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Boundary value problem for Hyperfunction solutions
to Fuchsian systems

By

Susumu YAMAZAKT*

Abstract

In the framework of algebraic analysis, a general boundary value morphism is defined
for any hyperfunction solutions to the Fuchsian system of analytic linear partial differential
equations in derived category, and the injectivity of this morphism in zero-th cohomologies
(that is, the Holmgren type theorem) is proved. Moreover, under a kind of hyperbolicity
condition, it is proved that this morphism is surjective (that is, the solvability). These results
extend that of H. Tahara and Laurent-Monteiro Fernandes to general Fuchsian systems.

Introduction

In this article, we announce of results about boundary value problems for hyper-
function solutions along an initial boundary to the Fuchsian system of analytic linear
differential equations in the framework of Algebraic Analysis.

Fuchsian partial differential operator was first defined by Baouendi-Goulaouic [1],
This class includes non-characteristic type as a special case, and Cauchy-Kovalevskaja
type theorem (that is, unique solvability for Cauchy problem) was proved in [1] under
the conditions of characteristic exponents. Next, Tahara [22] defined a Fuchsian Volevi¢
system as a generalization of Fuchsian partial differential operator, and proved a Cauchy-
Kovalevskaja type theorem in the complex domain for holomorphic solutions under
the conditions of characteristic exponents. Moreover Laurent-Monteiro Fernandes [10]
defined a Fuchsian Z-Module, and they proved a Cauchy-Kovalevskaja type theorem
in the complex domain in general settings; that is, without conditions of characteristic
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exponents. Here and in what follows, we shall write a Ring or a Module etc. with capital
letters, instead of a sheaf of rings or a sheaf of left modules etc. We remark that the
notion of Fuchsian Zy-Modules includes Fuchsian Volevi¢ systems.

For Cauchy problem in the framework of hyperfunctions on the real domain, Tahara
[22] obtained a Cauchy-Kovalevskaja type theorem for hyperfunction solutions with a
real analytic parameter to hyperbolic Fuchsian Volevi¢ system under the conditions of
characteristic exponents. As for the uniqueness of hyperfunction solutions, Oaku [16]
and Oaku-Yamazaki [19] extended the uniqueness result to Fuchsian systems. Further
Yamazaki [25] obtained the unique solvability theorem of Cauchy problem for general
Fuchsian hyperbolic systems in the framework of hyperfunctions (that is, hyperfunc-
tions with a real analytic parameter, or mild hyperfunctions) without the conditions of
characteristic exponents.

Next, for a boundary value problems for hyperfunction solutions, Laurent-Monteiro
Fernandes [11] give a general framework, and using results of [9], for any regular-
specializable system (i.e. Fuchsian with constant characteristic exponents case), they
defined an injective boundary value morphism (see also [14], [15]), and discussed solv-
ability. For a microlocal counterpart, see Yamazaki [24].

In this paper, along the line of [11] and [24], we shall define an injective boundary
value morphism for hyperfunction solutions to general Fuchsian system and state the
unique solvability theorem for the boundary value problem in the category of hyper-
functions. For this purpose, by using precise analysis due to Tahara [22] and an idea of
Oaku [18], we shall define a sort of nearby cycles for general Fuchsian Modules.

Details of this article will be appeared in a forthcoming paper.

§1. Preliminaries

In this section, we shall fix the notation and recall known results used in later
sections. Our main reference is Kashiwara-Schapira [7].

We denote by Z, R and C the sets of all the integers, real numbers and complex
numbers respectively. Moreover we set N := {n € Z;n > 1} C N, := NU {0},
Rog:={reR;r>0} CR,;:={r € R;r >0} and C* := C~\ {0}.

In this paper, all the manifolds are assumed to be paracompact. Let Z be a manifold.
For a subset A C Z, we denote by Int A and Cl A the interior and the closure of A
respectively. Let A be a Ring on Z. We denote by A°P the opposed Ring, and we
regard right A-Modules as (left) 4°°-Modules. We denote by 9od(.A) the category
of A-Modules, and by €oh(A) the full subcategory of Mod(A) consisting of coherent
A-Modules. Further we denote by Db(A) the bounded derived category of complexes
of A-Modules, and by DP (A) the full subcategory of Db(A) consisting of objects

coh

with coherent cohomologies. We set DP(Z) := D®(C,) etc. for short. Set * ®% :=



BOUNDARY VALUE PROBLEM FOR FUCHSIAN SYSTEMS 177

* ® * etc. We denote by ~2z, the orientation sheaf. Let f: W — Z be a continuous
(CZ

mapping between manifolds. Then the relative orientation sheaf is defined by zzy;, 17 =
vy @ f _10?@ 7z - Further wy, > = o2y, - [dim W — dim Z] denotes the dualizing complex,
and wW/ 7 = wz [dlmZ dim W1 its dual. If 7: E — Z is a vector bundle over a
manifold Z, we set E := E ~ Z and 7 the restriction of 7 to E. Let n: E* — Z the
dual bundle. We set

Py = {(v,§) € EXE"; (v,€) > 0},

and denote by p,: Pg — F and p,: Py, — E* the canonical projections. Let DEN(E) C
Db(E) be the subcategory of the bounded derived category of sheaves such that each
cohomology is conic. If 7: E — Z is a complex vector bundle, we denote by DEX (E) the
subcategory of Dﬂbaw(E) consisting of objects .# such that for any i € Z, each H'(.F) is
locally constant on the orbits of the action C*.

Let % € Dy 0(E’ ). We denote by .#" the Fourier-Sato transform of .7

1.1. Proposition (23, Corollary A.2], cf. [20, Chapter I]).  Let .# € Dy (E).

>O
Then there exists the following distinguished triangle:

(1.1) J—>7’RT,J—>Rp1*25‘A+—1>.

Let F be an object of Db(Z ), and T Z — Z the cotangent bundle of Z. We denote
by SS(F) the microsupport of F due to Kashiwara-Schapira (see [7]). SS(F) is a closed
conic involutive subset of T*Z and described as follows: Let p be a point of T Z. Then
p ¢ SS(F) if the following condition holds: there exists a neighborhood U of p in T"Z
such that for any z € Z and any real valued real analytic function 1 defined on a
sufficiently small neighborhood of z satisfying (2;dy(2)) € U, it follows that

R yyzpe)) (F): =0

Note that SS(F)NT,Z = supp F.
Next, let Z be a complex manifold with a local coordinate system z = = + /=1 v,
we use the following identifications as in [20, Chapter IJ:

TZ 3 (2 (v,0,) < (z,y; (Rev,d,) + (Imv,d,)) € TZ*,
T*Z 3 (2;(¢,dz)) < (x,y; (Re(,dx) — (Im(, dy)) € T* 7R,

where Z® denotes the underlying real manifold of Z. Thus, for the complex dual
inner product (x,%): TZ xT*Z — C, the corresponding real dual inner product is
z

Re(x,%): TZ xT*Z — R.
z
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§ 2. General Boundary Values

Let M be an (n+ 1)-dimensional real analytic manifold and N a one-codimensional
closed real analytic submanifold of M. Let X and Y be complexifications of M and
N respectively such that Y is a closed submanifold of X and that Y N M = N. Let
Z = T++/—1 y be a local coordinate system of X such that Z is a local coordinate system
of M. We assume that there exists a (2n + 1)-dimensional real analytic submanifold L
of X containing both M and Y such that the triplet (N, M, L) is locally isomorphic to
the triplet ({(z,0) € R" x {0}}, {(z,t) € R""'} {(z,t) € C" xR}) by a local coordinate
system Z = (z,7) with & = (x,...,z,,t) = (z,t), 2 =2z +v—Tyand T =t + /=1
around each point of N (i.e. L is a partial complexification). We say such a local
coordinate system admissible, and under this local coordinate system, we have:

(2.1) Ly

/
Then we identify ot Ny with fﬁlmM/L :

2.1. Remark. Let (z,7) and (%,7) be admissible local coordinate systems, and
(2,7) = (¥(z,7),%(2,7)) a holomorphic coordinate transformation. Then, since £ :=
Re7 = (z,7)|;, = ¢¥(2,t) is real valued and holomorphic with respect to z-variables,
we have £ = 9(t), hence we can show that 7 = (7).

Let 7y : TyM — N and 7y : Ty M — N be the normal and the conormal bundles
to N in M respectively. By an admissible local coordinate system, we often identify
normal bundles with base spaces; for example, Ty, X = X, T, X = X, T\yM = M etc.

(i.e. we identify (x;t) € Ty M with (z,t) € M). We denote by
2.2) (Z;2)=(z,m; 25,7 ) =@+ V1 3; 2 +V-17")
' = (z+VTyt+VIsz" +VI1y t*+v=1s%)

the associated local coordinate system of T X with the local coordinate system in (2.1).
The mapping f induces mappings:

NCLM
i ff 5 [

N><T* X&T*

LY l ]\i;M

N

iy
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where 7y, 7,, and 7 are canonical projections, i, i,, and i are zero-section embeddings,
and O means that the square is Cartesian. Assume that N = ¢ *(0) for an analytic
function ¢ such that we may choose that (%) = t. We use the same symbol p: X — C
to stand for the complexification, and we may assume that ¢(Z) = 7. Then dy induces
¢: Ty X — C, and we denote by 6: Y — TYX the section of Ty, X — C given by
¢ (1), and by 5: Y — T;X the section of T3, X — C given by dy. In the same way,
dy induces ¢: T\yM — R, and we can define mappings 5: N — TNM and "5: N —
VT THM = T5, X N T3 X. Under the local coordinate system in (2.1), we have

6(z) =(z,1), "6(2)=(z1-dr), &)= (x,1), 7§(x)=(x;v—1dt).
We set

TyMT :=R_8(N) ~{(2,t);t >0} C TyM*' :=T\ M UTyN ~ {(z,t); t > 0},
1k 1 *A * *
TNM™ = — Ry 3(N) =~ {(z;t%); t* > 0}.

By (1.1), for any .% € Dy 0(TNM) we can obtain
>

(2.3) Ry 7 @ ov g ny — Ry Ry i (F) @ ooy — 8 F 2.

As usual, let v, and p, be specialization and microlocalization functors respectively.
We write M ~ N = £, U {2_, where each {2, is an open subset and 92, = N. We set
M

4=, UN. By an admissible local coordinate system, we can write
2, ={(z,t)e M;t>0} C M, ={(x,t) € M;t>0}.
By (2.3), we can prove:

2.2. Proposition ([11, Proposition 1.2.3], [15]).  For any F € D°(X), there ex-
ists the following morphism between distinguished triangles:

RIy(F) —— BRIy (F)ly s RTg (F)ly ® ooy ——

- B = o
RIN(F) _)RTN*RFTNM-Fl(VN(RFM(f))) —s 1VJ\r(RFMf:))(}3’%1\7/M —

=~
S

Iy(F) —— Bry RIp s (vy (7)) —>§_1RFTNM(VY(-7:))®%N/M 5.

2.3. Proposition. Let F € D°(X), and assume that vy (F) € DEX(TYX).
Then there exist the following distinguished triangles:

—_

RIy(F) =6 Yy (F) — 67 tuy (F)[-1] =
+

T —— 6 (F) — 6 g (F)[1] = -



180 SUSUMU YAMAZAKI

2.4. Theorem. Let F € D®(X), and assume that vy (F) € DEX (Ty X). Then
there exist the following isomorphisms of distinguished triangles:

RIy(F) —— R7y, BRIy s (0 (F)) ——— 87" RIy (0 (F)) @ o2y

5~ — ~— +1
RIy(F) =5 'R g (py () @ Wiy g — 87 Ry 3 (g (F) @ oy —

RTy(F) —— Ry ("6 py (F)) s ROy (6 vy (F)) 1] ——

In particular we obtain
(24) R, (F)ly@wiyx =38 vy (RO (F)) ©wipx — RIN(6 vy (F)) @wyy

Next, we denote by M N and ZY the normal deformations of N and Y in M and L
respectively and regard My as a closed submanifold of L,.. We have the following
commutative diagram:

T M%M %Q

f\j’%r

> X
‘N sy J s LMl
N , L
TYL( Ty / LY % Py
T g ! ; L/ i > X,

Using an admissible local coordinate system, we can write:

pr: ZY ={(z,t;r);r €R, (2,7t) € L} 3 (2,t;7) — (2,7t) € L,
Pt MN: {(z,t;7r);r €R, (z,71t) € M} > (x,t;71) — (x,rt) € M,

TYLzzYﬂ{(z,t;r);r:O}, QL:zYﬂ{(z,t;r);r>O},
TNM:MNH{(x,t;r);r:O}, QM:MNH{(x,t;r);T>O}.
The mappings 7: Ty, L — Y, p;: EY — L, s;: Ty, L — EY and ¢g: Y — L induce
natural mappings:
* * TMxTVY __~ *

M ™ d
J/gNﬂ' SLd/P
Tj\}L&M ><T L—>T~LY%T M><T~L
N
and by these mappings we use the following identifications:

IyM Y TRY = T 3Ty L= Ty M X Ty Ly, Myx T3 L =T Ly

N
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and we denote by
TN T;NMTYL =TyM 1>\<r TyY = T;NMTYL — T\ M,
TN TA%NEY = JT/I/N;}T&L — My,
the natural projections. 7Ty L \ Ty Y has two components with respect to its fiber. We

denote by TYLJr one of them as T M =T YL+ NT\yM and represent by fixing a local

coordinate system
Ty Lt = {(2,t) € Ty L; t > 0}

(in this case we choose p(Z) = 7). Define open embeddings i, and i, _ by:

, i
TYL+C;> Ty L

J

. iN+
TNM+C—> TM.

We regard TN Mt ;\(f TyY as an open set of T}N v Ty L. Moreover i, induces mappings:

. r + * iT( *
Tf e Ty Lt e InM Xy Ty LS 17y Ty L
I | K
T M* Ty S T M X T}Y.

Hence we identify T;‘ZJ\]MJr TYLJr with TNM+]>\<, TyY, and ipy With iy, x 1. We set

= = oi T Mt T *
Ty 1= T 0hp s Ty MY XTRY — TRY.

Then we recall

2.5. Theorem ([24, Theorem 2.2)).  Let F € D*(X), and assume that vy (F) €
DEX (Ty X). Then there exists the following natural isomorphism:

it g 0 (v (BRI (F)) @iy =5 7l (67w (F)) @ wiid

2.6. Definition. Let F € D(X), and assume that vy (F) € DR, (T, X). By
virtue of Theorem 2.5 we define:

(2.5) v : z;ﬁ SZ;MMN(RFQL(pleFL(}"))) ®w§3}7}1(
- Z;& NTNM(Vy(RFL(}-))) ®w§\?17)1( = 7:77_+1 NN(&_lyY(}-)) ®w%/_1} .

We can see that the restriction of (2.5) to T\ M coincides with (2.4).
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Next, we recall the definition of the near-hyperbolicity condition:

2.7. Definition ([11, Definition 1.3.1]).  Let F € D"(X). Then we say that F is
near-hyperbolic at & € N in the edt-codirection (e = %) if there exist positive constants
C and ¢, such that

SS(F)N{(z, 132", 77) € T"X; |z — x| < ey, |T| <ey,et >0}
CH{(z, 725 77) € T°X5 7] < C((lyl + IsDIy™| + ="}

holds by the local coordinate system (z,7; 2%, 7%) of T*X in (2.2).

2.8. Theorem. Let F € DP(X). Assume that vy (F) € D (Ty X) and F is
near-hyperbolic at © € N in the dt-codirection. Then, for any p* = (5(2);v-19y") €
thNMJr TYLJr and py = (;v/=1y") € TNY, the morphism v, induces isomorphisms:

Yy sZi “MN(RFQL(pleFL (.F)))p* ®wf€[7)1< ~ NTNM(VY(RFL (.F)))p* ®w}€€[7)1<
~ MN(6_1VY(f))pO ®wj€\9,/_1 :
2.9. Corollary. Under the assumption of Theorem 2.8, the morphism ~y, in-
duces isomorphisms:

vyt REg (F)y ®wipx = vy (RO (F))ys © Wik
~ Ry (vy (RTL(F)))sa) @wipx 5 ROy (07 vy (F)); @wiyy

§ 3. Operators of Infinite Order

We inherit the notation from the preceding section. For a set (or a sheaf) S
with a suitable algebraic structure, we denote by Matm’n(S) the set of matrices of
size m X n whose components belong to S. We set Mat, (S) := Mat,,  (5), and
denote by 1, the identity matrix of size m. For the theory of Z-Modules, we refer
to Bjork [2], Kashiwara [3]. We denote by 0 and Z the Rings of holomorphic
Junctions and holomorphic partial differential operators on X. Let 2, be the sheaf
of the holomorphic forms with maximal degree on X, and Qg?_l = %W@X(QX, Oy).

Let 9y, = ﬁy®f_l.@x and 5.y = 2y @Dy X®f_1(2§3_1 be the transfer
— f_lﬁx — ﬁy — f_lﬁX

(Py @ f 1 DP)-and (f ' 2 ® Py )-Modules associated with f: Y < X respectively.
We denote by

L
Dfy .= @Y_,Xf@lj;_}/i/,

X
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L
Df'y .= R Az yep (f _1R<%ﬂm@X(JV, @X)f@lgxby, 2y)[-1],
X

the inverse image and the extraordinary inverse image respectively in Z-Module theory.
Under the local coordinate system in (2.1), we set ¥ := 70, (or t0, in real case).

3.1. Definition. Let .# € Coh(Zy). We say that .# is near-hyperbolic at
Z € N in the edt-codirection if so is R%ﬂm@x(’/// , 0 ) in the sense of Definition 2.7.

3.2. Definition. Let m € N and w € Ny with w < m. Then we say that P
is a Fuchsian partial differential operator of weight (m,w) in the sense of Baouendi-
Goulaouic [1] if P can be written in the following form:

m—1 ) ow—1 .
P(z,7,0,0 )=1"""0"4+> P/(z,71,0,)7" "0+ P/(z71,0,)0!,
; i=0

Y2y T
1=w

where P, € P (m—i) with [P,,7] =0 (0 <i<m), and P,(2,0,0,) € Oy (w<i<m).
We say that P is Fuchsian hyperbolic in the sense of Tahara [22] if the principal

symbol is written as o, (P)(z,7,2%,7°) = 17" “p(z, 7,2, 77), and p(z, 7, 2", 77) satisfies

the following:

(3.1) {If (z,t; 2") are real, all the roots to the equation p(z, t, z*, 7*) = 0 with respect

' to 7" are real.

Then 9 /P P is near-hyperbolic in the +dt-codirections (see [11, Lemma 1.3.2]).

Note that a Fuchsian partial differential operator of weight (m,0) is called an

operator with reqular singularity along Y in a weak sense in Kashiwara-Oshima [6], and
if the weight of P is (m,m), then Y is non-characteristic for 2y /2 P.

3.3. Definition. = We call a matrix P =19 — A(z,7,0,) € Mat,_ (%) is a Fuch-
sian Volevic¢ system of size m due to Tahara [22] if the following hold: Let 4,,(z,7,9,)
be the (¢, j)-component of A(z,7,0,).

(1) There exists {n;};2, C Zsuch that A,,(2,7,0,) < Dx(n,—n;+1) forany 1 <i,j < m.

(2) [Aij,T] =0 and Aij(z,O,ﬁz) € Oy forany 1 <1,j < m.

Moreover we say that P is Fuchsian hyperbolic in the sense of Tahara [22] if
det[r7*1, — 0(A)(2,7,2")] = 7"p(2, T, 2", T7),

and p(z,7,2",7") satisfies the condition (3.1). Then Zy'/2{'P satisfies the near-
hyperbolicity condition. Here we set o(A)(z,1,2") := (O-ni—nj—l—l(Aij)(z’ T, 27))

Let Fy(Zy) C €oh(Zy ) denote the subcategory of Fuchsian Z,-Modules along Y
due to Laurent-Monteiro Fernandes [10].
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3.4. Example. (1) If P is a Fuchsian partial differential operator, we have
D] PP e Fy(Dy).
(2) If P is a Fuchsian Volevi¢ system of size m, then 2"/ 2P € Fy. (P ).

3.5. Proposition. Let # € Coh(Zy ). Then the following conditions are equiv-
alent:

(1) A € Fy(Px). ,
(2) Locally, there exists an epimorphism @ 2 / D P, — M, where each P, is a Fuch-
i=1

(2 (2

sian differential operator with weight (m,,0).

3.6. Proposition. Let 0 — .#' — # — #" — 0 be an exact sequence in

Coh(Px). Then M € Fy (D) if and only if ', M" € Fy (D).
3.7. Proposition.  Let # € Fy(Zy). Then
RAo g (M vy (O)) € Do (Ty X).

3.8. Definition. = We take the admissible local coordinate system in (2.1), and
write X x X = {(z,7,w,7')} on a neighborhood of Y x Y = {(z,0,w,0) € X x X}. We
set (see [18])

Ayyy ={mrwr) € X x Xir =7} = {(z.w,7)}.

Then we regard Y X Y as a closed subset of A /v Let Ay, CY xY be the diagonal
set. We have closed embeddings

1)
Yy x V-
; 5 Fxf

!
1)
X Ay S X x X
where §: X 5 (2,7) — (2,2,7) € AX/Y, 5X/Y: AX/Y S (z,w, 7))~ (z,7,w,T) € X XX
etc.

3.9. Remark. Ay % does not depend on the choice of admissible local coordinate
systems on a neighborhood of Y x Y. Indeed, let (z,7) and (£,7) be admissible local
coordinate systems. By Remark 2.1, we write 7 = (7). Set 7' := (7). We may write

S L dy

— - (M) (7' = 7) + " (7, ) (1" = 7)?

d
with d—¢(7) # 0 for |7| < 1. Hence if moreover 0 < |7 — 7| < 1, then 7’ # 7. Thus we
T

have {(%,7,1,7) € X xX; 7 =7} C {(2,7,w,7") € X x X; 7 = 7'} on a neighborhood
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of Y x Y. For the same reason, we have {(z,7,w,7) € X x X; 7 =7'} C {(3,7,w,7') €
X x X;7 = 7'} on a neighborhood of ¥ x Y. In the same way, we can show that
Ay sy N (M x M) does not depend on the choice of admissible local coordinate systems
on a neighborhood of N x N.

We set ﬁ)(&?l) = ﬁXxX_(?qglﬂX = QXXX_(?Q;IQ%_la where ¢;: X x X — X
[*D) X q1 X
is the ¢-th projection, and set ﬁﬁ;’;} in the same way. Further we set
o =y spr o

X/Y XY —
/ /pllﬁx

where p, :=¢q, 00y /vy Ay Iy X. Under the admissible local coordinate system, we
see that ﬁ;&’?l) = Oy x dwdr’, ﬁéog) = Oy .y dw and ﬁéo):l = ﬁAX/de, where
dw :=dw, A---Ndw,, etc. Let A, C X x X be the diagonal set. Then

9% = HY N OGY) ~ RE, (005 [n+1]

is the Ring on X of holomorphic partial differential operators of infinite order. By the
tangent mapping 0': Ty, X — TYXYAX/Y of §: X — AX/Y, we regard T, X as a closed
subset of TYXYAX/Y.

3.10. Theorem. The object RFTYX(VYxY(RFA
in degree n + 1.

X/y(ﬁXxX))) is concentrated

For the proof, we use the abstract edge of the wedge theorem due to Kashiwara
(see [5]).

3.11. Definition. We define

@;YX =R x(vy .y (R4 (O +1]

XY
= H;YX(VYxY(HZX/Y(ﬁ)(cox’?l))))-

3.12. Remark. Let p=(2,7) € T}, X ~ C" x C. For p, § > 0, we set

D,(2) =z €C" |z, — 5| <p}, Bs:={r€C;|r|<d}.
i=1

Then P = P(2,7,0,,0_) = Zaa’i(z,T)ﬁf‘@: € @;YXJJ is given as follows:

9 z? T
(a) Assume that 7 = 0. Then there exist p, §, > 0 such that each a,, ;(z, 7) is holomor-
phic on Cl[]Dp(é) X ]B%]’ and for any € > 0, there exists 0 < 6(e) < 9, satisfying the
following: for any €, > 0, there exists C’EO,E > (0 such that

la] i
C. _e'%¢,

sup{|a, ;(z, T)|; (2,7) € CI[D,(2) x B;]} < —O’a!i!
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(b) Assume that 7 # 0. Then there exist p, 6,, 6 > 0 such that each a_(z,7) is
holomorphic on CID () x {7 € C; 0 < |7[ < §;, [arg(7/7)| < 6}, and for any £ > 0,
there exists 0 < §(e) < §, satisfying the following: for any ¢, > 0 and 0 < r < d(¢),
there exists C, _ . > 0 such that

€9

leef i
emars 8O

sup{lag,;(2,7); # € D, (2), r <[] < 0(e), farg(r/7)| < 0} < ——

Set Tx y == fory: Ty X — X.

3.13. Remark. (1) @é,ﬁy « is a Ring with formal adjoints, and T;Ely 25 is a Subring
of @;Y «» compatible with formal adjoints.
(2) vy (Oy) is a D1, x-Module.

3.14. Definition (Tahara [22]).  We take the admissible local coordinate system

in (2.1). Let z € Y. For m € N, we define P(z,7,0,) = > a,(z7)0 € @XIY 5 as
aeNS ’
follows:

(a) There exist p, 6, > 0 such that a,(z,7) € I'(CI[D () x ]B(So]; Oy),

(b) there exist A, m > 0 satisfying the following: for any 0 < 0 < ¢, there exists
Cs > 0 such that

Cé(A(;l/m)lal

max{|a,(z,7)[; (z,7) € ClD (£) x Bs]} < ol

We can see that .@le’ ) C '@;YX»TY(@ C é,;YX’ﬁ for any p € Ty X.

3.15. Definition. We set

@;YX—A/ = H;YX(VYXY(ﬁX);;z,)) = RFTYX(VYXY(ﬁA((;?i,))[n]'

Then @:’;Y x_y isa (@;Y 5 © 7y (25°)°P)-Module, and under an admissible local coor-

~ O o~ ~
. 14 T v v
dinate system we have an exact sequence 0 — .@TY x — .@TY x — @TY <y — 0.

3.16. Remark. (1) Let p = (2,7) € Ty X. Then P(z,7,0,) = > a,(z,7)0 €
aeNS

~

v . . .
QTY x_y.p is given as follows:

(a) Assume that 7 = 0. Then there exist p, §, > 0 such that each a_(z, 7) is holomorphic
on CI[D,(2) x ]B%]’ and for any € > 0, there exist 0 < §(¢) < ¢, and C. > 0 such
that

C._elel

sup{|a, (2, 7)[; (z,7) € Cl[D,(2) x B, )]} < o




BOUNDARY VALUE PROBLEM FOR FUCHSIAN SYSTEMS 187

(b) Assume that 7 # 0. Then there exist p, 6,, 6 > 0 such that each a_(z,7) is
holomorphic on CID () x {1 € C; 0 < |7] < d;, |arg(7/7)| < 6}, and for any £ > 0,
there exists 0 < 0(e) < J, satisfying the following: for any 0 < r < 6(¢), there exists
C. , > 0 such that

sup{la, (2, 7)[; z € CID,(2), r < [7] < 6(e), |arg(T/7)| < 0} <

(2) .@TYX_,Y|Y = 0%y, is defined by Oaku [18, Definition 2.3].
3.17. Definition. (1) For any % € Db(@; <), we set

Y

—~ 9 -
Then ¥, (.%) is represented by .# —— .% under an admissible local coordinate system.
(2) For any .4 € D (Zy), we set

@?(W) = @Y(@T X®7'X YJV)ﬂ W130('/’/) = 6_1@?('/’/)'

TXY@

3.18. Proposition. Let A4 € €oh(Zy). Then H'WX(AN) = 0 holds for i ¢
[—n, 1], and &7 (A) is represented by a bounded complex of 2y -Modules.

3.19. Example (1) @Y(Vy(ﬁx)) ~ 710,

) *@;" ~ & (9}, o)

(3) U2 (Zx | D5 9) (D[ P50.) ~ D5°.

(4) It J/ € Cob(.@X) satlsﬁes that supp%/ CY, then ¥y°(A#) = 0.

§4. Holomorphic Solutions to Fuchsian Systems

We inherit the notation from the preceding section.

4.1. Theorem. Let P =v9—A(z,7,0,) be a Fuchsian Volevié system of size m.
Then for any p € TYX, the following hold:

4 9}?/9)?]3),5 =~ g’y(-@:’fyxay)g% ~ ( ?,Dry(ﬁ))m'

Idea of Proof. We set Ay(z) := A(z,0,0,) € Mat, (0 ). Let {a,};", be the set
of eigenvalues of A, (7y-(p)), and set
{ max{a,; — o o; —a; €N (if {a; — oy} N(Z N {0}) #0),
Up 1= ‘ -
0 (if {o; — ;1% N(Z ~{0}) = 0).
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~

We consider the following problem for R(z,7,0,) € Matm(.@le’ - (ﬁ)):
(4.1) (¥ —A(z,7,0,))(7"?R)(2,7,0,) = T°PR(2,7,0,) (¥ — Ay(2)),
' R(2,0,0,) =1,

By using a result of Tahara [22], we can obtain a unique invertible solution to (4.1).
Then R(z,7,0,) := 77 R(2, T, 82)TA0(Z) € Matm(.@;YX’ﬁ) is invertible and
(9 — A(z,7,0,))R(2,7,0,) = R(z,7,0,)9.

From this result, we can prove the theorem. O

4.2. Proposition. (1) If P is a Fuchsian operator of weight (m,w), then locally
U (Dx | D P) =~ (29°)™. .
(2) If M € Fy(Dy), then H'U (M) = 0 holds for i ¢ [—n,0].

4.3. Remark. Let # € Fy(Zy). Then ¥y° () is represented by
0= (Z2)" (D) "+ Q = () nr — o = (Z7) — (Z°),
where r, € Nand Q € Mat,  (2y°).
n+1’'" n
4.4. Proposition. (1) For any A € Coh(Dy ), there exists a natural morphism
L
U (N) — QﬁongW.
Y
L
(2) For any A € Fy(Zy), there exists a natural morphism Qg}og Df\# —
Y

As usual, %ﬂﬂle = H'yuy (Oy) = 11y (0x)[1] denotes the sheaf of holomorphic
microfunctions on Ty X. Then %y |y = %$|X|Y = Hy(0y) = RI(Oy)[1] is the
sheaf of holomorphic hyperfunctions.

4.5. Theorem. For any # € Fy(Py), there exist the following isomorphisms
between distinguished triangles:

= R Ao g (M, 0x) == R,%”mgy(f fiu,oy)

l
R%W@X(%Lﬁ_lvy(ﬁx)) — RS g (ﬁ;;’(.///), Oy)

Ry (M, 6 Cy\x) == Rom g (M,"5 6y %),
RRAS! RS

ijmgx(f/z, BYx) = Rtom g (D {//z 0y)[—1]
Rorm g (M6 Cy\x) == Rom g (M,"67 6y x)
l l

Ry (M6 vy (Ox)) = R g (U5° (M), Oy).
I+ 141
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4.6. Remark. Let # = % / D P, where P is a Fuchsian partial differential
operator of weight (m,w), or A4 = 24" / 24" P, where P is a Fuchsian Volevi¢ system
of size m. Then locally %W@X(j/ 6wy (Oy)) ~ 02™. This isomorphism follows
from the results due to Mandai [12] or Mandai-Tahara [13].

Let Ry (Zy) be the subcategory of €oh(Zy) consisting of regular-specializable
P «-Modules, and ¥y, (A) (resp. @y (A')) denotes the nearby cycle (resp. the vanishing
cycle) of .#. We remark that .#Z € Ry (Zy) if and only if the following holds: for any
u € ., locally there exists P € 9 such that Pu = 0, where P is of the following form:

m—1 X .

P=9"4+>b9"+7% a,,(21)0" (b €C).

i=0 la|+i<m

For any .# € Ry (Zy), we have the following distinguished triangles (see [9]):
R%”m@X(///i&_luy(ﬁX)) — Rﬁmgy(ﬁy(//z), Oy)

Rz gy (M6 Cy\x) = R g (O (M), Oy),
J+1 1

Ry (M, B\ x) == RHim g (DfM,0)—1]
X\L Y \L
RAomr gy (M6 vy (Ox)) == RHome g (U (M), Oy).
J+1 I+1
4.7. Theorem. If # € Ry (D), then O (M) ~ @30/0;2.5 Uy (M ). In particu-
lar, if Y is non-characteristic for M , then Wy (M) ~ .@§°§ ngj/.

§ 5. Boundary Values for Hyperfunction Solutions

We denote by %,, and €, the sheaves of hyperfunctions on M and of microfunc-
tions on Ty, X respectively. For any .# € Fy. (%), we have

R%mgx(ﬂa Iy(By)) @ CEN/M = R%W@Y(Df!«///a #y)-1].

5.1. Definition ([4], [5]). We define the sheaf on =1 T\, M of second hyper-
functions by
£2

n+1 R
VETTHM = H\/——i—_lT;\‘,M(CgY|X) Qory;y 2 RE e (1y (Ox)) @ o2y [0+ 2]



190 SUSUMU YAMAZAKI

By Holmgren type theorem for hyperfunctions and [4], [5], we have monomorphisms

s—1 s —1p2
FM+(‘%)M)|N — 8T G — 7S f%)\/_—lT;t,M'

Hence we obtain

5.2. Theorem. Let # € Fy(Py). Then there exists the following morphism
between distinguished triangles:

R g (M. Ty () © 027y ———= RAomn , (D foll, By) 1]
1
R oo g (M, FMJF(%M)”N Q ot N/ — RAzrn g (M5 _1¢95’3jT;]M) ® o2y n
)
RM@X(//{7FQ (Zy) N >R°%ﬂm@§,°(wlgo(‘/%)ﬂ%71\f)'
+H 141

5.3. Definition. Let .# € F,(Zy). By Theorem 5.2 we can define
(5.1) Vgt R%mgx(%, FQ_,’_(‘%M)”N - R%m@;o Wy~ (A ), By)-

Taking cohomologies, we have

—~— O
— o

%mgx(%, FN ‘@M)) (] %N/M — R_lﬁmgy(Df{%,e%N)

H

%mgx(%, FM+(%M))|N Qe nn = e%amgx(///, *g_lg?/ijvM) ® e N/

!

‘%am@x(%lpﬂ+(‘@M))|N - %ﬂm@% (Howﬁo (A), By)

Eaty (M, Ty(Br) @ ooy g === R g (DM, By).
Therefore
5.4. Proposition. Let # € F,,(Zy). Then (5.1) induces a monomorphism
79 M@X(%,FQJF(%’M)HN — Ao o (HOOX (M), By).

Next, we recall definitions of several sheaves attached to the boundary due to
Oaku [18]. Note that in Oaku [18] these sheaves are defined on cosphere bundles,
so we shall present definitions on cotangent bundles along the line of Oaku-Yamazaki
[19]. We refer to Oaku [18] or Oaku-Yamazaki [19] for the proofs. Although only
the higher-codimensional case is treated in [19], the same proofs also work as in the
one-codimensional case.
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5.5. Definition. We set:

Cny = Shx MMN(RFQL(pleFL(ﬁX))) ® cepgx [0,

Cnar = b v (Vy (RI(OX))) ® 22 x ),

%N|M = CKN|M|TNM :
Then €y, and %ZNI v are concentrated in degree zero, and vy (%)) = €y, M|TN M-

5.6. Proposition ([18]). (1) €y, and ‘gNlM are concentrated in degree zero;
that is, CgNI M and CgNI a are regarded as sheaves on T}N uly L.

(2) There exists a canonical monomorphism s}‘\,lM: %NlM — ~N|M.
v = , and there exists the following commutative diagram
3) vy (B, CKMMTNM d th ists the followi tative di
with exact rows on T\ M:

0— vy (B0 — VN(I«%’M) — T Enpr — 0
I

0— Vy(%ﬁL”TNM — ‘@NIM — 7:‘-N|M*<ng|M — 0.

Here #0, := Hi(ﬁX)@}%L/X ~ RI(Ox)®cep,x[1]. Note that vy (#07) is con-
centrated in degree zero.

5.7. Definition. Let .# € F,(%y). By Definition 2.6, Proposition 3.7, Theo-
rem 4.1 and Proposition 5.6, we define the morphism _ :

Vit i R gy (M Cygjry) = i | Ry (M Cy)y)
% 7 R gy (U° (M), C )

The restriction of v, to the zero-section T M * of T}N M+TYL+ coincides with the
boundary value morphism (5.1).

We can obtain the following Holmgren type theorem:

5.8. Theorem. Let 4 € Fy(Zx). Then the morphism v, gives a monomor-
phism
’7_?_ : i;j%mgx(ﬂ, CgNIM) — 7:71-_-1—1‘%&%@{',0 (HOW;;O (A), CgN)

5.9. Remark. Theorem 5.8 gives another proof of Proposition 5.4.

5.10. Theorem. Let # € Fy (D). Assume that A is near-hyperbolic at
Z € N in the dt-codirection. Then, for any p* = (§(2);v—1y") € T;NMJFTYLJF, there
exists an isomorphism

Dy’
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Here py :== 7, (p") = (&;v=19") € TNY . In particular, there exists an isomorphism
V4 R,%ﬂm@X(,///, FQ+(‘%M))5: = R%mgx(%, VN(‘%)M))g(:i':)
% R o (B2 (M), B ),

T

We consider the mappings:

E3 * ‘f E3
TMX<—NA>;T X MLy

k[ fl:l kf IZI kf

Then the sheaf of microfunction with a real analytic parameter t on TY is defined by
Cgf\?m = fya fﬁich = H”“(k_lRfd! f;INM(CMa Ox)® %M/X)-

The sheaf Cé]\q M, of mild microfunctions on TxY is defined by Kataoka [8], and refor-
mulated by Schapira-Zampieri as [21]

(éN|M Hn+1(Rfdv fr NM(C )®%M/X)
Then we have natural monomorphisms ([17], [19]):
~ 1. 8A ~—15 _
7'TrJrl%ﬂMMJr - TTr—i-l(gNlM =i 1% N|M >
and restricting to N, we have natural monomorphisms
c@an - ‘%N|M - §_1VN(‘%M) = FQ+(‘%M)|N'

Here % NIM, denotes the sheaf of mild hyperfunctions. Setting Df# := H'Df*# , we
can obtain a monomorphism

Koy (DM, Cy) — Hom e (HOUF (M), C ).

For any .# € Fy (%), by construction and [25], we obtain the following:
(1) There exist the following commutative diagrams:

~_1R<%%m@ (A, %‘W) .

LT,

(5.2) %WTR%m@X(%,%NIM ) —— 7y Ry (DM, Cy)

| l

i RS gy (M Cy\ng) — s T Rl e (U (M), G )
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R Ao g (M, Binr) v
(5.3) Rl (M Byppy ) ——— Rty (DM By)
R g (M, Ty (Br))l sy — s RHMorn oy (B (M ), By,

Moreover (5.2) and (5.3) induce the following monomorphisms:

Tt Ao gy (MR ) A
I 20
Toi Ko g (M, Cpg ) ——— Toi Hom g (DM Cy)
1 0 A
L Ao gy (M C|3g) s T Homn g (HOUE (M), C )
Ao (M, B0

20

Hern gy (M, @?N%) s Hom g, (DM, By)

! ' !

T+

Ao g (M T (Brg)) |y s Hewn g (HOUE (M), B,).

(2) Let p* = (8(2);v—19") € T}NMJFTYLJF. Assume that .# is near-hyperbolic
at # € N in the +dt-codirections. Then v, 3 and ~ . are isomorphisms at p* in (5.2)
(resp. at  in (5.3)).
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