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A review of the results on second analytic
singularities in diffraction problems

By

Kiyoomi KATAOKA®

Abstract

We survey the microlocal singularity theory of diffraction problems in the analytic cate-
gory, in particular, J. Sjostrand’s theory [8, 9, 10] on propagation of micro-analyticity along
the boundary, and G. Lebeau’s celebrated theory on the construction of the parametrix in [3].
The title of [3] looks like a paper on Gevrey singularities, but his parametrix is constructed in
the second analytic category, that is, modulo distributions with one holomorphic parameter.
So, we can conclude that the boundary values of the diffraction wave have second analyticity
in the shadow. We also give such a parametrix for a typical example of diffraction problems
with some well-known properties of Airy integrals.

§1. What is a diffraction problem?

Let Q C R? be a domain with real analytic boundary 9. Consider a wave equation
in Q x R; with the Dirichlet condition:

(c720?2 — A f(x,t) =0, (t,z) € Ry xQ,
f(x,t) =0, (t,x) € Ry x 99

Then, the diffractive singularities of the solution f appear along the convex boundary
points of the obstacle R?\ 2. We call such a convex boundary point “a glancing point”.
In a small neighborhood U of a glancing point T = (:%1, :%2) € 0f), we may write

QNU = {(x1,72) | € > 22 — p(21) > 0, 21 € U'},
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where U’ is a small neighborhood of 2, and ¢ € C¥(U’) satisfies Ty = (1), ¢'(%1) =
0, and —¢"”(x1) > 0 inU’. Here, we consider the following coordinate transformation
to flatten the boundary equation xo — ¢(x1) =0 to u = 0:

u=x9—@(r1), v=x1, W=Cct

Therefore, the wave operator is transformed into the following:

/ 2
P :=0? — #’(U)Q&% —(1+¢'(v)?) (8u - %&,) + (lower order terms).

Further, we perform the following coordinate transformation (u,v,w) = (u*,v*, w*) to
eliminate the crossing terms of second order differential operators:

' =u, v°=V(uv), w=uw,

where V' is an analytic function defined by the following differential equations :

oV ¢'v) oV

_ S Vo = v.
ou 1+ ¢'(v)2 ov’ lu=0 =

Hence the operator (—1/(1 + ¢'(v)?))P is expressed as

~ Vi (u,v)? 1
P:: 82* LA Sl I 2* _ —82* 1 d t )
e+ [ O A T Pt + (lower order terms)

Putting R(u*, v*, w*, Oys, Oy ) := pP- 02., we can prove that
(Ous o (R)) (u”, v™, w3 i€" ") 2 0
in a neighborhood of {o(R) = 0} (for any real £*,n* < 0y» /i, 0y~ /i). Indeed, since

ov Va ¢ (v)

ou* - _VU B _m’ Vo = Oy (‘PI(U)VU/(l + (P/(U)Q)) )

we have —0y+0(R) =

W) Vol 0262 — 72\ 20 (0) (Va (s 0)26°% — ! ()2
(8“ 1+so'<v>28”>( 50 >‘ T+ 7)) '

Here, the second factor of the numerator coincides with

Vo (u, )2 (1 = ¢/ (0)%)€**

on {o(R) = 0}, and so this is positive because |¢’(v)| < 1. In order to get a more
explicit form of P, we expand V (u,v) into a power series in u at u = 0:

AT

(U* Z)V(U,U) =0+ W
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Hence we obtain

L, =9 ()" (v) I 24 CA .
Veo=1+ TEREIOLE u+O0W?), v=v : +g0’(v*)2u + O((u*)?).

Consequently we have
(1+¢'(v*)*)? + {2+ O()¢' (v) }¢" (v*)u* + O((u*)?)
1+ ¢’ (ve)?)*
14+ 0@ (v) " (v )u" + O((u*)?)

(1+¢'(v*)?)?

Therefore our diffraction problem reduces to the analysis of

.ﬁ :ai* + 812)*

02. + (lower order terms).

the following problem in R; x R”:
(0f — tA(t,z,0:) + B(z,0;) + (lower))u(t,z) =0 (¢t > 0),
u(t, x)|t=40 = 0.
Here A, B satisfy the conditions below:
e A, B are C¥ differential operators at (0,0) of order 2.
o 0(A)(t,x,i),o(B)(x,i§)/i are real-valued for real ¢, z, €.
o O (ta(A)(t,x,i€)) <0, do(B)(,i&) # 0.

Further, we note that the singularities should be considered microlocally because the
rays correspond to the bicharacteristic curves on T*(R; x R?) for

P = 0? —tA(t,z,0,) + B(z,d,) + (lower).

In a diffractive case, since the bicharacteristic curve v is tangent to the boundary ¢ = 0,
we take the microlocal point on the boundary as

p=(0,0;7dt + £dx) € T*(R; x R?) = {(t, 2; 7dt + £dx)}.
Therefore, p should satisfy
a(P)(p) =0, {o(P),t}(p) =0, do(P)AdtAw#0atp,

where w = 7dt + {&1dxy + - - - + pdxy,, and
1 n
{fvg} = ; [8Tf : atg - atf : 87'9 + Z (aﬁjf : awjg - amjf ’ 8£jg) jl
j=1

Hence we have the conditions:

F=0, o(B)(0,i€) =0, do(B)A(> &da;)#0.
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(The last condition is necessary for a non-vanishing flow on the cotangent spherical
bundle of the boundary). Then, after a suitable contact transformation on the boundary,

we may assume

o(B) = i&1b(w, if)
with some non-vanishing first-order symbol b(x,i€). Thus, we obtain the following
standard form of P and p:

A Standard Form of P and 109 for Diffraction Models:

P =0?—tA(t,z,0,) + b(x,0,)0,, + (lower order terms),

(L1) .
p=(0,0;dz,),

where n > 2, b(z,1£)/i # 0 is a real, first-order symbol, and A(t, z, i) is a real, second-
order symbol satisfying

(1.2) O (t A(t, z,i€)) < 0in a neighborhood of {t = & = 0}.
Indeed, the convexity condition of the obstacle is expressed as

(1.3) 0> —{o(P),{c(P),t}} =20, (t A(t, z,i)),
which was obtained for our wave operator as before.

Example 1.1.  The boundary: {t = 0}, and the domain: {t > 0}.

e M. Sato’s model of diffraction (the strictly convex case):

P =0} —t92, + 05,05, at (0,0,0;dxs).

e Non-strictly convex models : For £ =1,2,3, ...

Py =07 —ta3'02, 4 04,04, at (0,0,0;dxs).

Remark. 1) The original Sato’s model operator is P = 87 — (t — a:l)@gz, which
is transformed into the above one by using a quantized contact transformation with
respect to only (x1,z2;&1,&2). Though the original Sato’s operator is not so good for
illustrating the propagation of the singularity because the direction of the propagation

is Og, , this form gave a key idea in KK [2]; any solution u(t,z) to
(87 — (t — z1)A(t, 2, 0,) + lower order)u = 0 in {t > 0, |t| + [z] < &}
extends to a solution in

U {t )5t — 021 > 0,1t + |2 < 6’}
0<6<1
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for a small ¢’ > 0, where the symbol A(t,x,i€) < 0 in a neighborhood of ¢t = 21 = 0.

2) R. B. Melrose [5] proved that any standard model operator is equivalent to Sato’s
operator under some C* class contact transformation preserving the boundary ¢ = 0.
However, T. Oshima [6] proved that such an equivalence does not hold in C* category
by giving a counter example.

At the last of this section we recall the celebrated results due to J. Sjostrand
[8, 9, 10, 11] on propagation of analytic singularities for generic diffractive operators.
Let us consider the following Dirichlet problem:

P(t,x,0,05)u(t,x) =0, in{0<t<o,|z|<d},

(1.4)
u(+0,z) =0, in {|z| < d}.

for P = 07 —t A(t,x,0;) + b(x,0,)0%, + (lower order terms), where n > 2, ib(x,i) #
0 is a real first-order symbol, and A(¢,z,i§) is a real second-order symbol satisfying
A(t,z,i€) < 0 in a neighborhood of {t = 0,2 = 0,& = 0,&’ # 0}. Let G, H,& be the
sets of all diffractive points, all hyperbolic points, and all elliptic points, respectively;

{(t,x;7dt + {dx) € T*(Ry x R2);t = 0,7 =0,& =0, A(t, x,i€) < 0},
{(t,x;7dt + {dx) € T*(Ry x R2);t = 0,161 b(x,i€) > 0, A(t, z,1§) < 0},
{(t,z;7dt + dx) € T*(Ry x R2);t = 0,161 b(x,i€) < 0, A(t, x,i€) < 0},

G
(1.5) ¢H
£

Then, we have a vector field 0,, on G because 0,, is written as a linear combina-
tion of Hamilton vector fields iH; and iH,p), where Hy( , - ¢) is the Hamilton vector
field defined by Hy(g) := {f,g}. Indeed, since H; = i0;, Hy(py = b(x,0,i{' )0, —
iA(0,x,0,i£")0, on G, we have

a301 = (’lb(.’L‘, 07 Z“5/))_1 (iHa(P) + A(O, Z, O, z&')th) .

Let p be a point of G N {t = 0,2 = 0}. Then we have two integral curves v,y passing
through p for 0,,,iH,py, respectively as in Figure 1. Divide vo \ {p},7 \ {p} into
connected components o1 LI Y93, Y2 U 4 respectively such that ¢1 € Y01, g3 € 703,
q2, € Y2, q4 € Y4 as in Figure 1. Further, we identify G with

Go = {(x;8dx) € T*Ry; &1 = 0, A(0,2,0,3€") < 0} C T*({t = 0} x RY).

Theorem 1.2.  Let u(t,x) be a (hyperfunction) solution of (1.4). Take a diffrac-

tive point p := (0,9%; 0,0,&) € G with £ # 0 as in Figure 2. Then, we have the following
conclusions:
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Figure 1. diffractive rays

(1) If vo1 N SS(Osu(+0,2)) = 0 and v2 N SS(u) = O (or vo3 N SS(Oyu(+0,2)) = O and
Y4 N SS(u) = 0), then p ¢ SS(Opu(+0, z)).

(2) If (v2 U~4) NSS(u) =0, then p ¢ SS(Opu(+0,x)).

(3) If vo3 N SS(Oyu(+0,2)) = 0 and v2 N SS(u) = O (or vo1 N SS(Opu(+0,2)) = O and
v4 N SS(u) = 0), then p ¢ SS(Opu(+0, z)).

(4) The condition (yo1 U vo3) N SS(Opu(40,2)) = O does not necessarily imply p ¢
SS(Opu(+0,x)).

Remark.

i) As stated in the introduction of J. Sjostrand [10], (1) is the conclusion of [8], (2)
is the main result of [9], and (3), (4) are the main results of [10] (Theorem 0.3,
Theorem 4.5, respectively). The result (1) is extended to more general boundary
value problems in J. Sjostrand [11].

ii) KK [2] proved that (2) holds without any boundary condition, which is generalized
by Théoréme 2 of G. Lebeau [4] to any degenerate cases (non-strictly convex cases).
The proofs of these 3 results are completely different from each other. Further, M.
Rouleux [7] proved that (2) holds under Gevrey wave front SS°(x) for any s > 1,
and that the conclusion of KK [2] is false for any s > 1.

iii) We introduce an interesting counter example for (4) due to the idea of J. Sjéstrand
[10] in Example 3.6 (a solution with non-gliding analytic singularities).

§2. Lebeau’s diffraction theory for the strictly convex case

In [3], G. Lebeau succeeded in the construction of the parametrix with a given
Dirichlet data in C'“ category. His method is roughly as follows:
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n,>0

Figure 2. half rays in the shadow

e A construction by some oscillatory integral using analytic phases and analytic ampli-
tudes, but he permitted /£, - singularities. Hence, it leads to the second microlocal

analysis along {&; = 0}.

e At the last step, such integrals reduce essentially to Airy integrals. So the necessary
quantities are calculable: For example, the invertibility of some important operator
is deduced from the information of zeros of the Airy function.

By using this parametrix, he proved the following: In the shadow, namely, when the
analytic singularities are only on the half bicharacteristic curves of the same type issuing
from diffraction region G as in Figure 2, the Neumann data of the Dirichlet problem is
second analytic along the boundary bicharacteristic flow. For a standard model operator

P =07 —tA(t,z,0,) + b(x,0,)0y, + (lower),

this means that the Neumann data d;u(+0,z) of the solution u(t,z) in t > 0 with
Dirichlet condition is partially holomorphic in the variable x; in the shadow; more
precisely, there is a hyperfunction h(z1,2’) defined in {(21,2') € C x R"71; |Im 2| <
5,|Rez — x| + |2/ — 2’| < 8} such that [h(z1,2)] = dyu(+0, ) as a microfunction. It
is well-known that the microanalyticity of a hyperfunction with holomorphic parameter
z1 propagates along 0,. Hence, the second analyticity of d;u(+0, z) implies (1) and (3)
of Theorem 1.2. The main result of Lebeau is the following:

Theorem 2.1.  (Theorem 0 in [3]). Let u(t,x) be a distribution in {t > 0, |x —
| < €} which is prolongeable to {t < 0} as a distribution. Assume that

(P(t,, 00, 0, )ult, ) =0 (t > 0),
u(+0,z) =0,
SSP (u) N yy = 0 (0r SSE2 (1) Ny = 0).
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Then we have (z,€) ¢ SS% (d,u(40,z)), where va,74 are half bicharacteristic curves

passing through (0,5’:;0,2) for o(P) defined in Theorem 1.2, and SSC*(f(x)) is the
Gevrey wave front set of index 3 for f.

Though the statement of this theorem is concerning neither analytic wave front
set, nor second analyticity, he constructed the parametrix in analytic category, and so
the result includes second analyticity of the parametrix. More precisely, he constructed
the parametrix in some Sjostrand space (the space of holomorphic functions with a real
large parameter \):

Ho(X) :={F(2,A); F(2,\) € 0(X) for any A > 0, and
sup |F(z, /\)|e_’\(“’(z)+6) < oo for any compact K C X, and any € > 0},
K\

where an open subset X C C", and ¢(z) is a real valued C“-function such that
0p(2)/0z # 0, and (0%¢(2)/02;0Zk) k. is positive definite for any z € X. For ex-
ample, setting p(z) = (Im2)?/2, we can transform a distribution or a hyperfunction
f(x) with compact support into F'(z,\) € H,(C") by an integral transformation

F(z,\) ::/ e_A(z_x)z/Qf(x)dx.

Indeed, (i; 2) ¢ SS(f) with |2| = 1 is equivalent to (z — 22) ¢ SS;{ (F); namely, a decay
estimate |F(z,\)| < 6t exp (A(¢(2) —8)) in {|z — (z — 22)| < 0, A > 1} for some small
d > 0. Hence the microlocal analysis on T*R" for f(z) is transformed into the microlocal
analysis for F'(z, \) on Ay, := {(z; —2i0¢/0z) € T* X }. Further, for microlocal boundary
value problems one needs an extension H}(X) of H,(X); an F(t,2,\) € HIP(X)
induces an element of H,(X) for any fixed ¢t € [0, p](C R) (we omit the details), and
the singular spectrum of F'(t,z, A) is defined as SSé{;’j(F) C T*[0,p] x Ay. Let P be the
transformed operator of P:

~ 1 27\ " : N B
(PF)(t, z,\) := FaEFJr (Tﬂ) / eANETEMR(E 2 m, \)F(t, Z, N)dZdn,
Yo

where the symbol R(t,z,m, A) corresponds to tA(t,z,0,) — b(x, 0;)0,, (because his op-
erator is of form P = ? + R(t,x,—i0,)), and

Yo = {(E, n) = (2 + w, —22'8230(2) — iC’Ow); weC", |lw— 2| < ro}
with Cp > 1,0 < rg < C'O_l. Let z € C™ be a point such that (O,Z;O, —2i8zgo(2)) is a
diffractive point of P on ¢t = 0, and let G(z,\) € H,(X) be any section satisfying:
SSX(G) € {(2;—2i0.0(2)); |2 — 2| < po}, {lz—2|<po} CW €X,
|G(2,\)] < AMeez) (V2 € X, VA > 1)
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with a constant M > 0. Then, Lebeau constructed a solution F(t,z,\) € H}*(X)
satisfying the following:

(C-1) SSg’/L’pp(]SF) =0 (& Pf=0in {t > 0} microlocally).
(C2) F(0,2,0) = G(2,2) (& [(+0,2) = g(x)).
(C-3) SSYP(F) C F* (ssfj (@)U U exp (SH_o(ry(0.2.m) (SSX(G) N g))) (& roughly,

SS(f) is only on the half bicharacteristic curves (C {n, > 0}) issuing from diffrac-
tion region G or from H, as in Figure 2).

Here, G corresponds to the set in (1.5), and for a subset L of A, we define a subset
FT(L) C Ap U(T*Ry x Ay) by

FHL) = LU | exp (sH, 54,y (LN (G UHL))),
s>0
where exp(sHqt, 2 n,») (*)) is the map induced by the Hamilton vector field H¢g with
time parameter s (the definition of H¢ is due to Lebeau’s one). Further,

Hy :={(t, z;n,1m) € H;a(f’) =0,n; > 0}.

We remark here that the condition (C-3) in his paper uses “sHy(p)(0,2,n) and n; < 07
instead of “sH_;(g)(0,.,y) and 1y > 07, respectively. They are equivalent to each other
under the change of parameter s — —s.

Theorem 2.2.  (Theorem 1 in [3]). Let G(z,\), F(t,z,\) be as above. Let z; €
W (j = 0,1) be two points such that p; = (z;; —2i0.¢(z;)) (j = 0,1) are on the same
boundary bicharacteristic curve y(C G) for P. Assume p1 = exp(s0H_s(Rr)(0,2,m) (P0))
for some small so > 0, and exp(sH_,(R)(0,2,7)(P0)) & SSu(G) for any s > 0. Then, on
some small neighborhood w of z1, we have the following estimate: Ye > 0,3C: > 0,

(2.1) |9 F(+0,2,\)| < C- exp (x\gog(z) FAY30(2) + 6)\1/3> (V2 € w, YA >1).

Here, p4(2) is the modification of ¢(z) concerning the partial complexification G of G in-
duced by the foliation exp(sH_,(g)(0,2,n) (*)); namely, oq4(z) < @(2) (V2), ¢q(2) = ¢(2)
for ¥(z; —2i0,¢(2)) € G, and @4 is harmonic concerning the partial complex variable.
Further 1(z) is a weight function on Ay,

Remark.  The inequality (2.1) implies the second analyticity of the Neumann
data 0, F(+0, z,\) along the foliation of G. Therefore, in our situation, we have the
following conclusion: Let I C G be an interval on an integral curve « for 9,,. Assume
that I N SS(f(4+0,z)) = 0. Then, d;f(+0,x) is second-analytic in the variable x; in a
neighborhood of I (see Example 3.4).
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Hereafter we explain Lebeau’s theory in our point of view under our notation in
Section 1. The strictly convex case corresponds to the case A(t,z,i€) < 0 for the
standard model operator

P =0} —tA(t,x,0;) + b(x,0,)0s, + (lower),

(see (1.3)). So the equation o(P) = (i1)? — t - o(A)(t,x,i€) + o(b)(z,if)i& = 0 is
rewritten as

t+ Q(xa T/‘gn,‘f//‘fn) =0

with some analytic function q(az,?,g’), where 7 corresponds to 9, £ = (&1,.,&n—1),
T =1/&, and { = &' /€,. Indeed, since

o(b)(z,€) & +7°

L T 0,5.6)

(14 0(@)),

we have a Taylor expansion in T:

q(z,7,6) = a(z,€) & + Blx,&)7 + O(F)

with some analytic functions a(:c,g’ ) 5(33,5' ) satisfying o # 0,3 # 0. We construct a
solution to P(t,x, 0, Oy )u(t,z) = 0 of the form

[e.o]
u(t,x):/e”(”*"ﬁ(m”y”’/)) ij(r,x,y,n’))\_j drdn'd\.
=0

Then the phase (7, z,y,n’) should satisfy
0(P) (—pr, T, AT, iApy) = 0.

That is,
Pr = Q(37a T/Soxnv(Pw’/(Pxn)'

Therefore, we solve the initial value problem:

0
5 = 4@, 7/ e 00 /2,)
-

Plr=o = (2" =y') 0" + 2p — Yn.
Then, we have the Taylor expansion in 7 of ¢(7,z,y,n’):

o= —y) 0 +zn—yn+alz,n)mT + v, )mr?

5 (Bn) + 8w Im)* +O(r*)
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with some analytic functions ~, d of z,n’. Since «, 8 never vanish on 1; = 0, the critical
points 7+ for (7, z,y,n’) in 7 near 7 = 0 (that is, the solutions 7 of the equation below:)

0=, = alz,n)m +2v(@,n)ymt + (B(z,n') + 6z, 7" )m) > + O(1%),

are written as

(o) = 2 L 0) (s —0)

when afn; < 0. Indeed, 74 (z,n’) are analytic functions of x, /1,72, ...,7n—1. Then
Lebeau proved the following: There is an analytic function

w(t,z,n) ijxn

satisfying wy # 0, and

1
otz y,m) — (@ =) 0"+ 20— yn) = mp(z,n)w — §w3 — B(z,1)

with analytic functions p(z,n), B(z,n") in «,n’. Such functions p and B are determined
by the difference of the critical values of both sides. Indeed, the critical value

90(7—:!:’56’77/) - ((SC/ - y/) : 77/ + Ty — yn)

of p(r,z,n") — (&' —y') -0 + 2 — yn) in 7 has the form:

(m)*2{f(x, ) + Vg (z,n')}

with some analytic functions f, g of z,n’, where f # 0. Further the critical value of

mp(z,n)w — 3w in wis

(2/3)(mp(a,n))*>.
So,
p(aj’ 77/) = (3f(x7 77/)/2)2/3’ B(‘T’ 77/) = —77%9(35’ 77/)'

By changing the integration variable 7 into w, we obtain a new expression of the
parametrix

/ei/\(t*(w,w,n’)ﬂw —y" )0 @0 —yn+mp(zn  w—zw® —B(z,n’ ))

> 6(w,x,y, 0 )N | dwdn/d.

Therefore the boundary values of this function on ¢t = 0 is written by using Airy function
(of course, asymptotically).
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§3. Examples

Before giving examples of solutions for diffraction problems, we recall the definition
and some important properties of Airy function.

Definition 3.1.  Airy function Ai(z) is an entire function given by

1 OOGM ) .3
AI(Z) / 61zt—|—z(t /3)dt

=5 .
with any small § > 0. Easily to see, we have the following equation:
Ai"(2) — zAi(z) = 0.
Proposition 3.2.  Ai(z) = Ai(Z) for every z € C, and for any small § > 0 we

have a uniform estimate on |argz| <7 — 4§ as |z| — +o0

e e

2/
Further, Ai(0) = é I e~ /3dt > 0.

Proof. The first one is clear by the expression. Concerning the second one we use
the steepest descent method. Namely, we find the critical point in ¢ of the phase:

Oy (2t +1%/3) = 0; that is, t = +i\/Z.

So we change the variable as t = z'/2(273/4y + i) where |argz| < 7. Then, putting
0:=argz € [—m + 4,7 — 0], for any small € > 0 (¢ < §) we have
coei(0+e) /4

AI(Z) — i eizs/z(z_3/4y+i)+iz3/2(z_3/4y+i)3/32—1/4dy
2w —ooei(0—€)/4

_2.3/2 coel(f+e)/4
3% .
_ e / 6_y2+zz 3/4y3/3dy
1/4 . :
2 z1/ —oei(0—e)/4

Since Rey? = |y|? cos{(6 4 €)/2} > 0 for y € (0, 00)e"?+0)/% we get
Y Y ) g
27‘(’21/46%Z3/2Ai(z) — /+oo (e—szei9/2+i|z|_3/433/362'9/4 + 6_526_i6/2_i|z|_3/453/36_i9/4)d8.
0

Further, since the integrands are estimated by an integrable function e—s" sin (5/ 2) | we
get a uniform convergence on |arg z| < 7 — ¢:

+oo . )
lim 27‘(’21/46%23/2Ai(z) = 2Re (/ 6_82619/2629/%3) = V.
0

|z| o0

The last equality follows directly from the change of the integration path. O



A REVIEW OF THE RESULTS IN DIFFRACTION PROBLEMS 171
Proposition 3.3. {z € C;Ai(z) =0} C {z € R;z < 0}.

Proof. Let zp € C be a complex number satisfying Ai(zg) = 0. First we show that
20 € R. Consider u(t) := Ai(zg + t). Then, u”(t) = (20 + t) u(t). Hence, for real ¢, we
have

u(tyu” (t) — u”(D)u(t) = (20 — Zo)[u(t) .

Therefore

o) | " Ju()2dt = / " (0 ) - D) ar
_ /0 h % (@ (1) — wDyu(t)) dt = — (w0 (0) — wW(O)u(0)) =0

because u(0) = Ai(zp) = 0. Hence 29 —Zg = 0. If 29 = x¢ is a non-negative real number,
xo > 0 by the preceding Proposition. On the other hand, let x; be the minimum positive
zero of Ai(z), then Ai’(z1) < 0. So, by the equation Ai”(z) = zAi(z), we can easily
conclude that Ai(z) < (z — 21)Ai'(x1) — —o0 as & — +oo. Contradiction! So there is
no zero in [0, 4+00). Thus the zeros of Ai(z) = 0 is included in the negative real line. [

Example 3.4. We consider the following Dirichlet problem for Sato’s operator:

(0% — t@f72 + 0y, O, )u(t,z) =0 (¢t >0),
u(+0,x) = d(x),
SS(u) N A{(t, 1, 225 7,m1,m2); > 0,12 > 0} C {7 > 0}

These conditions correspond to Lebeau’s (C-1), (C-2), (C-3) (see Theorem 2.2). Then
by Fourier analysis in z we obtain

1 Aj —7i/3 2/3 t— ]
u(t,z) = > / 1(.6 — :|:72| - § 771/772))el(”lml+”2x2)dn1dn2.
Am? Jga Ai(e=™/3(n2|2/3(—m /n2))

It is easy to see that the first and second equations are formally satisfied. Further,
we can get the last estimation of singular spectrum of u(t,x) by considering a partial
holomorphic extension u(t +is,z) to {t +is € C;0 < s < t} of u(t, x) as a distribution:

1 H(|n2|?/3(t 4 is — ‘
u(t +is,x) = (2778 + s m/nz))ez(”lx”"?”)dnldnz,

A g H(In23(=m1/n2))

where H(z) := Ai(e™™/32). Indeed, setting u := n1/m2 € R, p := |n2|?/3, we have

[H(p(t +is — p))/H(—pp)| < C(L+ |pp)| H(p(t +is — p))| exp(~2(pw) %> /3)

< '+ ey (30200 ~ R 1 - i5)°1%) ).
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where some constants C,C’ > 0, (z)1+ = (z+]|z])/2, and —7 < arg(u—t—is) < 0. Hence
we have |H(p(t +is — p))/H(—pp)| < C'(1+ |pp|), and so u(t + is, x) is well-defined if

(3.1) Re(p —t —is)3/? < (,u)i/2 for Vi € R, Vt, Vs (0 < s < t).

Indeed, when p —t < 0, (3.1) holds because Re(u — t — is)3/2 < 0. When p —t > 0,
we have |p —t —is| < |u—t|+s < p—t+t = pu Hence we get (3.1) because
Re(u —t —is)%/? < |u —t — is[3/2 < p3/? = (u)}”.

Concerning the Neumann data of u, we have

1 AV (e ™ B a3 (= /m2)) :
0 0, = i —mi/3 2/3 gilmzrtn222) g dn.,.
tu(+ x) 472 /11@2 Ai(e_m/?’|772|2/3(_771/772)) € |772| € nans

Hence we obtain the results of Lebeau in Theorem 2.2 from Proposition 3.5; namely, an
estimate of SS(0;u(+0,z)) and the second-analyticity of d;u(+0, z).

Proposition 3.5.  Let f(x) be a function defined by

AV (e B na >3 (=1 /n2)) :
f(z) ::/ ' ‘ 2| /3 tmertme2) gy, dn,
Rx [0,00) Ai(e™/3]na|2/3(—n1/n2))

oo oo ‘ '
— / /\5/3d/\/ G(e—vrz/3/\2/3(_u))ez/\(,u,xl—i—mg)du
0 —00

with G(w) := Ai’(w)/Ai(w). Then, we have
(3.2) SS(f) N{nz >0} C {z =0} U{(z1,z2;m1,m2); 22 = 0,21 > 0,71 = 0}.
Further, f(x1,22)|s,>0 extends to {(z1,22) € C x R; 21 # 0, |arg z1| < 6} as a distribu-

tion with holomorphic parameter z, for a sufficiently small 6 > 0.

Proof. Note that B(w) := log(Ai(w)) is holomorphic in Q5 = {w € C;|w| <
O}y U{largw| < 7 — &} for some small § > 0 and satisfies an asymptotic expansion

2 log w
B(w) ~ _gwg/z -

Hence G(w) = B’(w) is a holomorphic function satisfying |G(w)| < C(1 + |w|)*/? in
{largw| < 57/6} for some C' > 0. Therefore f(z) is a kernel function of an analytic

—log (2v/7) (Jw| — oo, w € Q).

pseudodifferential operator with constant coefficients in {(x,*;71,72);m2 > 0,11 # 0}.
Thus we have

SS(f) N{nz > 0,m1 # 0} C {(x1,22;m1,7m2); ¢ = 0},

In order to prove

(3.3) SS(f) N{n2 > 0,m =0} C {(z1,22;m,m2);22 = 0,21 > 0},
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it is sufficient to prove (3.3) for f¢(z) with

o8] €
fe(x) = / /\5/3d/\ G(e—ﬂ'i/3/\2/3(_M))ei)\(,u,xl—l—xz)dlu
0

—€

instead of f for some small ¢ > 0. On the other hand, at any fixed point (%1,%2)
with 2o # 0, taking € > 0 as €|z1| < |22|, we get the analyticity of f€ at (21,22) by
the change of the integration path [0, +00) — [0, 4+00)e® of A for some small ¢ > 0
(choose the same signature with :%2) Thus we have

(3.4) SS(f)N{ne > 0,m =0} C {zy = 0}.

Moreover, since G(e~™/3w) is a holomorphic function in {w € C;Imw > 0} with a
polynomial growth order as |w| — oo, we can change the integration path R of x into
R — i¢N for any large N > 0. Hence we have f(z) =0 if 1 < 0: In particular,

SS(f) C {z1 > 0}.

(Similar interesting arguments were given in [1]). This concludes the estimate (3.2).
The partial holomorphic extension f(z1,x2) of f(z1,x2)|s, >0 is also obtained similarly.
Namely, change the integration path R of p into Re™% where § = argz; for z; #
0,|arg 2| < 1. O

Example 3.6. (A solution with non-gliding analytic singularities). By the same
argument with Theorem 4.5 of [10], we get a distribution solution u(t, z1,x2) of

(0 — t02, 4 0, O, )u(t,x) =0 (t>0),

(3.5)
u(+0,7) =0, Ju(+0,z) = 1/(xg + iz} +i0).

Since the analytic singularity of dyu(+0,z) is at just one point {x = 0}, it gives a
counter example for (4) of Theorem 1.2. Indeed, let G;(w) (j = 1,2) be a system of
independent solutions of G”(w) + wG(w) = 0. Then, a formal solution of (3.5) is given
by the Fourier inverse transformation with respect to 1y, 72 of

(L, n) = 2|5 [ Galmalit+ o(m)  Gillnal3t + ¢ (n))
W Ga(p(n)) G1(o()

where W' = G1(w)Gh(w) — Ga(w)Gi(w) = G1(0)G5(0) — G1(0)G2(0) # 0, »(n) =
172|%/3(—=n1/n2), and w1 (n) is the Fourier transformation of 1/(zy + iz 4 i0). Setting
G1(w) = Ai(e™/3w), Go(w) = Ai(e™™/3w), we know that Gj(|n2|%t+go(n))/Gj(<p(n)) is
a slowly increasing continuous function with respect to nin {t > 0,72 > 1} for j = 1,2.

) G1(p(n)Ga(e(n)) ur(n),
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Therefore we have only to show that G1(¢(n))G2(v(n)) u1(n) is a slowly increasing func-

tion as |n| — oo in 7, > 1. Note that [G1(¢(n))Ga((n))] < Cexp(dfna|(m /m2)Y*/3)
for a constant C' > 0 (here, (t)+ = max{t,0}), and that

oo

U (n) = 27rin2_1/4Y(772)/ exp (—immy "y — y*)dy.

— 00

On the other hand, by the proof in Lemma 4.4 in [10] we have an estimate

>0 i , vy 4|43
‘/ exp (—imn, "Cy—y )dy‘ <Clexp | ———F5——
— o0

for a large constant C’. Therefore, since 4/3 < 3/2, we get an estimate

4/3 3/2
Gr ()Gl T ()] < 20CC exp (I (1202 — HVREZY ) < v

in {ny >1,|n1/n2| < (3/(4C"))%}. Hence u;(t,z) gives a microlocal distribution solution
in {(t, 1, m2;7,m1,m2);t > 0,|m| < (3/(4C"))%n2} to (3.5).
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