification of N in X. Let ¢t: M — X the
canonical embedding. Let B, be the sheaf of hyperfunctions on M. Then by (5.1) we

obtain
RHomp (M, v, (By)) — 7 'RHomp (M, RIy(Byy)) @ Wiy
= Bp},(p3) " RHomp (M. 1y (Bay) @ w0y 5 -

For any conic subset A C T*X we can define (#(A) := T*M N Crs x(A) ([4, Def-
inition 6.2.3]). Note that (zy;&,) € ¢#(A) if and only if there exists a sequence
{(z, +vV—-1y,;&, +vV—1n,)}52; C A such that

Jim (2, +V=1y,;8,) = (20; &), lim [y, [[n,[ = 0.

Theorem 5.5.  Assume that N — M is hyperbolic for M; that is, T]*\‘,M N
1#(Ch M) = (). Then

RHomp (M, v, (By)) T_lRHompy(Df*M, By)-
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We impose the following conditions:

(1) AC T*X is a C*-conic closed regular involutory complex submanifold,

(2) M has regular singularities along A,

(3) THM N #(A) = 0.

Let Dbyr and C3; be the sheaves of distributions and C*°-functions on M.

[1]
[2]
[3]
[4]

[5]
[6]

7
8]
9]

[10]

11]

[12]

Theorem 5.6.  Assume Conditions (1), (2), (3). Then
RHomp (M, v, (Dbu)) T_IRHOmpy(Df*M,DbN).

RHomp (M, v, (Cry)) T_IRHomey(Df*M,CZO\?).
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