Multi-microlocalization

By

Naofumi Honda, Luca Prelli**and Susumu Yamazaki***

Abstract

The purpose of this paper is to report on the foundations of multi-microlocalization, in particular, to give the fiber formula for the multi-microlocalization functor and estimate of microsupport of a multi-microlocalized object. We also give some applications of these results.

§ 1. Multi-specialization

In this section we recall some results of [3]. We first fix some notations, then we recall the notion of multi-normal deformation and the definition of the functor of multi-specialization with some basic properties.

§ 1.1. Notations

Let X be a real analytic manifold with $\dim X = n$, and let $\chi = \{M_1, \ldots, M_\ell\}$ be a family of closed submanifolds in X ($\ell \geq 1$). Throughout the paper all the manifolds are always assumed to be countable at infinity. We set, for $N \in \chi$, $\iota(N) := \bigcap_{\substack{N \subseteq M_j \\ M \neq M_j}} M_j$. Here $\iota(N) := X$ if there exists no j with $N \subseteq M_j$. We set, for $N \in \chi$ and $p \in N$,

$$NR_p(N) := \{ M_j \in \chi; p \in M_j, N \nsubseteq M_j \text{ and } M_j \nsubseteq N \}.$$

Received June 25, 2015. Revised October 2, 2015. Accepted October 2, 2015.

2010 Mathematics Subject Classification(s): 35A27, 32C38, 32C35

 $Key\ Words:\ Microlocal\ analysis,\ Micro-support,\ Multi-specializations,\ Multi-microlocalizations.$

*Department of Mathematics, Faculty of Science, Hokkaido University, 060-0810 Sapporo, Japan. e-mail: honda@math.sci.hokudai.ac.jp

**Centro de Matemática e Aplicações Fundamentais, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal.

e-mail: lmprelli@fc.ul.pt

***Department of General Education, College of Science and Technology, Nihon University, 274-8501 Funabashi-shi, Japan.

e-mail: yamazaki@penta.ge.cst.nihon-u.ac.jp

© 2016 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Let us consider the following conditions for χ .

H1 Each $M_j \in \chi$ is connected and the submanifolds are mutually distinct, i.e. $M_j \neq M_{j'}$ for $j \neq j'$.

H2 For any $N \in \chi$ and $p \in N$ with $NR_p(N) \neq \emptyset$, we have

(1.1)
$$\left(\bigcap_{M_j \in NR_p(N)} T_p M_j\right) + T_p N = T_p X.$$

H3 $M_j \neq \iota(M_j)$ for any $j \in \{1, 2, \dots, \ell\}$.

Note that, if χ satisfies the condition H2, the configuration of two submanifolds must be either 1. or 2. below.

- 1. Both submanifolds intersect transversely.
- 2. One of them contains the other.

It follows from Proposition 1.2 [3] that, at every $p \in \bigcap_{j=1}^{\ell} M_j$, there exist a system of local coordinates (x_1, x_2, \ldots, x_n) and subsets $I_1, \ldots, I_{\ell} \subseteq \{1, \ldots, n\}$ such that $M_j = \{x_k = 0 ; k \in I_j\}$ for $j = 1, \ldots, \ell$. Furthermore, these I_1, \ldots, I_{ℓ} satisfy the conditions

(i) either
$$I_j \subsetneq I_k$$
, $I_k \subsetneq I_j$ or $I_j \cap I_k = \emptyset$ holds for any $j \neq k$,

(1.2) (ii)
$$\left(\bigcup_{I_k \subseteq I_j} I_k\right) \subsetneq I_j \text{ for any } j.$$

Hence, for any $j \in \{1, 2, \dots, \ell\}$, the set

$$(1.3) \qquad \qquad \hat{I}_j := I_j \setminus \left(\bigcup_{I_k \subsetneq I_j} I_k \right)$$

is not empty. For convenience, we set $\hat{I}_0 = I_0 := \{1, \dots, n\} \setminus \left(\bigcup_{j=1}^{\ell} I_j\right)$. Then, in local coordinates, we can write the coordinates (x_1, \dots, x_n) by

$$(1.4) (x^{(0)}, x^{(1)}, \dots, x^{(\ell)}),$$

where $x^{(j)}$ denotes the coordinates $(x_i)_{i \in \hat{I}_j}$ $(j = 0, ..., \ell)$. We also define, for $j \in \{0, 1, ..., \ell\}$

$$\hat{J}_j = \{k \in \{1, \dots, \ell\} \; ; \; \hat{I}_j \subseteq I_k\} = \{k \in \{1, \dots, \ell\} \; ; \; I_j \subseteq I_k\}.$$

Note that, with this notation, we have $\hat{J}_0 = \emptyset$ and

$$(1.6) I_i \subseteq I_j \Rightarrow \hat{J}_j \subseteq \hat{J}_i.$$

§ 1.2. Multi-normal deformation

In [3] the notion of multi-normal deformation was introduced. Here we consider a slight generalization where we replace the condition H2 with the weaker one. Let $\chi = \{M_1, \ldots, M_\ell\}$ be a family of closed submanifolds of X. We say that χ is simultaneously linearizable on $M = M_1 \cap \cdots \cap M_\ell$ if for every $x \in M$ there exist a neighborhood V of X and a system of local coordinates (x_1, \ldots, x_n) there for which we can find subsets I_j 's of $\{1, \ldots, n\}$ such that each $M_j \cap V$ is defined by equations $x_i = 0$ $(i \in I_j)$. Note that if χ satisfies the condition H2, then it is simultaneously linearizable. Now, through the section, we assume that χ is simultaneously linearizable on M.

First recall the classical construction of [4] of the normal deformation of X along M_1 . We denote it by \widetilde{X}_{M_1} and we denote by $t_1 \in \mathbb{R}$ the deformation parameter. Set $\widetilde{\Omega}_{M_1} = \{(x; t_1) \; ; \; t_1 \neq 0\}$ and define $\widetilde{M}_2 := \overline{(p_{M_1}|_{\widetilde{\Omega}_{M_1}})^{-1}M_2}$. Then \widetilde{M}_2 is a closed smooth submanifold of \widetilde{X}_{M_1} . Now we can define the normal deformation along M_1, M_2 as $\widetilde{X}_{M_1,M_2} := (\widetilde{X}_{M_1})_{\widetilde{M}_2}^{\sim}$. Then we can define recursively the normal deformation along χ as

$$\widetilde{X} = \widetilde{X}_{M_1,\dots,M_\ell} := (\widetilde{X}_{M_1,\dots,M_{\ell-1}})_{\widetilde{M}_\ell}^{\sim}.$$

Set $S_{\chi} = \{t_1, \dots, t_{\ell} = 0\}$, $M = \bigcap_{i=1}^{\ell} M_i$ and $\Omega_{\chi} = \{t_1, \dots, t_{\ell} > 0\}$. Then we have the commutative diagram

$$(1.7) S_{\chi} \xrightarrow{s} \widetilde{X} \xleftarrow{i_{\Omega}} \Omega_{\chi}$$

$$\downarrow^{\tau} \qquad \downarrow^{p} \qquad \widetilde{p}$$

$$M \xrightarrow{i_{M}} X.$$

Let us consider the diagram (1.7). In local coordinates let $I_1, \ldots, I_\ell \subseteq \{1, \ldots, n\}$ such that $M_i = \{x_k = 0 \; ; \; k \in I_i\}$. For $j \in \{0, \ldots, \ell\}$ set $t_{\hat{J}_j} = \prod_{k \in \hat{J}_j} t_k$, where $t_1, \ldots, t_\ell \in \mathbb{R}$ and $t_{\hat{J}_0} = 1$. Then $p : \widetilde{X} \to X$ is defined by

$$(x^{(0)}, x^{(1)}, \dots, x^{(\ell)}; t_1, \dots, t_\ell) \mapsto (t_{\hat{J}_0} x^{(0)}, t_{\hat{J}_1} x^{(1)}, \dots, t_{\hat{J}_\ell} x^{(\ell)}).$$

Definition 1.1. Let Z be a subset of X. The multi-normal cone to Z along χ is the set $C_{\chi}(Z) = \overline{\widetilde{p}^{-1}(Z)} \cap S_{\chi}$.

Let us consider the canonical map $T_{M_j}\iota(M_j)\to M_j\hookrightarrow X\ (j=1,\ldots,\ell)$, and then, we write for short

$$\underset{X,1 \leq j \leq \ell}{\times} T_{M_j} \iota(M_j) := T_{M_1} \iota(M_1) \underset{X}{\times} T_{M_2} \iota(M_2) \underset{X}{\times} \cdots \underset{X}{\times} T_{M_\ell} \iota(M_\ell).$$

When χ satisfies the conditions H1, H2 and H3 we have $S_{\chi} \simeq \underset{X,1 \leq j \leq \ell}{\times} T_{M_j} \iota(M_j)$.

Example 1.2. Let us see two typical examples of multi-normal deformations in the complex case. Let $X = \mathbb{C}^2$ ($\simeq \mathbb{R}^4$ as a real manifold) with coordinates (z_1, z_2) .

1. (Majima) Let $\chi = \{M_1, M_2\}$ with $M_1 = \{z_1 = 0\}$ and $M_2 = \{z_2 = 0\}$. Then χ satisfies H1, H2 and H3. We have $I_1 = \{1\}$, $I_2 = \{2\}$, $J_1 = \{1\}$, $J_2 = \{2\}$ (in \mathbb{R}^4 , if $z_1 = (x_1, x_2)$ and $z_2 = (x_3, x_4)$ we have $I_1 = \{1, 2\}$, $I_2 = \{3, 4\}$, $J_1 = J_2 = \{1\}$, $J_3 = J_4 = \{2\}$). The map $p : \widetilde{X} \to X$ is defined by

$$(z_1, z_2; t_1, t_2) \mapsto (t_1 z_1, t_2 z_2).$$

Remark that the deformation is real though X is complex. In particular $t_1, t_2 \in \mathbb{R}$. We have $\iota(M_1) = \iota(M_2) = X$ and then the zero section S of \widetilde{X} is isomorphic to $T_{M_1}X \underset{X}{\times} T_{M_2}X$.

2. (Takeuchi) Let $\chi = \{M_1, M_2\}$ with $M_1 = \{0\}$ and $M_2 = \{z_2 = 0\}$. Then χ satisfies H1, H2 and H3. We have $I_1 = \{1, 2\}$, $I_2 = \{2\}$, $J_1 = \{1\}$, $J_2 = \{1, 2\}$ (in \mathbb{R}^4 , if $z_1 = (x_1, x_2)$ and $z_2 = (x_3, x_4)$ we have $I_1 = \{1, 2, 3, 4\}$, $I_2 = \{3, 4\}$, $J_1 = J_2 = \{1\}$, $J_3 = J_4 = \{1, 2\}$). The map $p : \widetilde{X} \to X$ is defined by

$$(z_1, z_2; t_1, t_2) \mapsto (t_1 z_1, t_1 t_2 z_2).$$

We have $\iota(M_1)=M_2,\ \iota(M_2)=X$ and then the zero section S of \widetilde{X} is isomorphic to $T_{M_1}M_2\underset{X}{\times}T_{M_2}X$.

Example 1.3. Let us see three typical examples of multi-normal deformations in the real case. Let $X = \mathbb{R}^3$ with coordinates (x_1, x_2, x_3) .

1. (Majima) Let $\chi = \{M_1, M_2, M_3\}$ with $M_1 = \{x_1 = 0\}$, $M_2 = \{x_2 = 0\}$ and $M_3 = \{x_3 = 0\}$. Then χ satisfies H1, H2 and H3. We have $I_1 = \{1\}$, $I_2 = \{2\}$, $I_3 = \{3\}$, $J_1 = \{1\}$, $J_2 = \{2\}$, $J_3 = \{3\}$. The map $p: \widetilde{X} \to X$ is defined by

$$(x_1, x_2, x_3; t_1, t_2, t_3) \mapsto (t_1 x_1, t_2 x_2, t_3 x_3).$$

We have $\iota(M_1) = \iota(M_2) = \iota(M_3) = X$ and then the zero section S of \widetilde{X} is isomorphic to $T_{M_1}X \underset{X}{\times} T_{M_2}X \underset{X}{\times} T_{M_3}X$.

2. (Takeuchi) Let $\chi = \{M_1, M_2, M_3\}$ with $M_1 = \{0\}$, $M_2 = \{x_2 = x_3 = 0\}$ and $M_3 = \{x_3 = 0\}$. Then χ satisfies H1, H2 and H3. We have $I_1 = \{1, 2, 3\}$, $I_2 = \{2, 3\}$, $I_3 = \{3\}$, $J_1 = \{1\}$, $J_2 = \{1, 2\}$, $J_3 = \{1, 2, 3\}$. The map $p : \widetilde{X} \to X$ is defined by

$$(x_1, x_2, x_3; t_1, t_2, t_3) \mapsto (t_1x_1, t_1t_2x_2, t_1t_2t_3x_3).$$

We have $\iota(M_1) = M_2$, $\iota(M_2) = M_3$, $\iota(M_3) = X$ and then the zero section S of \widetilde{X} is isomorphic to $T_{M_1}M_2 \underset{X}{\times} T_{M_2}M_3 \underset{X}{\times} T_{M_3}X$.

3. (Mixed) Let $\chi = \{M_1, M_2, M_3\}$ with $M_1 = \{0\}$, $M_2 = \{x_2 = 0\}$ and $M_3 = \{x_3 = 0\}$. Then χ satisfies H1, H2 and H3. We have $I_1 = \{1, 2, 3\}$, $I_2 = \{2\}$, $I_3 = \{3\}$, $J_1 = \{1\}$, $J_2 = \{1, 2\}$, $J_3 = \{1, 3\}$. The map $p : \widetilde{X} \to X$ is defined by

$$(x_1, x_2, x_3; t_1, t_2, t_3) \mapsto (t_1 x_1, t_1 t_2 x_2, t_1 t_3 x_3).$$

We have $\iota(M_1)=M_2\cap M_3$, $\iota(M_2)=\iota(M_3)=X$ and then the zero section S is isomorphic to $T_{M_1}(M_2\cap M_3)\underset{X}{\times}T_{M_2}X\underset{X}{\times}T_{M_3}X$.

Example 1.4. For well understanding, let us give an example of mixed type in $X = \mathbb{R}^4$ with coordinates (x_1, x_2, x_3, x_4) . Let $\chi = \{M_1, M_2, M_3, M_4\}$ with $M_1 = \{0\}$, $M_2 = \{x_2 = x_3 = 0\}$, $M_3 = \{x_3 = 0\}$ and $M_4 = \{x_4 = 0\}$. Then χ satisfies H1, H2 and H3. We have $I_1 = \{1, 2, 3, 4\}$, $I_2 = \{2, 3\}$, $I_3 = \{3\}$, $I_4 = \{4\}$ and $I_1 = \{1\}$, $I_2 = \{1, 2\}$, $I_3 = \{1, 2, 3\}$, $I_4 = \{1, 4\}$. The map $I_3 = \{1, 2, 3\}$ is defined by

$$(x_1, x_2, x_3; t_1, t_2, t_3) \mapsto (t_1x_1, t_1t_2x_2, t_1t_2t_3x_3, t_1t_4x_4).$$

We have $\iota(M_1) = M_2 \cap M_4$, $\iota(M_2) = M_3$, $\iota(M_3) = \iota(M_4) = X$ and then the zero section S is isomorphic to $T_{M_1}(M_2 \cap M_4) \underset{X}{\times} T_{M_2} M_3 \underset{X}{\times} T_{M_3} X \underset{X}{\times} T_{M_4} X$.

When χ satisfies conditions H1, H2 and H3, the zero-section S_{χ} becomes a vector bundle over M. However, in general, the simultaneously linearizable condition is not enough to assure the existence of a vector bundle structure on S_{χ} , as the following example shows. The important exceptional case where χ does not satisfy H2 but S_{χ} has a vector bundle structure is studied in § 3.1.

Example 1.5. Let $X = \mathbb{R}^3$ with coordinates (x_1, x_2, x_3) , and let $\chi = \{M_1, M_2\}$ be a family of closed submanifolds in X defined by $M_1 = \{x_2 = x_3 = 0\}$ and $M_2 = \{x_1 = x_3 = 0\}$. Then S_{χ} is locally isomorphic to \mathbb{R}^3 with coordinates (ξ_1, ξ_2, ξ_3) . Let $f = (f_1, f_2, f_3) : X \to Y$ be a coordinates transformation on X to its copy Y with coordinates (y_1, y_2, y_3) which sends M_1 and M_2 to their copy's defined by the same equations $\{y_2 = y_3 = 0\}$ and $\{y_1 = y_3 = 0\}$ respectively. Then the associated coordinates transformation from S_{χ} to its copy S_{χ} with coordinates (η_1, η_2, η_3) is given by

$$\eta_1 = \frac{\partial f_1}{\partial x_1}(0)\xi_1,
\eta_2 = \frac{\partial f_2}{\partial x_2}(0)\xi_2,
\eta_3 = \frac{\partial f_3}{\partial x_3}(0)\xi_3 + \frac{\partial^2 f_3}{\partial x_1 \partial x_2}(0)\xi_1 \xi_2.$$

Hence S_{χ} is not a vector bundle over $M = \{0\}$.

From now on we assume conditions H1, H2 and H3. Let $q \in \bigcap_{1 \le j \le \ell} M_j$ and $p_j = (q; \xi_j)$ be a point in $T_{M_j} \iota(M_j)$ $(j = 1, 2, \dots, \ell)$. We set $p = p_1 \times \dots \times p_\ell \in \underset{X, 1 \le j \le \ell}{\times} T_{M_j} \iota(M_j)$, and $\tilde{p}_j = (q; \tilde{\xi}_j) \in T_{M_j} X$ denotes the image of the point p_j by the canonical embedding $T_{M_j} \iota(M_j) \hookrightarrow T_{M_j} X$. We denote by $\operatorname{Cone}_{\chi,j}(p)$ $(j = 1, 2, \dots, \ell)$ the set of open conic cones in $(T_{M_j} X)_q \simeq \mathbb{R}^{n-\dim M_j}$ that contain the point $\tilde{\xi}_j \in (T_{M_j} X)_q \simeq \mathbb{R}^{n-\dim M_j}$.

Definition 1.6. We say that an open set $G \subset (TX)_q$ is a multi-cone along χ with direction to $p \in \left(\underset{X,1 \leq j \leq \ell}{\times} T_{M_j} \iota(M_j) \right)_q$ if G is written in the form

$$G = \bigcap_{1 < j < \ell} \pi_{j, q}^{-1}(G_j) \qquad G_j \in \operatorname{Cone}_{\chi, j}(p)$$

where $\pi_{j,q}: (TX)_q \to (T_{M_j}X)_q$ is the canonical projection. We denote by $\operatorname{Cone}_{\chi}(p)$ the set of multi-cones along χ with direction to p.

For any $q \in X$, there exists an isomorphism $\psi : X \simeq (TX)_q$ near q with $\psi(q) = (q; 0)$ that satisfies $\psi(M_j) = (TM_j)_q$ for any $j = 1, \ldots, \ell$.

Let Z be a subset of X. When χ satisfies H1, H2 and H3 we also have the following equivalence: $p \notin C_{\chi}(Z)$ if and only if there exist an open subset $\psi(q) \in U \subset (TX)_q$ and a multi-cone $G \in \operatorname{Cone}_{\chi}(\psi_*(p))$ such that $\psi(Z) \cap G \cap U = \emptyset$ holds.

Example 1.7. We now give two examples of multi-cones in the complex case. Let $X = \mathbb{C}^2$ with coordinates (z_1, z_2) .

- 1. (Majima) Let $M_1 = \{z_1 = 0\}$ and $M_2 = \{z_2 = 0\}$. Then $\operatorname{Cone}_{\chi}(p)$ for p = (0, 0; 1, 1) is nothing but the set of multi sectors along $Z_1 \cup Z_2$ with their direction to (1, 1).
- 2. (Takeuchi) Let $M_1 = \{0\}$ and $M_2 = \{z_2 = 0\}$. For $p = (0, 0; 1, 1) \in T_{M_1} M_2 \times T_{M_2} X$, it is easy to see that a cofinal set of $Cone_{\chi}(p)$ is, for example, given by the family of the sets

$$\{(\eta_1, \eta_2); |\eta_1| < \epsilon |\eta_2|, \eta_1, \eta_2 \in S\}_{S \ni 1, \epsilon > 0},$$

where S is a sector in \mathbb{C} containing the direction 1.

Example 1.8. We now give three examples of multi-cones in the real case. Let $X = \mathbb{R}^3$ with coordinates (x_1, x_2, x_3) .

- 1. (Majima) Let $M_1 = \{x_1 = 0\}$, $M_2 = \{x_2 = 0\}$ and $M_3 = \{x_3 = 0\}$. For $p = (0, 0, 0; 1, 1, 1) \in T_{M_1}X \underset{X}{\times} T_{M_2}X \underset{X}{\times} T_{M_3}X$, it is easy to see that $Cone_{\chi}(p) = \{(\mathbb{R}^+)^3\}$.
- 2. (Takeuchi) Let $M_1 = \{0\}$, $M_2 = \{x_2 = x_3 = 0\}$ and $M_3 = \{x_3 = 0\}$. For $p = (0, 0, 0; 1, 1, 1) \in T_{M_1}M_2 \underset{X}{\times} T_{M_2}M_3 \underset{X}{\times} T_{M_3}X$, it is easy to see that a cofinal set of $\operatorname{Cone}_{\chi}(p)$ is, for example, given by the family of the sets

$$\{(\xi_1, \xi_2, \xi_3); |\xi_2| + |\xi_3| < \epsilon \xi_1, |\xi_3| < \epsilon \xi_2, \xi_3 > 0\}_{\epsilon > 0}.$$

3. (Mixed) Let $M_1 = \{0\}$, $M_2 = \{x_2 = 0\}$ and $M_3 = \{x_3 = 0\}$. For $p = (0, 0, 0; 1, 1, 1) \in T_{M_1}(M_2 \cap M_3) \underset{X}{\times} T_{M_2} X \underset{X}{\times} T_{M_3} X$, a cofinal set of $Cone_{\chi}(p)$ is, for example, given by the family of the sets

$$\{(\xi_1, \xi_2, \xi_3); |\xi_2| + |\xi_3| < \epsilon \xi_1, \xi_2 > 0, \xi_3 > 0\}_{\epsilon > 0}.$$

Example 1.9. We now consider the case of Example 1.4. Let $X = \mathbb{R}^4$ with coordinates (x_1, x_2, x_3, x_4) . Let $M_1 = \{x_1 = 0\}$, $M_2 = \{x_2 = x_3 = 0\}$, $M_3 = \{x_3 = 0\}$ and $M_4 = \{x_4 = 0\}$. For $p = (0, 0, 0, 0; 1, 1, 1, 1) \in T_{M_1}(M_2 \cap M_4) \underset{X}{\times} T_{M_2} M_3 \underset{X}{\times} T_{M_3} X \underset{X}{\times} T_{M_4} X$, a cofinal set of $Cone_{\chi}(p)$ is, for example, given by the family of the sets

$$\{(\xi_1, \xi_2, \xi_3, \xi_4); |\xi_2| + |\xi_4| < \epsilon \xi_1, |\xi_3| < \epsilon \xi_2, \xi_3 > 0, \xi_4 > 0\}_{\epsilon > 0}.$$

This definition is also compatible with the restriction to a subfamily of χ . Namely, let $k \leq \ell$ and $K = \{j_1, \ldots, j_k\}$ be a subset of $\{1, 2, \ldots, \ell\}$. Set $\chi_K = \{M_{j_1}, \ldots, M_{j_k}\}$ and $S_K := T_{M_{j_1}} \iota_{\chi}(M_{j_1}) \underset{X}{\times} \cdots \underset{X}{\times} T_{M_{j_k}} \iota_{\chi}(M_{j_k}) \underset{X}{\times} M$. Let Z be a subset of X. Then we have

$$C_{\chi}(Z) \cap S_K = C_{\chi_K}(Z) \cap S_K.$$

Remark that we assume that conditions H1, H2 and H3 are satisfied, in the weak condition of simultaneous linearizability S_{χ} has no vector bundle structure in general and the definition of S_K does not make sense.

§ 1.3. Multi-specialization

Let k be a field and denote by $\operatorname{Mod}(k_{X_{sa}})$ (resp. $D^b(k_{X_{sa}})$) the category (resp. bounded derived category) of sheaves on the subanalytic site X_{sa} . For the theory of sheaves on subanalytic sites we refer to [5, 6]. For the theory of multi-specialization we refer to [3]. Let χ be a family of submanifolds satisfying H1, H2 and H3.

Definition 1.10. The multi-specialization along χ is the functor

$$\nu_{\chi}^{sa} : D^b(k_{X_{sa}}) \to D^b(k_{S_{\chi sa}}), \ F \mapsto s^{-1}R\Gamma_{\Omega_{\chi}}p^{-1}F.$$

We can give a description of the sections of the multi-specialization of $F \in D^b(k_{X_{sa}})$: let V be a conic subanalytic open subset of S_{χ} . Then:

$$\mathrm{H}^{j}(V; \nu_{M}^{sa}F) \simeq \varinjlim_{U} \mathrm{H}^{j}(U; F),$$

where U ranges through the family of open subanalytic subsets of X such that $C_{\chi}(X \setminus U) \cap V = \emptyset$. Let $p = (q; \xi) \in \underset{X,1 \leq j \leq \ell}{\times} T_{M_j} \iota(M_j)$, let $B_{\epsilon} \subset (TX)_q$ be an open ball of radius $\epsilon > 0$ with its center at the origin and set

$$\operatorname{Cone}_{\chi}(p, \epsilon) := \{ G \cap B_{\epsilon}; G \in \operatorname{Cone}_{\chi}(p) \}.$$

Applying the functor ρ^{-1} : $D^b(k_{S_{\chi sa}}) \to D^b(k_{S_{\chi}})$ (see [6] for details) we can calculate the fibers at $p \in \underset{X,1 \le j \le \ell}{\times} T_{M_j} \iota(M_j)$ which are given by

$$(H^{j}\rho^{-1}\nu_{\chi}^{sa}F)_{p} \simeq \varinjlim_{W} \operatorname{H}^{j}(W;F),$$

where W ranges through the family $\operatorname{Cone}_{\chi}(p, \epsilon)$ for $\epsilon > 0$.

If there is no risk of confusion, in the rest of the paper we will use the notation

$$\nu_{\chi} = \rho^{-1} \nu_{\chi}^{sa} \colon D^b(k_{X_{sa}}) \to D^b(k_{S_{\chi}}).$$

§ 2. Multi-microlocalization

In this section we introduce the functor of multi-microlocalization as the Fourier-Sato transform of multi-specialization. We then compute its stalks as inductive limits of sections supported on convex subanalytic cones. We refer to [2] for the proofs.

§ 2.1. Definition

Now we are going to apply the Fourier-Sato transform to the multi-specialization. We refer to [4] for the classical Fourier-Sato transform and to [7] for its generalization to subanalytic sheaves. First, we need a general result: Let $\tau_i \colon E_i \to Z$ $(1 \le i \le \ell)$ be vector bundles over Z, and let E_i^* be the dual bundle of E_i . We denote by \wedge_i and \vee_i the Fourier-Sato and the inverse Fourier-Sato transformations on E_i respectively. Moreover we denote by \wedge_i^* and \vee_i^* the Fourier-Sato and the inverse Fourier-Sato transformations on E_i^* respectively. Set $E := E_1 \times \cdots \times E_\ell$ and $E^* := E_1^* \times \cdots \times E_\ell^*$ for short. Let $\tau \colon E \to Z$ be the the canonical projection. Set $P_i' := \{(\eta, \xi) \in E_i \times E_i^*; \langle \eta, \xi \rangle \leqslant 0\}$. Further set

$$P' := P'_1 \times \cdots \times P'_\ell, \qquad P^+ := E \times E^* \setminus P',$$

and denote by $p'_1: P' \to E$, $p'_2: P' \to E^*$, and $p^+_1: P^+ \to E_i$, $p^+_2: P^+ \to E^*$ the canonical projections respectively. Let F and G be multi-conic objects on E and E^* respectively. Then we set for short \wedge_E (resp. \vee_E^*) the composition of the Fourier-Sato transforms \wedge_i (resp. the composition of the inverse Fourier-Sato transforms \vee_i^*) on E_i for each $i \in \{1, \ldots, \ell\}$.

Let F and G be multi-conic objects on E and E^* respectively. Then F^{\wedge_E} and $G^{\vee_E^*}$ are independent of the order of the Fourier-Sato transformations \wedge_i and inverse the Fourier-Sato transformations \vee_i^* respectively. It follows that

$$G^{\vee_E^*} = Rp'_{1*}p'_2!G.$$

We shall need some notations. For a subset $K = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, \ell\}$, set $\chi_K := \{M_i; i \in K\}, S_i := T_{M_i} \iota(M_i) \underset{X}{\times} M \ (j = 1, \ldots, \ell)$ and

$$S_K := T_{M_{i_1}}\iota(M_{i_1}) \underset{X}{\times} \cdots \underset{X}{\times} T_{M_{i_k}}\iota(M_{i_k}) = S_{i_1} \underset{M}{\times} \cdots \underset{M}{\times} S_{i_k}.$$

Let S_K^* be the dual of S_K :

$$S_K^* := T_{M_{i_1}}^* \iota(M_{i_1}) \underset{X}{\times} \cdots \underset{X}{\times} T_{M_{i_k}}^* \iota(M_{i_k}) = S_{i_1}^* \underset{M}{\times} \cdots \underset{M}{\times} S_{i_k}^*$$

Given $C_{i_j} \subseteq S_{i_j}$, j = 1, ..., k, we set for short $C_K := C_{i_1} \times \cdots \times C_{i_k} \subset S_K$. Define \wedge_K as the composition of the Fourier-Sato transformations \wedge_{i_k} on S_{i_k} for each $i_k \in K$.

Let $I, J \subseteq \{1, \dots, \ell\}$ be such that $I \sqcup J = \{1, \dots, \ell\}$. We still denote by $\pi \colon S_I \underset{M}{\times} S_J^* \to M$ the projection. We define the functor $\nu_{\chi_I}^{\mathrm{sa}} \mu_{\chi_J}^{\mathrm{sa}}$ by

$$\nu_{\chi_I}^{\mathrm{sa}}\mu_{\chi_J}^{\mathrm{sa}} \colon D^b(k_{X_{\mathrm{sa}}}) \ni F \mapsto \nu_{\chi}^{\mathrm{sa}}(F)^{\wedge_J} \in D^b(k_{(S_I \underset{M}{\times} S_J^*)_{\mathrm{sa}}}).$$

Composing with the functor ρ^{-1} , we set for short

$$\nu_{\chi_I}\mu_{\chi_J} := \rho^{-1}\nu_{\chi_I}^{\operatorname{sa}}\mu_{\chi_J}^{\operatorname{sa}} \colon D^b(k_{X_{\operatorname{sa}}}) \to D^b(k_{S_I \underset{M}{\times} S_J^*}).$$

When $I = \emptyset$, we obtain the functor of the multi-microlocalization: Set $\wedge := \wedge_{\{1,...,\ell\}}$ for short.

Definition 2.1. The multi-microlocalization along χ is the functor

$$\mu_{\chi}^{\mathrm{sa}} \colon D^b(k_{X_{\mathrm{sa}}}) \ni F \mapsto \nu_{\chi}^{\mathrm{sa}}(F)^{\wedge} \in D^b(k_{S_{\mathrm{vsa}}^*}).$$

As above, we set for short

$$\mu_{\chi} := \rho^{-1} \mu_{\chi}^{\text{sa}} \colon D^b(k_{X_{\text{sa}}}) \to D^b(k_{S_{\chi}^*}).$$

§ 2.2. Stalks

Let X be a real analytic manifold and consider a family of submanifolds $\chi = \{M_1, \ldots, M_\ell\}$ satisfying H1, H2 and H3. Let $S = T_{M_1} \iota(M_1) \underset{X}{\times} \cdots \underset{X}{\times} T_{M_\ell} \iota(M_\ell)$. Locally $p \in S$ is given by $p = p_1 \times \cdots \times p_\ell = (q; \xi^{(1)}, \ldots, \xi^{(\ell)})$, with $\xi^{(k)} \in T_{M_k} \iota(M_k)$. Set $M = \bigcap_{j=1}^{\ell} M_j$. Let $\tau_j : T_{M_j} \iota(M_j) \hookrightarrow T_{M_j} X$ denote the canonical injection and let $\pi_j : S \to T_{M_j} \iota(M_j)$ be the canonical projection.

Set $S^* := T^*_{M_1} \iota(M_1) \underset{X}{\times} \ldots \underset{X}{\times} T^*_{M_\ell} \iota(M_\ell)$. Let $V = V_1 \underset{X}{\times} \ldots \underset{X}{\times} V_\ell$ be a multi-conic open subanalytic subset in S^* , and let $\pi : S^* \to M$ denote the canonical projection. We set, for short, $V^\circ := V_1^\circ \underset{X}{\times} \ldots \underset{X}{\times} V_\ell^\circ$ the multi-polar cone in S.

Now we are going to find a stalk formula for the multi-microlocalization given by a limit of sections with support (locally) contained in closed convex cones. As the problem

is local, we may assume that $X = \mathbb{R}^n$ and q = 0 with coordinates (x_1, \ldots, x_n) , and that there exists a subset I_k $(k = 1, 2, \ldots, \ell)$ in $\{1, 2, \ldots, n\}$ with the conditions (1.2) such that each submanifold M_k is given by $\{x = (x_1, \ldots, x_n) \in \mathbb{R}^n; x_i = 0 \ (i \in I_k)\}$. Recall that \hat{I}_k was defined by (1.3) and that we set $M = \bigcap_k M_k$ and $n_k = \sharp \hat{I}_k$. Then locally we have

$$X = M \times (N_1 \times N_2 \times \cdots \times N_\ell) = M \times N$$

where N_k is \mathbb{R}^{n_k} with coordinates $x^{(k)} = (x_i)_{i \in \hat{I}_k}$. Set, for $k \in \{1, \dots, \ell\}$,

(2.1)
$$J_{\prec k} := \{ j \in \{1, \dots, \ell\}; \ I_j \subsetneq I_k \},$$
$$J_{\succ k} := \{ j \in \{1, \dots, \ell\}; \ I_j \supsetneq I_k \},$$
$$J_{\not \mid k} := \{ j \in \{1, \dots, \ell\}; \ I_j \cap I_k = \emptyset \}.$$

Clearly we have

$$(2.2) k \in J_{\prec j} \Leftrightarrow I_k \subsetneq I_j \Leftrightarrow j \in J_{\succ k},$$

and, by the conditions H1, H2 and H3, we also have

$$(2.3) J_{\prec k} \sqcup \{k\} \sqcup J_{\succ k} \sqcup J_{\not k} = \{1, 2, \dots, \ell\}.$$

Let $p = p_1 \times \cdots \times p_\ell = (q; \xi^{(1)}, \dots, \xi^{(\ell)}) \in T_{M_1}^* \iota(M_1) \underset{X}{\times} \dots \underset{X}{\times} T_{M_\ell}^* \iota(M_\ell)$ and consider the following conic subset in N

(2.4)
$$\gamma_k := \left\{ (x^{(j)})_{j=1,\dots,\ell} \in N; \ x^{(j)} \in \mathbb{R}^{n_j} \qquad (j \in J_{\prec k} \sqcup J_{\not \mid k}), \\ \langle x^{(j)}, \xi^{(k)} \rangle > 0 \quad (j = k) \right\}.$$

Note that, if $\xi^{(k)} = 0$, then γ_k is empty.

Example 2.2. We now compute γ_k of (2.4) on the complex case in the following two typical situations. Let $X = \mathbb{C}^2$ with coordinates (z_1, z_2) .

1. (Majima) Let
$$M_1=\{z_1=0\}$$
 and $M_2=\{z_2=0\}$. Then
$$\gamma_1=\{(z_1,0); \, \operatorname{Re}\,\langle z_1,\eta_1\rangle>0\},$$

$$\gamma_2=\{(0,z_2); \, \operatorname{Re}\,\langle z_2,\eta_2\rangle>0\}.$$

2. (Takeuchi) Let
$$M_1=\{0\}$$
 and $M_2=\{z_2=0\}$. Then
$$\gamma_1=\{(z_1,0);\,\operatorname{Re}\langle z_1,\eta_1\rangle>0\},$$

$$\gamma_2=\{(z_1,z_2);\,\operatorname{Re}\langle z_2,\eta_2\rangle>0\}.$$

Example 2.3. We now compute γ_k of (2.4) on the real case in three typical situations. Let $X = \mathbb{R}^3$ with coordinates (x_1, x_2, x_3) .

1. (Majima) Let
$$M_1=\{x_1=0\},\ M_2=\{x_2=0\}$$
 and $M_3=\{x_3=0\}$. Then
$$\gamma_1=\{(x_1,0,0);\ \langle x_1,\xi_1\rangle>0\},$$

$$\gamma_2=\{(0,x_2,0);\ \langle x_2,\xi_2\rangle>0\},$$

$$\gamma_3=\{(0,0,x_3);\ \langle x_3,\xi_3\rangle>0\}.$$

- 2. (Takeuchi) Let $M_1=\{0\},\ M_2=\{x_2=x_3=0\}$ and $M_3=\{x_3=0\}$. Then $\gamma_1=\{(x_1,0,0);\ \langle x_1,\xi_1\rangle>0\},$ $\gamma_2=\{(x_1,x_2,0);\ \langle x_2,\xi_2\rangle>0\},$ $\gamma_3=\{(x_1,x_2,x_3);\ \langle x_3,\xi_3\rangle>0\}.$
- 3. (Mixed) Let $M_1 = \{0\}$, $M_2 = \{x_2 = 0\}$ and $M_3 = \{x_3 = 0\}$. Then $\gamma_1 = \{(x_1, 0, 0); \langle x_1, \xi_1 \rangle > 0\},$ $\gamma_2 = \{(x_1, x_2, 0); \langle x_2, \xi_2 \rangle > 0\},$ $\gamma_3 = \{(x_1, 0, x_3); \langle x_3, \xi_3 \rangle > 0\}.$

Theorem 2.4. Let $p = p_1 \times \cdots \times p_\ell = (q; \xi^{(1)}, \dots, \xi^{(\ell)}) \in S^*$, and let $F \in D^b(k_{X_{sa}})$. Then we have

(2.5)
$$H^{k}(\mu_{\chi}F)_{p} \simeq \varinjlim_{G,U} \mathrm{H}_{G}^{k}(U;F).$$

Here U is an open subanalytic neighborhood of q in X and G is a closed subanalytic subset in the form $M \times \left(\sum_{k=1}^{\ell} G_k\right)$ with G_k being a closed subanalytic convex cone in N satisfying $G_k \setminus \{0\} \subset \gamma_k$, where γ_k is defined in (2.4).

Now let us consider the mixed cases between specialization and microlocalization. Let $I, J \subseteq \{1, \ldots, \ell\}$ be such that $I \sqcup J = \{1, \ldots, \ell\}$, and let $p = p_1 \times \cdots \times p_\ell = (q; \xi^{(1)}, \ldots, \xi^{(\ell)}) = (q; \xi_I, \xi_J) \in S_I \underset{X}{\times} S_J^*$. Locally we may identify S_J with its dual. Set for short $\nu_{\chi_I} \mu_{\chi_J} := \rho^{-1} \nu_{\chi_I}^{sa} \mu_{\chi_J}^{sa}$.

As in Theorem 2.4 we can find a family which (locally) consists of convex cones defining the stalk formula in the mixed case.

Theorem 2.5. Let $p = p_1 \times \cdots \times p_\ell = (q; \xi^{(1)}, \dots, \xi^{(\ell)}) \in S_I \underset{X}{\times} S_J^*$, and let $F \in D^b(k_{X_{sa}})$. Then we have

(2.6)
$$H^{k}(\nu_{\chi_{I}}\mu_{\chi_{J}}F)_{p} \simeq \varinjlim_{G,W_{\epsilon}} H_{G}^{k}(W_{\epsilon};F).$$

Here $W_{\epsilon} = W \cap B_{\epsilon}$, with $W \in \operatorname{Cone}_{\chi}(q; \xi_{I}, 0_{J})$, B_{ϵ} is an open ball of radius $\epsilon > 0$ containing q and a closed subanalytic subset $G = M \times \left(\sum_{k=1}^{\ell} G_{k}\right)$ with G_{k} being a closed subanalytic convex cone in N satisfying $G_{k} \setminus \{0\} \subset \gamma_{k}$, where γ_{k} is defined in (2.4).

§ 3. Multi-microlocalization and microsupport

In this section we give an estimate of the microsupport of the multi-microlocalization. The main point is to find a suitable ambient space: this is done (via Hamiltonian isomorphism) by identifying T^*S_{χ} with the normal deformation of T^*X with respect to a suitable family of submanifolds χ^* . We refer to [2] for the proofs.

§ 3.1. Geometry

Let X be a real analytic manifold and consider a family of submanifolds $\chi = \{M_1, \ldots, M_\ell\}$ satisfying H1, H2 and H3. We consider the conormal bundle T^*X with local coordinates $(x^{(0)}, x^{(1)}, \ldots, x^{(\ell)}; \xi^{(0)}, \xi^{(1)}, \ldots, \xi^{(\ell)})$, where $x^{(j)} = (x_{j_1}, \ldots, x_{j_p})$ with $\hat{I}_j = \{j_1, \ldots, j_p\}$ etc. We use the notations in § 2.1; for example, we set $S_i := T_{M_i} \iota(M_i) \times M$. Let $I, J \subseteq \{1, \ldots, \ell\}$ be such that $I \sqcup J = \{1, \ldots, \ell\}$. Recall that

$$\begin{split} S_{\chi} &= S_1 \underset{X}{\times} \cdots \underset{X}{\times} S_{\ell}, \\ S_{\chi}^* &= S_1^* \underset{X}{\times} \cdots \underset{X}{\times} S_{\ell}^*, \\ S_I \underset{M}{\times} S_J^* &= (\underset{M, i \in I}{\times} S_i) \underset{M}{\times} (\underset{M, j \in J}{\times} S_j^*). \end{split}$$

Then we consider a mapping

$$H_{IJ} \colon T^* S_{\chi} \ni (x^{(0)}, x^{(1)}, \dots, x^{(\ell)}; \, \xi^{(0)}, \xi^{(1)}, \dots, \xi^{(\ell)})$$

$$\mapsto (x^{(0)}, (x^{(i)})_{i \in I}, (\xi^{(j)})_{j \in J}; \, \eta^{(0)}, (\xi^{(i)})_{i \in I}, (-x^{(j)})_{j \in J}) \in T^*(S_I \underset{M}{\times} S_J^*).$$

Note that H_{IJ} is induced by the Hamiltonian isomorphisms $T^*S_J \xrightarrow{\sim} T^*S_J^*$ and it gives a bundle isomorphism over M; that is, H_{IJ} does not depend on the choice of local coordinates.

Hence, using Proposition 5.5.5 of [4] repeatedly, we obtain:

Proposition 3.1. Let $I, J \subseteq \{1, ..., \ell\}$ be such that $I \sqcup J = \{1, ..., \ell\}$. Then, under the identification given by H_{IJ} , for any $F \in D^b(k_X)$ it follows that

$$T^*S_\chi = T^*(S_I \underset{M}{\times} S_J^*)$$

$$\cup \qquad \qquad \cup$$

$$SS(\nu_\chi(F)) = SS(\nu_{\chi_I} \mu_{\chi_J}(F)).$$

In particular, it follows that

$$T^*S_\chi = T^*S_\chi^*$$

$$\cup \qquad \qquad \cup$$

$$\mathrm{SS}(\nu_\chi(F)) = \mathrm{SS}(\mu_\chi(F)).$$

Next, we study the relation between the normal deformations of T^*X with respect to $\chi^* := \{T^*_{M_1}X, \ldots, T^*_{M_\ell}X\}$ and of X with respect to χ . We denote by $\widetilde{T^*X}_{\chi^*} := \widetilde{T^*X}_{T^*_{M_1}X,\ldots,T^*_{M_\ell}X}$ the normal deformation of T^*X with respect to χ^* and by S_{χ^*} its zero-section. Set $x := (x^{(0)}, x^{(1)}, \ldots, x^{(\ell)}), \; \xi := (\xi^{(0)}, \xi^{(1)}, \ldots, \xi^{(\ell)})$ and $t := (t_1, \ldots, t_\ell)$. We have a mapping

$$\widetilde{T^*X}_{\chi^*} \ni (x; \xi; t) \mapsto (\mu_x(x; t); \mu_{\xi}(\xi; t)) \in T^*X$$

defined by

$$\mu_x(x;t) := (t_{\hat{J}_0}x^{(0)}, t_{\hat{J}_1}x^{(1)}, \dots, t_{\hat{J}_{\ell}}x^{(\ell)}),$$

$$\mu_{\xi}(\xi;t) := (t_{\hat{J}_c^c}\xi^{(0)}, t_{\hat{J}_c^c}\xi^{(1)}, \dots, t_{\hat{J}_c^c}\xi^{(\ell)}),$$

where $\hat{J}_j^c := \{1, \dots, \ell\} \setminus \hat{J}_j \ (j = 0, 1, \dots, \ell)$. In particular $\hat{J}_0^c = \{1, \dots, \ell\}$ since $\hat{J}_0 = \emptyset$. In particular $t_{\hat{J}_0} = 1$ and $t_{\hat{J}_0^c} = t_1 \cdots t_\ell$.

Theorem 3.2. As vector bundles, there exist the following canonical isomorphism:

$$S_{\chi^*} \simeq T^* S_{\chi} \simeq T^* S_{\chi}^*.$$

Example 3.3. Let $X = \mathbb{C}^2$ with coordinates (z_1, z_2) and consider T^*X with coordinates $(z; \eta) = (z_1, z_2; \eta_1, \eta_2)$. Set $t = (t_1, t_2) \in (\mathbb{R}^+)^2$.

1. (Majima) Let $M_1 = \{z_1 = 0\}$ and $M_2 = \{z_2 = 0\}$. Then $\chi^* = \{T_{M_1}^* X, T_{M_2}^* X\}$ and we have a map

$$\widetilde{T^*X} \to T^*X,$$

$$(z; \eta; t) \mapsto (\mu_z(z; t); \mu_\eta(\eta; t)),$$

which is defined by

$$\mu_z(z; t) = (t_1 z_1, t_2 z_2),$$

 $\mu_{\eta}(\eta; t) = (t_2 \eta_1, t_1 \eta_2).$

By Theorem 3.2, we have $S_{\chi}^* \simeq T^*(T_{M_1}X \underset{X}{\times} T_{M_2}X) \simeq T^*(T_{M_1}^*X \underset{X}{\times} T_{M_2}^*X)$.

2. (Takeuchi) Let $M_1 = \{0\}$ and $M_2 = \{z_2 = 0\}$. Then $\chi^* = \{T_{M_1}^* X, T_{M_2}^* X\}$ and we have a map

$$\widetilde{T^*X} \to T^*X,$$

$$(z; \eta; t) \mapsto (\mu_z(z; t); \mu_n(\eta; t)),$$

which is defined by

$$\mu_z(z; t) = (t_1 z_1, t_1 t_2 z_2),$$

 $\mu_{\eta}(\eta; t) = (t_2 \eta_1, \eta_2).$

By Theorem 3.2, we have $S_{\chi}^* \simeq T^*(T_{M_1}M_2 \underset{X}{\times} T_{M_2}X) \simeq T^*(T_{M_1}^*M_2 \underset{X}{\times} T_{M_2}^*X)$.

Example 3.4. Let $X = \mathbb{R}^3$ with coordinates (x_1, x_2, x_3) and consider T^*X with coordinates $(x; \xi) = (x_1, x_2, x_3; \xi_1, \xi_2, \xi_3)$. Set $t = (t_1, t_2, t_3) \in (\mathbb{R}^+)^3$.

1. (Majima) Let $M_1 = \{x_1 = 0\}$, $M_2 = \{x_2 = 0\}$ and $M_3 = \{x_3 = 0\}$. Then $\chi^* = \{T_{M_1}^* X, T_{M_2}^* X, T_{M_3}^* X\}$ and we have a map

$$\widetilde{T^*X} \to T^*X,$$

 $(x; \xi; t) \mapsto (\mu_x(x; t); \mu_{\xi}(\xi; t)),$

which is defined by

$$\mu_x(x; t) = (t_1 x_1, t_2 x_2, t_3 x_3),$$

$$\mu_{\xi}(\xi; t) = (t_2 t_3 \xi_1, t_1 t_3 \xi_2, t_2 t_3 \xi_3).$$

By Theorem 3.2, we have $S_{\chi}^* \simeq T^*(T_{M_1}X \underset{X}{\times} T_{M_2}X \underset{X}{\times} T_{M_3}X) \simeq T^*(T_{M_1}^*X \underset{X}{\times} T_{M_2}X \underset{X}{\times} T_{M_3}X)$.

2. (Takeuchi) Let $M_1 = \{0\}$, $M_2 = \{x_2 = x_3 = 0\}$ and $M_3 = \{x_3 = 0\}$. Then $\chi^* = \{T_{M_1}^*X, T_{M_2}^*X, T_{M_3}^*X\}$ and we have a map

$$\widetilde{T^*X} \to T^*X,$$

 $(x; \xi; t) \mapsto (\mu_x(x; t); \mu_{\xi}(\xi; t)),$

which is defined by

$$\mu_x(x; t) = (t_1 x_1, t_1 t_2 x_2, t_1 t_2 t_3 x_3),$$

$$\mu_{\xi}(\xi; t) = (t_2 t_3 \xi_1, t_3 \xi_2, \xi_3).$$

By Theorem 3.2, we have $S_\chi^* \simeq T^*(T_{M_1}M_2 \underset{X}{\times} T_{M_2}M_3 \underset{X}{\times} T_{M_3}X) \simeq T^*(T_{M_1}^*M_2 \underset{X}{\times} T_{M_2}M_3 \underset{X}{\times} T_{M_3}X)$.

3. (Mixed) Let $M_1=\{0\}$, $M_2=\{x_2=0\}$ and $M_3=\{x_3=0\}$. Then $\chi^*=\{T_{M_1}^*X,T_{M_2}^*X,T_{M_3}^*X\}$ and we have a map

$$\widetilde{T^*X} \to T^*X,$$

 $(x; \xi; t) \mapsto (\mu_x(x; t); \mu_{\xi}(\xi; t)),$

which is defined by

$$\mu_x(x; t) = (t_1 x_1, t_1 t_2 x_2, t_1 t_3 x_3),$$

$$\mu_{\xi}(\xi; t) = (t_2 t_3 \xi_1, t_3 \xi_2, t_2 \xi_3).$$

By Theorem 3.2, we have $S_{\chi}^* \simeq T^*(T_{M_1}(M_2 \cap M_3) \underset{X}{\times} T_{M_2} X \underset{X}{\times} T_{M_3} X) \simeq T^*(T_{M_1}^*(M_2 \cap M_3) \underset{X}{\times} T_{M_2}^* X \underset{X}{\times} T_{M_3}^* X).$

§ 3.2. Estimate of microsupport

In this section we shall prove an estimate for the microsupport of the multi-specialization and multi-microlocalization of a sheaf on X. We refer to [4] for the theory of microsupport of sheaves.

Since the problem is local, we may assume that $X = \mathbb{R}^n$ with coordinates (x_1, \ldots, x_n) . Let I_k $(k = 1, 2, \ldots, \ell)$ in $\{1, 2, \ldots, n\}$ such that each submanifold M_k is given by

$$\{x = (x_1, \dots, x_n) \in \mathbb{R}^n; x_i = 0 (i \in I_k)\}.$$

Theorem 3.5. Let $F \in D^b(k_X)$ and take a point

$$p_0 = (x_0^{(0)}, x_0^{(1)}, \dots, x_0^{(\ell)}; \xi_0^{(0)}, \xi_0^{(1)}, \dots, \xi_0^{(\ell)}) \in T^* S_{\chi}.$$

Assume that $p_0 \in SS(\nu_{\chi}(F))$. Then there exist sequences

$$\{(c_{1,k},\ldots,c_{\ell,k})\}_{k=1}^{\infty} \subset (\mathbb{R}^+)^{\ell},$$
$$\{(x_k^{(0)},x_k^{(1)},\ldots,x_k^{(\ell)};\,\xi_k^{(0)},\xi_k^{(1)},\ldots,\xi_k^{(\ell)})\}_{k=1}^{\infty} \subset SS(F),$$

such that

$$\begin{cases} \lim_{k \to \infty} c_{j,k} = \infty, & (j = 1, \dots, \ell), \\ \lim_{k \to \infty} (x_k^{(0)}, x_k^{(1)} c_{\hat{J}_1, k}, \dots, x_k^{(\ell)} c_{\hat{J}_\ell, k}; \, \xi_k^{(0)} c_k, \xi_k^{(1)} c_{\hat{J}_1^c, k}, \dots, \xi_k^{(\ell)} c_{\hat{J}_\ell^c, k}) \\ = (x_0^{(0)}, x_0^{(1)}, \dots, x_0^{(\ell)}; \, \xi_0^{(0)}, \xi_0^{(1)}, \dots, \xi_0^{(\ell)}), \end{cases}$$

where
$$c_k := \prod_{j=1}^{\ell} c_{j,k}$$
, $\hat{J}_j^c := \{1, \dots, \ell\} \setminus \hat{J}_j \text{ and } c_{J,k} := \prod_{j \in J} c_{j,k} \text{ for any } J \subseteq \{1, \dots, \ell\}.$

Then, an estimate of the microsupport of multi-specialization and multi-microlocalization of sheaves on X follows from Theorem 3.5:

Theorem 3.6. Let $F \in D^b(k_X)$. Then

$$\mathrm{SS}(\nu_\chi(F)) = \mathrm{SS}(\mu_\chi(F)) \subseteq C_{\chi^*}(\mathrm{SS}(F)).$$

§ 4. Microfunctions along χ

In this section, thanks to the vanishing results of [2] we introduce multi-microlocalized objects along χ which are natural extensions of sheaves of microfunctions and holomorphic ones.

§ 4.1. The result for some family of real analytic submanifolds

Let $X = \mathbb{C}^n$ with coordinates $(z_1 = x_1 + \sqrt{-1}y_1, \ldots, z_n = x_n + \sqrt{-1}y_n)$ and $\zeta_i = \xi_i + \sqrt{-1}\eta_i$ $(i = 1, \ldots, n)$ the dual variable of $z_i = x_i + \sqrt{-1}y_i$. Let I_j $(j = 1, 2, \ldots, \ell)$ be a subset of $\{1, 2, \ldots, n\}$ which satisfies the conditions (1.2), and set $I_0 = \{1, \ldots, n\} \setminus \left(\bigcup_{j=1}^{\ell} I_j\right)$. Let $I_{\mathbb{R}}$ be a subset of $I := \bigcup_{1 \leq j \leq \ell} I_j$ and $I_{\mathbb{C}} := I \setminus I_{\mathbb{R}}$. Define, for $i \in I$, the function $q_i(z)$ in X by

$$q_i(z) := \begin{cases} z_i & (i \in I_{\mathbb{C}}), \\ \sqrt{-1} \operatorname{Im} z_i & (i \in I_{\mathbb{R}}). \end{cases}$$

Then we define the closed real analytic submanifolds

$$N_j := \{ z \in X; q_i(z) = 0, i \in I_j \}$$
 $(j = 1, \dots, \ell),$

and set

$$\chi := \{N_1, \dots, N_\ell\}, \qquad N = N_1 \cap \dots \cap N_\ell.$$

In what follows, we regard the function q_i as the complex coordinate variable z_i if $i \in I_{\mathbb{C}}$ and as the imaginary coordinate variable $\sqrt{-1}y_i$ if $i \in I_{\mathbb{R}}$. In the same way, p_i is regraded as the dual variable of q_i , that is, p_i denotes ζ_i if $i \in I_{\mathbb{C}}$ and $\sqrt{-1}\eta_i$ if $i \in I_{\mathbb{R}}$. As usual convention, we write by $q^{(j)}$ (resp. $p^{(j)}$) the coordinates q_i 's (resp. p_i 's) with $i \in \hat{I}_j$. Under these conventions, the coordinates of S_{χ}^* are given by

$$(q^{(0)}; p^{(1)}, \ldots, p^{(\ell)}),$$

where $q^{(0)}$ denotes the set of the coordinate variables z_i 's $(i \in I_0)$ and x_i 's $(i \in I_{\mathbb{R}})$. Let $\theta_* = (q_*; p_*) = (q_*^{(0)}; p_*^{(1)}, \ldots, p_*^{(\ell)}) \in S_{\chi}^*$. Recall the definition of $J^*(\theta_*)$, that is,

$$J^*(\theta_*) := \{ j \in \{1, \dots, \ell\}; \ p_*^{(\alpha)} = 0 \text{ for all } \alpha \in J_{\leq j} \}$$
$$= \{ j \in \{1, \dots, \ell\}; \ p_*^{(\alpha)} = 0 \text{ for all } \alpha \text{ with } N_j \subset N_\alpha \}.$$

We set

(4.1)
$$I^*(\theta_*) := \bigcup_{j \in J^*(\theta_*)} \hat{I}_j \subset \{1, \dots, n\}.$$

Then we define the integer $N(\theta_*)$ by

(4.2)
$$N(\theta_*) = \#I + \#(I^*(\theta_*) \cap I_{\mathbb{C}}),$$

where # denotes the number of elements in a set. Note that #I is equal to $\operatorname{Codim}_{\mathbb{C}} N$, i.e., the complex codimension of the maximal complex linear subspace contained in N.

Theorem 4.1. We have

$$H^{k}(\mu_{\chi}(\mathcal{O}_{X_{sa}}^{\mathbf{w}}))_{\theta_{*}} = 0 \qquad (k \neq N(\theta_{*})).$$

We also have the similar results for \mathcal{O}_X^t and \mathcal{O}_X

Theorem 4.2. We have

$$H^k(\mu_{\chi}(\mathcal{F}))_{\theta_*} = 0 \qquad (k \neq \operatorname{codim}_{\mathbb{C}} N = \#I),$$

where \mathcal{F} is either $\mathcal{O}_{X_{sa}}^t$ or \mathcal{O}_X .

$\S 4.2.$ The typical examples

As the results given in the previous subsection has been considered in a fairly general situation, we here describe the corresponding results for typical cases.

We first consider the corresponding result for families of complex submanifolds, i.e., $I = I_{\mathbb{C}}$. Let X be a complex manifold and $\chi = \{Z_1, \ldots, Z_\ell\}$ a family of closed complex submanifolds of X which satisfies the conditions H1, H2 and H3. Set $Z = Z_1 \cap \cdots \cap Z_\ell$. Let $p = (q; \zeta) = (q; \zeta^{(1)}, \ldots, \zeta^{(\ell)}) \in S_{\chi}^*$. Remember that the subset $J^*(p)$ of $\{1, \ldots, \ell\}$ was defined by

$$J^*(p) := \{ j \in \{1, \dots, \ell\}; \ \zeta^{(\alpha)} = 0 \text{ for all } \alpha \text{ with } Z_j \subset Z_\alpha \}.$$

We also define $\hat{J}^*(p)$ by the subset of $J^*(p)$ that consists of the minimal elements with respect to the order relation $k \prec j \iff Z_k \subsetneq Z_j$ for $k, j \in J^*(p)$. Now we define the integer N(p) by

$$(4.3) N(p) = \operatorname{codim}_{\mathbb{C}} Z + \sum_{j \in \hat{J}^*(p)} \operatorname{codim}_{\mathbb{C}} Z_j.$$

Then the following result immediately comes from Theorem 4.1.

Corollary 4.3. We have

$$H^k(\mu_{\chi}(\mathcal{O}_{X_{sa}}^{\mathbf{w}}))_p = 0 \quad (k \neq N(p)).$$

We also have

$$H^k(\mu_{\mathcal{X}}(\mathcal{F}))_p = 0 \quad (k \neq \operatorname{codim}_{\mathbb{C}} Z),$$

where \mathcal{F} is either \mathcal{O}_X^t or \mathcal{O}_X .

Definition 4.4. The sheaf of holomorphic microfunctions along χ in S_{χ}^* is defined by

(4.4)
$$\mathcal{C}_{\chi}^{\mathbb{R}} := \mu_{\chi}(\mathcal{O}_{X}) \underset{\mathbb{Z}_{S_{\chi}^{*}}}{\otimes} or_{S_{\chi}^{*}}[\operatorname{codim}_{\mathbb{C}} Z],$$

where $or_{S_{\chi}^*}$ denotes the orientation sheaf of S_{χ}^* . We also define $\mathcal{C}_{\chi}^{\mathbb{R},f}$ and $\mathcal{C}_{\chi}^{\mathbb{R},w}$ by replacing \mathcal{O}_X in the above definition with \mathcal{O}_X^t and \mathcal{O}_X^w respectively.

Note that $\mathcal{C}_{\chi}^{\mathbb{R}}$ and $\mathcal{C}_{\chi}^{\mathbb{R},f}$ are really sheaves on S_{χ}^* . We also note that $\mathcal{C}_{\chi}^{\mathbb{R},w}$ is a complex. It is, however, concentrated in degree 0 outside the zero section, i.e., $\{(z;\zeta^{(1)},\ldots,\zeta^{(\ell)})\in S_{\chi}^*;\ \zeta^{(j)}\neq 0\}$.

Next we consider the corresponding result for the case $I = I_{\mathbb{R}}$. Let M be a connected real analytic manifold and X its complexification. Let $\Theta_1, \ldots, \Theta_\ell$ be real analytic vector subbundles of TM which are involutive, that is, $[\theta_1, \theta_2] \in \Theta_k$ for any vector fields $\theta_1, \theta_2 \in \Theta_k$. We denote by $\Theta_k^{\mathbb{C}} \subset TX$ the complex vector subbundle over X that is a complexification of Θ_k near M. Now we introduce the conditions for Θ_k 's which are counterparts of the ones H1, H2 and H3. Set, for $1 \leq k \leq \ell$,

$$NR(k) := \{ j \in \{1, \dots, \ell\}; \ \Theta_j \nsubseteq \Theta_k, \Theta_k \nsubseteq \Theta_j \}$$

Then we assume that, for any $q \in M$ and any k with $NR(k) \neq \emptyset$,

$$(TM)_q = (\Theta_k)_q + \left(\bigcap_{j \in NR(k)} (\Theta_j)_q\right).$$

We also assume that, for simplicity, Θ_k 's are mutually distinct, i.e., $\Theta_{k_1} \neq \Theta_{k_2}$ if $k_1 \neq k_2$.

Let $N_{M,j} \subset X$ $(j=1,\ldots,\ell)$ be the union of the complex integral submanifolds of the involutive complex vector bundle $\Theta_j^{\mathbb{C}} \subset TX$ passing through each point $q \in M$, that is,

$$N_{M,j} := \bigcup_{q \in M} \mathcal{L}(\Theta_j^{\mathbb{C}}, q)$$

where $\mathcal{L}(\Theta_j^{\mathbb{C}}, q)$ denotes the complex integral submanifold of Θ_j passing through the point q. Set

$$\chi := \{N_{M,1}, \dots, N_{M,\ell}\}, \quad N_M := N_{M,1} \cap \dots \cap N_{M,\ell} \subset X.$$

Corollary 4.5. Let $p \in S_{\chi}^*$. Then we have

$$H^k(\mu_\chi(\mathcal{F}))_p = 0 \quad (k \neq \operatorname{codim}_{\mathbb{R}} N_M),$$

where \mathcal{F} is either $\mathcal{O}_{X_{sa}}^{w}$, $\mathcal{O}_{X_{sa}}^{t}$ or \mathcal{O}_{X} .

Definition 4.6. The sheaf of microfunctions along χ with holomorphic parameters is defined by

(4.5)
$$\mathcal{C}_{N_M,\chi} := \mu_{\chi}(\mathcal{O}_X) \underset{\mathbb{Z}_{S_{\chi}^*}}{\otimes} or_{S_{\chi}^*}[\operatorname{codim}_{\mathbb{R}} N_M],$$

where $or_{S_{\chi}^*}$ denotes the orientation sheaf of S_{χ}^* . We also define $\mathcal{C}_{N_M,\chi}^f$ and $\mathcal{C}_{N_M,\chi}^{\mathrm{w}}$ by replacing \mathcal{O}_X in the above definition with \mathcal{O}_X^t and $\mathcal{O}_X^{\mathrm{w}}$ respectively.

Note that these are really sheaves in S_{χ}^{*} , that is, they are concentrated in degree 0 everywhere.

§ 5. Applications to \mathcal{D} -modules

In this section, we consider applications of the multi-microlocalization to \mathcal{D} -module theory. We refer to [2] for the proofs.

§ 5.1. Uchida's Triangle

First, recall the notations of § 2.1; for example, let $\tau_i \colon E_i \to Z$ ($1 \le i \le \ell$) be a vector bundle over Z, and let E_i^* be the dual bundle of E_i .

Theorem 5.1 (cf. [12]). Let F be a multi-conic object on E. Then there exists the natural isomorphism

$$\tau^! R \tau_! F \simeq R p_{1*} p_2^! (F^{\wedge_E}),$$

and the natural morphism $F \to \tau^! R \tau_! F$ is embedded to the following distinguished triangle:

$$F \to \tau^! R \tau_! F \to R p_{1*}^+ p_2^{+!} (F^{\wedge_E}) \xrightarrow{+1} .$$

Therefore, we obtain the following:

Theorem 5.2. Let X be a real analytic manifold, and assume that the family $\chi = \{M_i\}_{i=1}^{\ell}$ of submanifolds in X satisfies conditions H1, H2 and H3. Set $M := \bigcap_{i=1}^{\ell} M_i$. Then, for any $F \in D^b(k_{X_{\operatorname{sa}}})$, there exists the following distinguished triangle:

$$(5.1) \nu_{\chi}(F) \to \tau^{-1}R\Gamma_{M}(F) \otimes \omega_{M/X}^{\otimes -1} \to Rp_{1*}^{+}(p_{2}^{+})^{-1}\mu_{\chi}(F) \otimes \omega_{M/X}^{\otimes -1} \xrightarrow{+1} .$$

By Theorem 3.6, under the identifications $T^*S_\chi^* = T^*S_\chi = S_{\chi^*}$, we have

$$SS(\mu_{\gamma}(F)) = SS(\nu_{\gamma}(F)) \subset C_{\gamma^*}(SS(F)).$$

In particular we obtain $\operatorname{supp} \mu_\chi(F) \subset S_\chi^* \cap C_{\chi^*}(\mathrm{SS}(F)).$ Thus we obtain:

Corollary 5.3. If
$$\dot{S}^*_{\chi} \cap C_{\chi^*}(\mathrm{SS}(F)) = \emptyset$$
, then $\nu_{\chi}(F) \simeq \tau^{-1}R\Gamma_M(F) \otimes \omega_{M/X}^{\otimes -1}$.

§ 5.2. Solutions of \mathcal{D} -modules

Let X be a complex manifold, and let $\chi = \{Y_i\}_{i=1}^{\ell}$ be a family of closed complex submanifolds of X which satisfies the conditions H1, H2 and H3. Set $Y := \bigcap_{i=1}^{\ell} Y_i$. As usual, let \mathcal{D}_X be the sheaf of holomorphic linear differential operators on X. Let \mathcal{M} be a coherent \mathcal{D}_X -module, and let $\operatorname{Ch} \mathcal{M}$ denote the characteristic variety of \mathcal{M} . Then, for $F = R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M}, \mathcal{O}_X)$, it is known that $\operatorname{SS}(F) = \operatorname{Ch} \mathcal{M}$. From (5.1), we have

$$\begin{split} R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M},\nu_{\chi}(\mathcal{O}_X)) &\to \tau^{-1}R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M},R\Gamma_Y(\mathcal{O}_X)) \otimes \omega_{Y/X}^{\otimes -1} \\ &\to Rp_{1*}^+(p_2^+)^{-1}R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M},\mu_{\chi}(\mathcal{O}_X)) \otimes \omega_{Y/X}^{\otimes -1} \xrightarrow{+1} . \end{split}$$

Let $f\colon Y\hookrightarrow X$ be the canonical embedding. We define the *inverse image* of $\mathcal M$ by $Df^*\mathcal M:=\mathcal O_Y \ \ \mathop{\otimes}_{f^{-1}\mathcal O_X}^L f^{-1}\mathcal M.$

Theorem 5.4. Assume that Y is non-characteristic for \mathcal{M} . Then

$$\begin{split} R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M},\nu_\chi(\mathcal{O}_X)) \; & \simeq \; \tau^{-1}R\mathcal{H}om_{\mathcal{D}_Y}(Df^*\!\mathcal{M},\mathcal{O}_Y) \\ & \simeq \tau^{-1}f^{\;-1}R\mathcal{H}om_{\mathcal{D}_Y}(\mathcal{M},\mathcal{O}_X). \end{split}$$

Let M be a real analytic manifold, and let $\chi = \{N_i\}_{i=1}^{\ell}$ be a family of closed real analytic submanifolds of M which satisfies the conditions H1, H2 and H3. Set $N := \bigcap_{i=1}^{\ell} N_i$. We consider the multi-normal deformation \widetilde{M}_{χ} along χ . Let X be the complexification of M, and Y the complexification of N in X. Let $\iota \colon M \hookrightarrow X$ the canonical embedding. Let \mathcal{B}_M be the sheaf of hyperfunctions on M. Then by (5.1) we obtain

$$\begin{split} R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M},\nu_\chi(\mathcal{B}_M)) &\to \tau^{-1}R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M},R\Gamma_N(\mathcal{B}_M)) \otimes \omega_{N/M}^{\otimes -1} \\ &\to Rp_{1*}^+(p_2^+)^{-1}R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M},\mu_\chi(\mathcal{B}_M)) \otimes \omega_{N/M}^{\otimes -1} \xrightarrow{+1} . \end{split}$$

For any conic subset $A \subset T^*X$ we can define $\iota^\#(A) := T^*M \cap C_{T_M^*X}(A)$ ([4, Definition 6.2.3]). Note that $(x_0; \xi_0) \in \iota^\#(A)$ if and only if there exists a sequence $\{(x_\nu + \sqrt{-1}\,y_\nu; \xi_\nu + \sqrt{-1}\,\eta_\nu)\}_{\nu=1}^\infty \subset A$ such that

$$\lim_{\nu \to \infty} \left(x_{\nu} + \sqrt{-1} \, y_{\nu}; \xi_{\nu} \right) = (x_0; \xi_0), \quad \lim_{\nu \to \infty} \, |y_{\nu}| \, |\eta_{\nu}| = 0.$$

Theorem 5.5. Assume that $N \hookrightarrow M$ is hyperbolic for \mathcal{M} ; that is, $\dot{T}_N^*M \cap \iota^{\#}(\operatorname{Ch} \mathcal{M}) = \emptyset$. Then

$$R\mathcal{H}om_{\mathcal{D}_{X}}(\mathcal{M}, \nu_{\chi}(\mathcal{B}_{M})) \simeq \tau^{-1}R\mathcal{H}om_{\mathcal{D}_{Y}}(Df^{*}\mathcal{M}, \mathcal{B}_{N}).$$

We impose the following conditions:

- (1) $\Lambda \subset \dot{T}^*X$ is a \mathbb{C}^{\times} -conic closed regular involutory complex submanifold,
- (2) \mathcal{M} has regular singularities along Λ ,
- (3) $\dot{T}_N^* M \cap \iota^\#(\Lambda) = \emptyset$.

Let $\mathcal{D}b_M$ and \mathcal{C}_M^{∞} be the sheaves of distributions and \mathcal{C}^{∞} -functions on M.

Theorem 5.6. Assume Conditions (1), (2), (3). Then

$$R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M}, \nu_{\chi}(\mathcal{D}b_M)) \simeq \tau^{-1}R\mathcal{H}om_{\mathcal{D}_Y}(Df^*\mathcal{M}, \mathcal{D}b_N).$$

 $R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M}, \nu_{\chi}(\mathcal{C}_M^{\infty})) \simeq \tau^{-1}R\mathcal{H}om_{\mathcal{D}_Y}(Df^*\mathcal{M}, \mathcal{C}_N^{\infty}).$

References

- [1] Delort, J. M., Microlocalisation simultanée et problème de Cauchy ramifié, *Compositio Math.*, **100** (1996), 171–204.
- [2] Honda, N., Prelli, L., Yamazaki, S., Multi-microlocalization and microsupport, arXiv:1401.0746.
- [3] Honda, N., Prelli, L., Multi-specialization and multi-asymptotic expansions, *Advances in Math.* **232** (2013), 432–498.
- [4] Kashiwara, M., Schapira, P., Sheaves on manifolds, *Grundlehren der Math.* **292**, Springer-Verlag, Berlin, 1990.
- [5] Kashiwara, M., Schapira, P., Ind-sheaves, Astérisque 271, 2001.
- [6] Prelli, L., Sheaves on subanalytic sites, Rend. Sem. Mat. Univ. Padova 120 (2008), 167–216.
- [7] Prelli, L., Conic sheaves on subanalytic sites and Laplace transform, *Rend. Sem. Mat. Univ. Padova* **125** (2011), 173–206.
- [8] Prelli, L., Microlocalization of subanalytic sheaves, *Mémoires Soc. Math. France* 135, 2013.
- [9] Sato, M., Kawai, T., Kashiwara, M., Microfunctions and pseudo-differential equations, Lecture Notes in Math. 287 (1973), Springer, Berlin, Heidelberg, New York, 265–529.
- [10] Schapira, P., Takeuchi, K., Déformation normale et bispécialisation, C. R. Acad. Sci. Paris Math. 319 (1994), 707–712.
- [11] Takeuchi, K., Binormal deformation and bimicrolocalization, *Publ. Res. Inst. Math. Sci.* (Kyoto) **32** (1996), 277–322.
- [12] Uchida, M., A Generalization of Bochner's Tube Theorem in Elliptic Boundary Value Problems, *Publ. Res. Inst. Math. Sci.* (Kyoto) **31** (1995), 1065–1077.