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Exact WKB analysis, cluster algebras and

Fock‐Goncharov coordinates

By

Kohei IwAKl*

Abstract

This is a short summary of the paper [25] which investigates a cluster algebraic structure

in exact WKB analysis of second order linear ordinary differential equations. We also compare

the result [25] to the work [18] of Gaiotto, Moore and Neitzke.

§1. Introduction

In [25] the author and T. Nakanishi establish the relationship between exact WKB

analysis of Schrödinger equations and cluster algebras. The one of the purpose of this

article is to give a short summary of the result of [25].
Exact WKB analysis is a method to study the WKB (Wentzel‐Kramers‐Brillouin)

solutions of the Schrödinger equation using the Borel resummation. It is initiated by
Voros ([32]), and developed by many people (see [11, 27] for example). On the other

hand, cluster algebras were introduced by Fomin and Zelevinsky ([14]) to study the co‐

ordinate rings of certain algebraic varieties. Recently, it turns out that cluster algebras
are related with several branches of mathematics and physics; for example, represen‐

tation theories of quivers, hyperbolic geometry, integrable systems, Donaldson‐Thomas

invariants and their wall‐crossing, supersymmetric field theory, and so on. One of the

main result of [25] was to embed exact WKB analysis in the above list of relating topics
to cluster algebras.

The dictionary of these two theories are summarized in Table 1. There are two

kinds of Voros symbols (for paths  $\beta$ and cycles  $\gamma$ ), and they play roles of two kinds of

Received May 15, 2015. Revised October 13, 2015. Accepted October 18, 2015.

2010 Mathematics Subject Classification(s):  13\mathrm{F}60, 34\mathrm{M}60.

Key Words: Exact WKB analysis, cluster algebras.
*

Department of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya 464‐8602, Japan.
\mathrm{e}‐mail: iwaki@math. nagoya -\mathrm{u} . ac. jp

© 2016 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



266 Kohei Iwaki

Exact WKB analysis Cluster algebras
Stokes graph and its mutation \mathrm{B}‐matrix and its mutation

cluster \mathrm{x}‐variables

coefficients (cluster \mathrm{y}‐variables)
Voros symbols \mathrm{e}^{\mathrm{W}}

\exp( \mathrm{Q}(\mathrm{z})\mathrm{d}\mathrm{z})
Voros symbols \mathrm{e}^{\mathrm{V}}

Stokes phenomenon
cluster \mathrm{y}‐variables

mutation of cluster variables

periodicity of cluster algebraidentity of Stokes automorphisms
1(e.g., \mathrm{S}{}_{1}\mathrm{S}{}_{2}\mathrm{S} 2 = 1) 1

= (1 {\$} 2))(e.g., (+)
2

( )
2

( )

Table 1. Dictionary: Exact WKB analysis and cluster algebras

(x‐ and y cluster variables. In particular, the mutation of these cluster variables are

realized as the Stokes phenomenon for the Voros symbols (Theorem 3.1).
On the other hand, a relation between (usual) WKB analysis and cluster algebras

has been found in the work [18] of Gaiotto, Moore and Neitzke, through the study of

wall‐crossing of BPS states in four‐dimensional field theory. They constructed cluster

\hat{y}‐variables in terms of solutions of a certain differential equation (associated with the

Hitchin equation [22]), as the Fock‐Goncharov coordinates of the moduli space of flat

SL(2, \mathbb{C}) ‐connections. The second purpose of this article is to compare the result of [25]
to [18].

Consequently, we show that our Voros symbols for cycles, corresponding to cluster

\hat{y}‐variables, have the same expression as the Fock‐Goncharov coordinates (Theorem 4.1).
Namely, the (Borel sum of) Voros symbols are expressed as a cross‐ratio of Wronskians

of (Borel sum of) WKB solutions. This gives another proof of a formula of the Voros

symbols for closed cycles in Theorem 3.1; the cluster mutation is nothing but the Plücker

relation for the Wronskians. Note that this fact was pointed in [18]. From this result,
we can expect that our Voros symbols are obtained as conformal limit of the Fock‐

Goncharov coordinates of [18] (see [16]).
This article is organized as follows. In Section 2 we recall some notions in exact

WKB analysis. The main theorem of [25] is explained in Section 3. Finally, we will give
the Fock‐Goncharov type description of Voros symbols in Section 4.
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§2. Preliminary for exact WKB analysis

Here we briefly recall some notions in exact WKB analysis which is relevant to this

paper. See [27] for more details.

§2.1. WKB solutions and Stokes graphs

We consider a second order linear ordinary differential equation (Schrödinger equa‐

tion) of the form

(2.1) (\displaystyle \frac{d^{2}}{dz^{2}}-$\eta$^{2}Q(z)) $\psi$(z,  $\eta$)=0.
Here  $\eta$>0 is a large parameter, which plays a role of the inverse of Planck constant \hslash.

In this paper we assume that Q(z) (called potential) is a polynomial in z . (See Remark

3.2 for cases that Q(z) is meromorphic.) We also assume the following throughout this

paper:

(A) : Q(z) has only simple zeros.

Zeros of Q(z) are called turning points of the equation (2.1).
The WKB solutions of (2.1) are formal series solutions of the form

(2.2) $\psi$_{\pm}(z,  $\eta$) := \displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}(z, $\eta$)}}\exp(\pm\int_{z_{0}}^{z}S_{\mathrm{o}\mathrm{d}\mathrm{d}}(z^{0},  $\eta$)dz^{0}) :

Here z_{0} is a generic point (which determines the normalization of (2.2)), and

(2.3) S_{\mathrm{o}\mathrm{d}\mathrm{d}}(z,  $\eta$)=\displaystyle \sum_{m=0}^{\infty}$\eta$^{1-2m}S_{2m-1}(z)= $\eta$ S_{-1}(z)+$\eta$^{-1}S_{1}(z)+$\eta$^{-3} S3 (z)+\cdots

is a formal (Laurent) series of $\eta$^{-1} which is defined as the odd‐order part of a formal

solution of the Riccati equation S^{2}+dS/dz =$\eta$^{2}Q(z) (see [27, Section 2 The coef‐

ficients of S_{\mathrm{o}\mathrm{d}\mathrm{d}}(z,  $\eta$) are determined recursively, and become (meromorphic) functions

on the Riemann surface \mathcal{R} of \sqrt{Q(z)}. \mathcal{R} is a double cover of \mathbb{P}^{1} branching at zeros of

Q(z) ,
and at 1 if Q(z) is an odd degree polynomial. In particular, the first few terms

are given by

(2.4) S_{-1}(z)=\sqrt{Q(z)}, S_{1}(z)= \displaystyle \frac{1}{32Q(z)^{5/2}} (4Q(z)\displaystyle \frac{d^{2}Q(z)}{dz^{2}}-5(\frac{dQ(z)}{dz})^{2}) ,
. . .

Although WKB solutions are divergent in general, they are Borel summable under

certain assumptions. Here the Borel summability indicates a well‐definedness of Borel



268 Kohei Iwaki

sums. The Borel sums of the WKB solutions give analytic solutions of the Schrödinger

equation (2.1), and their asymptotic expansions for  $\eta$\rightarrow+\infty recover the original WKB

solutions. See [10] or [27, Section 1] for Borel resummation method.

The Borel summability can be read off from the Stokes graph.

Definition 2.1 ([27, Definition 2.6]).

A Stokes curve is a trajectory of the quadratic differential  Q(z)dz^{2} passing through
a turning point. (A trajectory is a leaf of the foliation defined by {\rm Im}\displaystyle \int^{z}\sqrt{Q(z^{0})}dz^{0}=
constant.)

The Stokes graph of (2.1) is the graph on \mathbb{P}^{1} whose vertices are turning points and

1, and whose edges are Stokes curves.

A Stokes segment (or a saddle trajectory) is a Stokes curve connecting turning points.

The Stokes graph is said to be saddle‐free if there are no Stokes segment.

See Figure 1 for examples of Stokes graphs. Under the assumption (A), three Stokes

curves emanate from each turning point. Figure 1 (c) depicts an example of a Stokes

graph having a Stokes segment. It is known that, if the Stokes graph is saddle‐free, then

Stokes regions (faces of the Stokes graph) are one of

(i) rectangular type whose boundary contains two turning points, or

(ii) digon type (which appears near 1) whose boundary has only one turning point (d+2
digon type Stokes regions appear near 1, where d is the degree of polynomial Q(z) ).

(a): Q(z)=z (b): Q(z)=z(z+1)(z+i) (c): Q(z)=1-z^{2}

Figure 1. Examples of Stokes graphs.

Theorem 2.2 ([28]). If the Stokes graph is saddle‐free, then the WKB solutions

are Borel summable (as formal series of $\eta$^{-1} ) when z lies on each Stokes region.
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The relationship between Borel resummed WKB solutions defined in adjacent
Stokes regions are known as Voros� connection formula ([32, 27]). It will be used in

Section 4.

§2.2. Voros symbols

Next we introduce an important notion, called Voros symbols. They are formal

series defined by integrals of S_{\mathrm{o}\mathrm{d}\mathrm{d}}(z,  $\eta$)dz along a homology class  $\gamma$\in H_{1}(\mathcal{R};\mathbb{Z}) (we call

it a cycle), or a relative homology class  $\beta$\in  H_{1}(\mathcal{R}, P;\mathbb{Z}) (we call it a path). Here P is

the inverse image of 1 by the projection \mathcal{R}\rightarrow \mathbb{P}^{1} . Define

(2.5) V_{ $\gamma$}( $\eta$) :=\displaystyle \oint_{ $\gamma$}S_{\mathrm{o}\mathrm{d}\mathrm{d}}(z,  $\eta$)dz, W_{ $\beta$}( $\eta$) :=\int_{ $\beta$}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}(z,  $\eta$)- $\eta$\sqrt{Q(z)})dz
for a cycle  $\gamma$ and a path  $\beta$ . We can easily check that the formal series  W_{ $\beta$}( $\eta$) is

well‐defined; that is, each coefficient of the formal series‐valued 1‐form (S_{\mathrm{o}\mathrm{d}\mathrm{d}}(z,  $\eta$) -

 $\eta$\sqrt{Q(z)})dz is integrable at end‐points of  $\beta$.

Definition 2.3. The formal series e^{V_{ $\gamma$}( $\eta$)} and e^{W_{ $\beta$}( $\eta$)} are called Voros symbols
for a cycle  $\gamma$ and a path  $\beta$ , respectively.

Note that  e^{V_{ $\gamma$}( $\eta$)} is a formal series of $\eta$^{-1} with an exponential factor of the form

(2.6) e^{V_{ $\gamma$}( $\eta$)} =\displaystyle \exp( $\eta$\oint_{ $\gamma$}\sqrt{Q(z)}dz) (1+O($\eta$^{-1})) ,

while e^{W_{ $\beta$}( $\eta$)} is a usual formal power series. Voros symbols are also divergent in general,
and their Borel summability can also be read off from the topology of Stokes graph.

Theorem 2.4 ([28]). The Voros symbol e^{V_{ $\gamma$}( $\eta$)} (resp., e^{W_{ $\beta$}( $\eta$)} ) fora cycle  $\gamma$ (resp.,
a path  $\beta$), is Borel summable if  $\gamma$ (resp.,  $\beta$) never intersects with Stokes segments. In

particular, the Voros symbols for any cycles and any paths are Borel summable if the

Stokes graph is saddle‐free.

Remark 2.5. For the cases that  Q(z) is a rational function, the monodromy or

connection matrices of (2.1) for the the Borel resummed WKB solutions are described

by the Borel sums of Voros symbols (see [27, Section 3

§3. Cluster algebraic structure in exact WKB analysis

A cluster algebra, introduced in [14], is defined in terms of seeds and their mutations

(see [14] for a precise definition of cluster algebras). In this section we review the result

of [25]. That is, we associate a seed to the Schrödinger equation (2.1), and show that
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a deformation of the potential Q(z) (by an S^{1} ‐action) causes a mutation for the seed.

We will see that, cluster variables are realized by the (Borel resummed) Voros symbols,
and the mutation is regarded as the Stokes phenomenon (for  $\eta$ \rightarrow +\infty ) for the Voros

symbols.

§3.1. Seeds in exact WKB analysis

Let us consider the Schrödinger equation (2.1) whose Stokes graph is saddle‐free.

In this subsection we define a seed from the Schrödinger equation. Here a seed is a

triplet (B, \mathrm{x}, \mathrm{y}) consists of skew‐symmetric matrix B of size n \geq  1
,

and two kinds of

n‐tuple of variables; called cluster x ‐variables and cluster y ‐variables, respectively. The

integer n is the number of rectangular Stokes regions in the Stokes graph.

First, for each rectangular Stokes region D_{i} (i = 1, \ldots, n) ,
associate a path $\beta$_{i}

(called the i‐th simple path) and a cycle $\gamma$_{i} (called the i‐th simple cycle) as indicated in

Figure 2. That is, after taking an appropriate branch cut to determine the branch of

\sqrt{Q(z)} ,
define them as follows:

$\beta$_{i} is represented by a trajectory (regarded as a path on the Riemann surface \mathcal{R} ) of

the quadratic differential Q(z)dz^{2} through a point in D_{i} ,
whose orientation is given

so that {\rm Re}\displaystyle \int^{z}\sqrt{Q(z)}dz increases along its positive direction.

$\gamma$_{i} is represented by a closed cycle which encircles two turning points on the bound‐

ary of the Stokes region D_{i} ,
whose orientation is given by {\rm Im}\displaystyle \oint_{$\gamma$_{i}}\sqrt{Q(z)}dz<0.

The orientations depend on the choice of the branch, but we can adopt any of them.

This ambiguity doesn�t matter when we define the Voros symbols for $\beta$_{i} and $\gamma$_{i}.

Figure 2. The path $\beta$_{i} and the cycle $\gamma$_{i} . The wiggly lines designate branch cuts. The

solid (resp., dotted) part represents a part of path on the first (resp., the second) sheet

of the Riemann surface \mathcal{R}.

As is shown in [18, 7], under the saddle‐free assumption, the simple paths $\beta$_{i} �s

together with a similar paths in digon type Stokes regions near infinity (to be precise,
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∽

(a) (b)

Figure 3. An example of a quartic polynomial Q(z) . (a): Thick lines depicts Stokes

curves, while thin lines are paths. (b): The triangulation associated with Q(z) .

their images by projection \mathcal{R} \rightarrow \mathbb{P}^{1} ) give a triangulation of a surface with boundary.
The simple paths $\beta$_{i} �s give diagonals of the triangulation, while the paths in digon‐type
Stokes regions give boundaries of the surface. For example, when Q(z) is a quartic

polynomial, we have a triangulation of a hexagon (see Figure 3 (b)).
Then, the skew symmetric matrix B = (b_{ij})_{i,j=1}^{n} in our seed is defined from the

triangulation as in [15]. Namely, we define

(3.1) b_{ij} =\displaystyle \sum_{\triangle}b_{ij}^{\triangle}
where the summation is taken over all triangles in the triangulation, and

\left\{\begin{array}{l}
1 \mathrm{i}\mathrm{f} $\beta$_{i} \mathrm{a}\mathrm{n}\mathrm{d} $\beta$_{j} \mathrm{a}\mathrm{r}\mathrm{e} \mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{t} \mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{s} \mathrm{o}\mathrm{f} \triangle, \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{d}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\\
\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m} $\beta$_{i} \mathrm{t}\mathrm{o} $\beta$_{j} \mathrm{i}\mathrm{s} \mathrm{c}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}- \mathrm{c}\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},
\end{array}\right.(3.2) b_{ij}^{\triangle}= -1 if $\beta$_{i} and $\beta$_{j} are different sides of \triangle
,

and the direction

from $\beta$_{i} to $\beta$_{j} is clockwise,

0 otherwise:

Moreover, the cluster variables \mathrm{x}=(x_{i})_{i=1}^{n} and \mathrm{y}=(y_{i})_{i=1}^{n} in our seed are given by

(3.3) x_{i} :=S[e^{W_{$\beta$_{i}}}], y_{i} :=\displaystyle \exp( $\eta$\oint_{$\gamma$_{i}}\sqrt{Q(z)}dz) ,

where S[e^{W_{$\beta$_{i}}}] is the Borel sum of the Voros symbols for $\beta$_{i} . Then, we can show that

the Borel sum S[e^{V_{$\gamma$_{i}}}] of the Voros symbols for $\gamma$_{i} is given by

(3.4) S[e^{V_{$\gamma$_{i}}}] =y_{i}\displaystyle \prod_{j=1}^{n}x_{j}^{b_{ji}}
This relation follows from a relation between simple cycles and simple paths (see [25,
Proposition 6.27]). The right‐hand side of the above equality is usually denoted by \hat{y}_{i}
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(and called cluster \hat{y} ‐variables) in the theory of cluster algebras. Hence we set \hat{y}_{i} :=

S[e^{V_{$\gamma$_{i}}}] and \wedge:=(\hat{y}_{i})_{i=1}^{n}.

§3.2. Mutation in exact WKB analysis

Mutation of cluster variables is a certain birational transformation. To see the

mutation in the exact WKB analysis, we need to analyze the situation that a Stokes

segment exists. For the purpose, let us consider the S^{1} ‐family of the potentials of the

Schrödinger equation:

(3.5) Q^{( $\theta$)}(z) :=e^{2i $\theta$}Q(z) ( $\theta$\in \mathbb{R}) .

Denote by G_{ $\theta$} the Stokes graph for Q^{( $\theta$)} ( G_{0} is the original Stokes graph).
This S^{1} ‐action on the potential may cause a discontinuous change of Stokes graph

in the following sense. For the sake of simplicity, suppose that the Stokes graph G_{0} has

a Stokes segment. Then, for a sufficiently small  $\delta$> 0 ,
the Stokes graphs G_{\pm $\delta$} become

saddle‐free, and we can see that the topology of Stokes graphs G_{\pm $\delta$} are different as in

Figure 4. The discontinuous change of the Stokes graph (caused by the S^{1} ‐action) is

called a mutation of Stokes graphs.

G_{+ $\delta$} G_{0} G_{- $\delta$}

Figure 4. An example of a mutation of Stokes graphs.

It is known that such mutations of Stokes graphs cause a discontinuous change
of Borel sums of WKB solutions and Voros symbols, and the formula describing the

Stokes phenomenon is studied by [11, 3] etc. Such a discontinuous change of Borel

sums are nothing but a Stokes phenomenon for  $\eta$ \rightarrow +\infty because the Borel sums are

asymptotically expanded to the original formal series. One of the main result of [25]
is to find that the Stokes phenomenon for the Voros symbols realizes the mutations of

cluster variables in the sense of [14].
To formulate the result of [25], fix a sign  $\epsilon$\in \{+, -\} and set G :=G_{ $\epsilon \delta$} and G^{0} :=

G_{- $\epsilon \delta$} . Namely, we consider \mathrm{a}^{(} signed� mutation $\mu$_{k}^{( $\epsilon$)} : G ∽ G^{0} of Stokes graphs, where  $\epsilon$

determines the direction of  S^{1} ‐action, and  k\in \{1, :::, n\} is the label of the rectangular
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Stokes region which vanishes when the Stokes segment appears in G_{0} . Here we also

assume that the Stokes segment appearing in G_{0} is the unique Stokes segment.
As explained in the previous subsection, we can associate seeds (B, \mathrm{x}, \mathrm{y}) , \wedge and

(B^{0}, \mathrm{x}^{0}, \mathrm{y}^{0}) , \wedge^{0} to G and G^{0} , respectively. These Borel sums depend on  $\delta$ > 0 ,
and we

can show that the limit  $\delta$ \rightarrow +0 of x_{i}, y_{i}, \hat{y}_{i} and x_{i}^{0}, y_{i}^{0}, \hat{y}_{i}^{0} exist (see [25, (3.25) and

(3.26)]). We use the same symbols ( x_{i} etc.) for these limits. Then we have

Theorem 3.1 ([25, Theorem 7.5]). The seeds defined above satisfy the following

after taking the limit  $\delta$\rightarrow+0 :

(3.6) b_{ij}^{0} = \left\{\begin{array}{ll}
-b_{ij} & i=k or j=k\\
b_{ij}+[b_{ik}]_{+}b_{kj}+b_{ik}[b_{kj}]_{+} & otherwise:
\end{array}\right.
(3.7) x_{i}^{0}= \left\{\begin{array}{ll}
x_{k}^{-1} (\prod_{j=1}^{n}x_{j}^{[- $\epsilon$ b_{jk}]_{+}}) (1+\hat{y}_{k^{ $\epsilon$}}) & i=k\\
x_{i} & i\neq k.
\end{array}\right.
(3.8) y_{i}^{0}= \left\{\begin{array}{ll}
y_{k}^{-1} & i=k\\
y_{i}y_{k}^{[ $\epsilon$ b_{ki}]_{+}} & i\neq k.
\end{array}\right.
(3.9) \hat{y}_{i}^{0}= \left\{\begin{array}{ll}
\hat{y}_{k^{-1}} & i=k\\
\hat{y}_{i}\hat{y}_{k}^{[ $\epsilon$ b_{ki}]_{+}}(1+\hat{y}_{k^{ $\epsilon$}})^{-b_{ki}} & i\neq k.
\end{array}\right.
Here [a]_{+}=\displaystyle \max(a, 0) .

We can see that the mutation of Stokes graphs are consistent with the flip of the

triangulation (i.e., replacement of diagonal to another one in a quadrilateral); it implies

(3.6). The formulas for x_{i} and \hat{y}_{i} follow from a result in [11] which describes the jump for

Voros symbols caused by a Stokes phenomenon (relevant to the Stokes segment). The

formulas in Theorem 3.1 are examples of mutation of cluster variables with coefficients

in the tropical semifield (to be precise,  $\epsilon$ should be chosen as the tropical sign; see [25]
for details). Thus we have seen that the Borel sum of Voros symbols realize the cluster

variables.

In our framework, the pentagon identity for Stokes automorphisms

(3.10) \mathfrak{S}_{$\gamma$_{1}}\mathfrak{S}_{$\gamma$_{2}}\mathfrak{S}_{$\gamma$_{1}}^{-1}\mathfrak{S}_{$\gamma$_{1}+$\gamma$_{2}}^{-1}\mathfrak{S}_{$\gamma$_{2}}^{-1} =1
obtained in [11] follows from a periodicity of cluster algebras of the type A_{2} . Here

\mathfrak{S}_{ $\gamma$} is the Stokes automorphism (associated to a cycle  $\gamma$ ) which describes the Stokes

phenomenon for Voros symbols relevant to the mutation of Stokes graph (see [11]). We

can see that the cycles appearing in (3.10) is nothing but the  c‐vectors, and the signs
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on the Stokes automorphisms are the tropical signs (associated with a mutation period
in the cluster algebra of the type A_{2} ). See [30] for the terminologies. We can obtain

similar identities of Stokes automorphisms from any period of mutation sequence in the

corresponding cluster algebra (see [25]).
However, the above result is not enough to study the cluster algebras. A cluster

algebra is defined by iterations of mutations, but our result concerns with a single
mutation. We have to develop our framework so that we can analyze the whole structure

of corresponding cluster algebras.

Remark 3.2. Theorem 3.1 is generalized to cases where Q(z) is a meromorphic
function (satisfying certain assumptions). Then, other kind of Stokes segments appear

in meromorphic cases: If Q(z) has a double pole, then a loop type Stokes segment may

appear around the double pole. The formula describing the change of the WKB solutions

and Voros symbols are studied in [1]. In this case the loop type Stokes segment doesn�t

cause a mutation of cluster variables, but a local rescaling of cluster x‐variables. Local

rescale is an operation which commutes with mutations of cluster variables (see [25,
Theorem 7.10]). On the other hand, when Q(z) has a simple pole, the mutation formula

relevant to a Stokes segment connecting a turning point and simple pole is an example
of a mutation in generalized cluster algebras introduced in [9]. See [26] for the simple

pole case. It seems to be interesting to analyze situations that more than two Stokes

segments interact in the mutation of the Stokes graph (one particular example, called

juggle, is analyzed in [18]).

Remark 3.3. Quadratic differentials and their trajectories are also important in

the study of stability conditions ([5]) on certain categories associated with a triangulation

(or N‐angulation) of surface with boundaries; see [6, 7, 24, 31]. In particular, the

mutation of Stokes graphs are related to a kind of wall‐crossing in the space of stability
conditions.

§4. Voros symbols and Fock‐Goncharov coordinates

Here we give some comments on a similarity of the result in [25] and that of Gaiotto,
Moore and Neitzke [18].

§4.1. Voros symbol as a cross‐ratio of Wronskians

Let us continue to consider the Schrödinger equation (2.1) satisfying the assump‐

tions in Section 2, and suppose that the Stokes graph is saddle‐free. Using the idea of

[18], we will give an expression of Borel resummed Voros symbols S[e^{V_{$\gamma$_{i}}}] for the simple

cycle $\gamma$_{i} in terms of the Borel resummed WKB solutions.
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p_{1}

Figure 5. The quadrilateral Quadi.

For any label  i\in \{1, :::, n\} ,
let Quadi be the quadrilateral whose edges are given

by edges of the triangulation defined in Section 3.1 and containing the simple path $\beta$_{i}
as its diagonal. Let p_{1} , :::, p_{4} be the vertices of Quadi; we set p_{1} at one of vertices

where $\beta$_{i} is attached, and set p_{2}, p_{3} and p_{4} in counter‐clockwise order as indicated in

Figure 5. Taking branch cuts as in Figure 5, we fix the branch of \sqrt{Q(z)} on (Quadi \backslash 
{branch cuts}). For m=1

, :::, 4, define a WKB solution $\psi$_{m}(z,  $\eta$) by

(4.1)

$\psi$_{m}(z,  $\eta$)= \left\{\begin{array}{ll}
$\psi$_{-}(z,  $\eta$) & \mathrm{i}\mathrm{f} {\rm Re}\int_{v}^{z}\sqrt{Q(z)}dz>0 \mathrm{o}\mathrm{n} \mathrm{S}\mathrm{t}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{s} \mathrm{c}\mathrm{u}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{s} \mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}\\
$\psi$_{+}(z,  $\eta$) & \mathrm{i}\mathrm{f} {\rm Re}\int_{v}^{z}\sqrt{Q(z)}dz<0 \mathrm{o}\mathrm{n} \mathrm{S}\mathrm{t}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{s} \mathrm{c}\mathrm{u}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{s} \mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}
\end{array}\right.
flow into p_{m},

flow into p_{m},

where v is a turning point where the Stokes curve in question emanates. If a WKB

solution has an exponentially small phase on a Stokes curve, then the Borel sum of the

WKB solution is well‐defined even if z lies on the Stokes curve ([27, Theorem 2.23]).
Therefore, the Borel sum of $\psi$_{m} is well‐defined near p_{m} . We denote it by $\Psi$_{m}(z,  $\eta$) .

Then we have

Theorem4.1. The Borel resummed Voros sym bole^{V_{$\gamma$_{i}}( $\eta$)} for the cycle $\gamma$_{i} has

the following expression:

(4.2) S[e^{V_{$\gamma$_{i}}}] =-\displaystyle \frac{\mathrm{W}\mathrm{r}[$\Psi$_{1},$\Psi$_{2}]\mathrm{W}\mathrm{r}[$\Psi$_{3},$\Psi$_{4}]}{\mathrm{W}\mathrm{r}[$\Psi$_{2},$\Psi$_{3}]\mathrm{W}\mathrm{r}[$\Psi$_{4},$\Psi$_{1}]}.
Here \mathrm{W}\mathrm{r}[$\Psi$_{k}, $\Psi$_{m}] is the Wronskian of Borel resummed WKB solutions (evaluated at a

point in z_{*} in Quadi):

(4.3) Wr [$\Psi$_{k}, $\Psi$_{m}] =$\Psi$_{k}(z,  $\eta$)\displaystyle \frac{d$\Psi$_{m}}{dz}(z,  $\eta$)-\frac{d$\Psi$_{k}}{dz}(z,  $\eta$)$\Psi$_{m}(z,  $\eta$) .
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Note that the right hand‐side of (4.2) is independent of z since the Wronskians are

independent of z . We give a proof of Theorem 4.1 in the rest of this subsection. Our

proof is based on the Voros� connection formula [32].

Proof. To specify the situation, we assume that the branch of \sqrt{Q(z)} on the first

sheet is chosen so that

(4.4) $\psi$_{1} =$\psi$_{-}, $\psi$_{2}=$\psi$_{-}, $\psi$_{3}= $\psi$+, $\psi$_{4}= $\psi$+\cdot

Note that {\rm Re}\displaystyle \int_{v}^{z}\sqrt{Q(z)}dz has different signs on adjacent Stokes curves emanating from

a turning point v if no branch cut runs between the two Stokes curves. Then, the cycle

$\gamma$_{i} has the orientation shown in Figure 5. Our proof proceeds when the branch is chosen

differently.

First, we note that the right‐hand side of (4.2) is independent of the normalization

(i.e., the choice of the lower end‐point in (2.2)) of each WKB solution $\psi$_{m} . Therefore,
to evaluate (4.2), we can chose the following special normalizations:

(4.5) $\psi$_{1} =$\psi$_{-,v_{a}}, $\psi$_{2}=$\psi$_{-,v_{a}}, $\psi$_{3}=$\psi$_{+,v_{b}}, $\psi$_{4}=$\psi$_{+,v_{b}}.

Here v_{a} and v_{b} are turning points in Quadi (specified in Figure 5), and $\psi$_{\pm,v} is the

WKB solution defined by choosing the lower end point z_{0} in (2.2) at a turning point v

(see [27, Section 2]). At the level of formal series, simple computations show that the

Wronskians for these WKB solutions are given by

(4.6) Wr [$\psi$_{+,v_{a}}, $\psi$_{-,v_{a}}] =\mathrm{W}\mathrm{r}[ $\psi$+,v_{b}, $\psi$_{-,v_{b}}] =-2,

(4.7) Wr [$\psi$_{+,v_{a}}, $\psi$_{-,v_{b}}] =-2\displaystyle \exp(\frac{1}{2}V_{$\gamma$_{i}}) ,

(4.8) Wr [$\psi$_{+,v_{b}}, $\psi$_{-,v_{a}}] =-2\displaystyle \exp(-\frac{1}{2}V_{$\gamma$_{i}})
For example,

Wr [$\psi$_{+,v_{a}}, $\psi$_{-,v_{b}}]

= (-S_{\mathrm{o}\mathrm{d}\mathrm{d}} - \displaystyle \frac{1}{2S_{\mathrm{o}\mathrm{d}\mathrm{d}}}\frac{dS_{\mathrm{o}\mathrm{d}\mathrm{d}}}{dz}) $\psi$_{+,v_{a}}$\psi$_{-,v_{b}} - (+S_{\mathrm{o}\mathrm{d}\mathrm{d}} - \frac{1}{2S_{\mathrm{o}\mathrm{d}\mathrm{d}}}\frac{dS_{\mathrm{o}\mathrm{d}\mathrm{d}}}{dz}) $\psi$_{+,v_{a}}$\psi$_{-,v_{b}}
= -2\displaystyle \exp (\int_{v_{a}}^{v_{b}} S_{\mathrm{o}\mathrm{d}\mathrm{d}}dz) = -2\exp (\frac{1}{2} \oint_{$\gamma$_{i}} S_{\mathrm{o}\mathrm{d}\mathrm{d}}dz) :

On the other hand, the Voros� connection formula relates the Borel sums of WKB

solutions on Stokes curves if the lower end‐points z_{0} in (2.2) are chosen at a turning

point ([32, Section 6]; see also [27, Theorem 2.23]). The resulting formula shows that

$\Psi$_{m} �s are evaluated on D_{i} as

(4.9) $\Psi$_{1} =$\Psi$_{-,v_{a}}^{D_{i}}, $\Psi$_{2}=$\Psi$_{-,v_{a}}^{D_{i}}+i$\Psi$_{+,v_{a}}^{D_{i}}, $\Psi$_{3}=$\Psi$_{+,v_{b}}^{D_{i}}, $\Psi$_{4}=$\Psi$_{+,v_{b}}^{D_{i}}+i$\Psi$_{-,v_{b}}^{D_{i}}.
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Here $\Psi$_{\pm,v}^{D_{i}} is the Borel sum of the WKB solution $\psi$_{\pm,v} defined on the Stokes region D_{i}.

Since the Borel resummation commutes with the operation such as sum, multiplication
and differentiation with respect to z

,
the desired formula (4.2) follows from (4.6), (4.7),

(4.8) and (4.9). This completes the proof of Theorem 4.1. \square 

Theorem 4.1 gives another proof of (3.9) in Theorem 3.1. That is, the transfor‐

mation law (3.9) for the Borel resummed Voros symbols S[e^{V_{$\gamma$_{i}}}] are nothing but the

Plücker relation for Wronskians:

(4.10)
\mathrm{W}\mathrm{r}[$\Psi$_{m_{1}}, $\Psi$_{m_{2}}]\mathrm{W}\mathrm{r}[$\Psi$_{m_{3}}, $\Psi$_{m_{4}}] =\mathrm{W}\mathrm{r}[$\Psi$_{m_{1}}, $\Psi$_{m_{3}}]\mathrm{W}\mathrm{r}[$\Psi$_{m_{2}}, $\Psi$_{m_{4}}]+\mathrm{W}\mathrm{r}[$\Psi$_{m_{1}}, $\Psi$_{m_{4}}]\mathrm{W}\mathrm{r}[$\Psi$_{m_{3}}, $\Psi$_{m_{2}}].

Here $\Psi$_{m_{i}} �s are any solutions of the Schrödinger equation (2.1).
This idea (i.e., cluster \hat{y}‐variable = cross‐ratio of Wronskians) is due to [18]. In

fact, the above expression (4.2) of cluster \hat{y}‐variables is the same as the Fock‐Goncharov

coordinate (\mathrm{c}.\mathrm{f}. , [13] ) ,
as we will see in the next subsection.

§4.2. Fock‐Goncharov coordinates

Here we briefly explain a part of the work [18] of Gaiotto, Moore and Neitzke.

Based on some physical motivations, [18] constructs cluster \hat{y}‐variables in terms

of solutions of a differential equation (or flat sections) using a combinatorics of Stokes

graphs. The flat SL(2, \mathbb{C}) ‐connection they discussed contains parameters  $\zeta$ \in \mathbb{C}^{\times} and

R>0 ,
and takes the form

(4.11) \displaystyle \mathcal{A}:= \frac{R}{ $\zeta$} $\varphi$+D+R $\zeta$\overline{ $\varphi$},
where D:=D_{z}dz+D_{\overline{z}}d\overline{z} and  $\varphi$ :=$\varphi$_{z}dz are traceless 2\times 2 matrix‐valued meromorphic
1‐form on \mathbb{P}^{1} (and satisfy Hitchin equations [22]), an \mathrm{d}^{-} denotes the Hermitian conjugate.

Therefore, unlike the previous sections, the differential equation for flat sections of \mathcal{A}

contains an anti‐holomorphic part.

The Stokes graph (in the WKB analysis for  $\zeta$ \rightarrow  0 ) of the flat connection \mathcal{A} is

defined by the quadratic differential \det $\varphi$ as well as Definition 2.1. Assume that the

quadratic differential \det $\varphi$ has only simple zeros, and the Stokes graph is saddle‐free.

Then we can consider the triangulated surface as in Section 3.1. Let Quadi,  p_{1} , :::, p_{4}

are the same as in the Section 4.1. Then, the cluster \hat{y}‐variable constructed in [18] is

given by

(4.12) \displaystyle \mathcal{X}_{$\gamma$_{i}} :=-\frac{(s_{1}\wedge s_{2})(s_{3}\wedge s_{4})}{(s_{2}\wedge s_{3})(s_{4}\wedge s_{1})}.
Here s_{m} is a flat section (i.e., (d+\mathcal{A})s_{m} = 0 ) specified by its behavior when z \rightarrow p_{m}

by the similar rule as (4.1), and all s_{m} in (4.12) are evaluated at a point z_{*} in Quadi.
Since \mathcal{A} is traceless, \mathcal{X}_{$\gamma$_{i}} doesn�t depend on z_{*}.
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This is called the Fock‐Goncharov coordinate of the moduli space of flat SL(2, \mathbb{C})-
connections (c.f., [13]). The Fock‐Goncharov coordinates depend on the topology of

the Stokes graph, and it is shown in [18, Section 7.6.1] that, under the mutation of the

Stokes graph, they transform as cluster \hat{y}‐variables.

The Fock‐Goncharov coordinates contain an anti‐holomorphic part; it depends on

the complex conjugate of parameters contained in  $\varphi$ . Thus, our Voros symbols  e^{V_{$\gamma$_{i}}} of

the Schrödinger equation are holomorphic analogue of the Fock‐Goncharov coordinates

\mathcal{X}_{$\gamma$_{i}} of [18]. It is observed in [16] that a Schrödinger equation of the form (2.1) appears

as a limit (R,  $\zeta$ \rightarrow  0 ,
with fixed  R/ $\zeta$ =  $\eta$ ) of the flat connection \mathcal{A} . The limit is

called conformal limit. We expect that, if the conformal limit of the Fock‐Goncharov

coordinates exists, they give our Voros symbols.
The Fock‐Goncharov coordinates of [18] play important roles in their analysis of

the wall‐crossing formulas for BPS spectrum of four‐dimensional field theory (c.f., [29]),
that is the main focus of [18]. The wall‐crossing formulas can be recognized as identities

of (compositions of) cluster transformations acting on the Fock‐Goncharov coordinates

(the equality (3.10) is an example of the wall‐crossing formula). This is expected to be

an isomonodromic property for the Stokes factors of the Fock‐Goncharov coordinates

(c.f., [8, 12, 17]). It seems to be interesting to analyze the isomondromic property and

wall‐crossing phenomenon from the view point of the exact WKB analysis.

Remark 4.2. In the exact WKB analysis for higher order differential equations,
the configuration of Stokes graph becomes more complicated; we need to consider virtual

turning points and new Stokes curves (see [2, 4, 23]). Interestingly, the same notion of

Stokes graphs for higher order equations also appears in the work of Gaiotto, Moore

and Neitzke [20, 21] in the study of BPS spectrum for four‐dimensional field theories

specified by higher rank group. They call the graph spectral network. Moreover, the 2d‐

4d wall‐crossing discussed in [19, 20] seems to be closely related to the Stokes phenomena

occurring to WKB solutions. It also seems to be interesting to relate these works and

the exact WKB analysis.
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