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Critical Ground Motion for Resilient
Building Design Considering
Uncertainty of Fault Rupture Slip
Koki Makita, Kyoichiro Kondo and Izuru Takewaki*

Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan

The process of theoretical ground motion generation consists of (i) the fault rupture

process, (ii) the wave propagation from the fault to the earthquake bedrock, (iii) the

site amplification. The uncertainty in the site amplification was taken into account in the

previous research (Makita et al., 2018). On the other hand, the uncertainty in the fault

rupture slip (slip distribution and rupture front) is dealt with in the present paper. The

wave propagation from the fault to the earthquake bedrock is expressed here by the

stochastic Green’s function method in which the Fourier amplitude of the ground motion

at the earthquake bedrock from a fault element is represented by the Boore’s model and

the phase angle is modeled by the phase difference method. The validity of the proposed

method is investigated through the comparison with the existing simulation result by

other methods. By using the proposed method for ground motion generation and for

optimization under uncertainty in the fault rupture slip, a methodology is presented for

deriving the critical ground motion imposing the maximum response of an elastic SDOF

model at the earthquake bedrock or at the free ground surface. It is shown that the

critical response exhibits the SDOF response several times larger than that due to the

average fault rupture slip model. Furthermore, the robustness evaluation with respect

to the uncertain fault rupture slip and the uncertain fault rupture front is presented for

resilient building design. Since the critical ground motion produces the most detrimental

building response among possible scenarios, the proposed method can be a reliable tool

for resilient building design.

Keywords: critical ground motion, worst input, stochastic Green’s function method, fault rupture, wave

propagation, phase difference, site amplification, resilience

INTRODUCTION

Many peculiar earthquake ground motions have been observed in the world, e.g., Mexico (1985),
Northridge (1994), Kobe (1995), Chi-chi (1999), Tohoku (2011), Kumamoto (2016). To model
these ground motions from their occurrence mechanisms, several models have been proposed.
The whole process of ground motion generation consists of (i) the fault rupture process, (ii) the
wave propagation from fault to the earthquake bedrock, (iii) the site amplification. These models
can be classified generally into the theoretical approach, the numerical analysis approach, the
semi-empirical approach and the hybrid approach. In the theoretical approach and the numerical
analysis approach, the wavenumber integration method and the finite difference method are the
representatives and are suitable for the generation of directivity pulses and surface waves with the
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predominant period longer than 1–2 s (Bouchon, 1981; Hisada
and Bielak, 2003; Yoshimura et al., 2003; Nickman et al., 2013).
On the other hand, the semi-empirical approach is suitable for
the generation of random ground motions with the predominant
period shorter than 1–2 s and can generate a large groundmotion
in terms of small-size ground motions using the scaling law of
fault parameters. The empirical Green’s function (Wennerberg,
1990) and the stochastic Green’s function (Hisada, 2008) are often
used in the semi-empirical approach. The hybrid approach is the
method which combines the random ground motions of shorter
predominant period with the waves of longer predominant
period by using a matching filter.

Although most of the previous approaches of ground motion
generation were aimed at generating ground motions for a
fixed set of parameters, several parameters should be treated as
uncertain numbers (aleatory or epistemic) to make the approach
more reliable (Abrahamson et al., 1998; Lawrence Livermore
National Laboratory, 2002; Morikawa et al., 2008; Cotton et al.,
2013).

As for researches on the effect of uncertainty of parameters
on response variability, Taniguchi and Takewaki (2015) derived
the bound of earthquake input energy to building structures
by considering shallow and deep ground uncertainties and soil-
structure interaction. Okada et al. (2016) proposed a new interval
analysis technique for a soil-pile-structure interaction model by
taking into account the uncertainty in soil properties. Makita
et al. (2018) considered a base-isolation, building-connection
hybrid structural system (Murase et al., 2013, 2014; Kasagi et al.,
2016; Fukumoto and Takewaki, 2017) and took into account the
uncertainty in the site amplification. They treated the fault as
a point source. On the other hand, the uncertainty in the fault
rupture slip (slip distribution and rupture front) is dealt with
in the present paper. The wave propagation from the fault to
the earthquake bedrock is expressed by the stochastic Green’s
function method (Irikura, 1986; Yokoi and Irikura, 1991) in
which the Fourier amplitude at the earthquake bedrock from a
fault element is represented by the Boore’s model (Boore, 1983)
and the phase angle is modeled by the phase difference method
(Yamane and Nagahashi, 2008). The validity of the proposed
method is investigated through the comparison with the existing
simulation result by other methods.

By using the proposed method for ground motion generation
and for optimization under uncertainty in the fault rupture slip, a
methodology is presented for deriving the critical groundmotion
causing the maximum response of an elastic SDOF model at
the earthquake bedrock or at the free ground surface (Drenick,
1970; Takewaki, 2007). The uncertainty in the fault rupture slip is
treated by using an interval analysis in which the slip distribution
and rupture front are modeled as interval parameters, i.e., the
parameters in the certain prescribed range can take any value
in a non-probabilistic sense (Ben-Haim, 2006). It is shown
that the critical ground motion imposes the maximum SDOF
response which may be several times larger than that computed
under the average fault rupture slip model. Furthermore, the
robustness evaluation with respect to the uncertain fault rupture
slip and the uncertain fault rupture front is presented for resilient
building design. Since the critical ground motion produces the

worst building response among possible scenarios, the proposed
method can be a reliable tool for resilient building design.

STOCHASTIC GREEN’S FUNCTION
METHOD FOR GROUND MOTION
GENERATION

In a previous research by the authors (Makita et al., 2018), a
point-source model of the fault rupture was assumed and the
fault rupture process could not be taken into account. In this
paper, the stochastic Green’s function method based on a plane-
source model of the fault rupture is introduced. The method will
be explained in the following section.

Ground Motion Generation Using Scaling
Law
The generation of ground motions using the plane-source model
of the fault rupture is conducted by dividing the fault plane
into many fault elements and considering the delay of the
fault element rupture initiation in the fault rupture process.
The stochastic Green’s function method is used for generating
a small ground motion resulting from the rupture of a fault
element.

Assume that the fault plane is divided into NL × NW

fault elements (NL: number of divisions in the longitudinal
direction, NW : number of divisions in the width direction)
and the slip in one fault element is divided into ND slips. It
was made clear by Irikura (1983) that NL, NW , and ND can
be regarded almost equal to the cubic root of the product
of the ratio of the seismic moment M0 L of the whole fault
to the seismic moment M0 S of the fault element and the
ratio of the stress drop 1σS of the fault element to the
stress drop 1σL of the whole fault. In the stochastic Green’s
function method, this scaling law is usually used and is
expressed by

LL

LS
=

WL

WS
=

DL

DS
=

τL

τS
=

(

M0 L

(1σL/1σS )M0 S

)1/3

≈ NL, NW , ND

(1)

where L, W, D, τ denote the fault length, fault width, fault slip,
rise time (fault slip time), respectively, and ( )L, ( )S indicate
the quantity related to the whole fault and that to the fault
element.

When 1σL/1σS = 1, the ground motion displacement
Uij (t) due to one fault element is produced by ND slips uij (t)
and is expressed by

Uij (t) = f (t) ∗ uij (t)

=

ND
∑

k=1

uij

(

t −
(

k− 1
) τij

ND

)

(2)

where ij indicates the ij sub-element in one fault element and τij
is the rise time of the ij sub-element. Furthermore f (t) is the slip
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correction function specifying the initiation of slips in one fault
element and is expressed by

f (t) =

ND
∑

k=1

δ

(

t −
(

k− 1
) τij

ND

)

(3)

where δ(t) is the Dirac delta function. Figure 1A shows the
conventional slip function D(t) and slip correction function f (t).

From these preparations, the ground motion displacement
U (t) due to the whole fault may be expressed by

U (t) =

NW
∑

i=1

NL
∑

j=1

f
(

t − tij
)

∗ uij (t)

=

NW
∑

i=1

NL
∑

j=1

ND
∑

k=1

uij

(

t − tij −
(

k− 1
) τij

ND

)

(4)

In this paper, the slip correction function f (t) revised by Irikura
(1986) and Yokoi and Irikura (1991) is used and is described by

f (t) = δ (t) +
1

n′

(ND−1)n′
∑

k=1

uij

(

t −

(

k− 1
)

τ

(ND − 1) n′

)

(5)

Irikura (1986) introduced the number n′ of re-division to remove
the effect of artificial periodicity due to the equal-size element
division. Figure 1B presents the slip function D(t) and slip
correction function f (t) revised by Irikura (1986) and Yokoi and
Irikura (1991). Irikura (1994) introduced the following constraint
in the setting of n′.

n′ND

τ
> 2fH (6)

where fH is the upper bound of the effective frequency.
Finally the ground motion displacement U (t) due to the

whole fault can be expressed in terms of the ground motion
displacements uij (t) due to the fault elements.

U (t) =

NL
∑

i

NW
∑

j

uij
(

t − tij
)

+

NL
∑

i

NW
∑

j

(ND−1)n′
∑

k

1

n′
uij

(

t − tij −

(

k− 1
)

τ

(ND − 1) n′

)

(7)

The concept of the stochastic Green’s function method used in
the present study is illustrated in Figure 2.

Assuming that the fault rupture develops in a concentrically,
tij can be expressed by

tij = tp ij + tr ij

=
rij

β
+

ηij

Vr
(8)

where tpij: the propagation time from the fault element to the
recording point at the earthquake bedrock, trij: the slip initiation
time in the fault element (the slip initiation time of the initiating
point = 0), rij: the distance from the fault element to the
recording point at the earthquake bedrock, ηij: the distance from
the slip initiation point in the whole fault to the fault element,
β : the shear wave velocity of the ground, Vr : the slip propagation
speed in the fault.

Small Ground Motion From Element Fault
A small ground motion (acceleration) at the earthquake bedrock
due to the slip of a fault element can be derived by setting a
point source at the center of the fault element (Boore, 1983). The
Fourier amplitude spectrum of the ground motion acceleration
at the earthquake bedrock can be expressed by

∣

∣AS ij (ω)
∣

∣ = Source (ω) · Pass (ω) (9)

where Source (ω) is the term related to the source (fault) and
Pass (ω) is the term related to the wave attenuation in the pass
from the fault element to the earthquake bedrock.

In Boore (1983), Source (ω) and Pass (ω) are set as

Source (ω) =
RθφFS · PRTITN

4πρβ3

∣

∣ω2Ṁ (ω)
∣

∣ (10)

Pass (ω) =
1

rij
exp

[

−
π f rij

Q
(

f
)

β

]

(11)

where Rθφ : radiation pattern coefficient, FS: amplification due to
the free surface (=2), PRTITN: reduction factor that accounts for
the partitioning of energy into two horizontal components, ρ :
mass density of earthquake bedrock, β : shear wave velocity of
earthquake bedrock, Q

(

f
)

: Q-value. Furthermore, Ṁ (ω) is the
source spectrum and is expressed by

∣

∣

∣
Ṁ (ω)

(

2π f
)2
∣

∣

∣
=

M0ij

(

2π f
)2

1+
(

f /fc ij
)2
P
(

f , fmax

)

(12)

where M0ij is the seismic moment of the fault element ij and fc ij
is the corner frequency of the fault element ij. P

(

f , fmax

)

is a filter
for reducing the higher frequency components and is expressed
by

P
(

f , fmax

)

=
1

√

1+
(

f /fmax

)m
(13)

where fmax is the cut-off frequency for higher frequency
components andm = 4 is assumed according to Boore (1983).

In this paper, the phase difference method due to Yamane
and Nagahashi (2008) is used for expressing the phase of ground
motion. The standard deviation of the phase difference due to the
fault element ijcan be expressed by

σij/π = 0.06+ 0.0003rij (14)
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FIGURE 1 | Slip function D(t) and slip correction function f (t), (A) Conventional ones, (B) Revised ones by Irikura (1986).

FIGURE 2 | Concept of stochastic Green’s function method used in the present study.

This relation refers to inland earthquakes (Makita et al., 2018).
In this paper, the near-fault ground motion is assumed in which
the effect of the rupture directivity is small. With this standard
deviation of the phase difference, the phase spectrum is described
by

φk+1 ij = φk ij + 1φk ij (k = 1, 2, . . . ,N/2− 1)

1φij = −
(

µ + s · σij
)

(15)

where φk ij is the k-th phase spectrum of the fault element ij
and 1φk ij is the k-th phase difference spectrum of the fault

element ij.N is the number of adopted frequencies. Furthermore,
µ is the mean of the phase difference and s is the Gaussian
random number with 0 mean and unit standard deviation. In
this paper, a constant value of µ is assumed in all the fault
elements.

The Fourier transformASij (ω) of the acceleration aSij (t) at the
earthquake bedrock due to the fault element ij can be expressed
by

AS ij (ω) =
∣

∣AS ij (ω)
∣

∣ · eiφij(ω) (16)
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TABLE 1 | Similarities and differences between this research and benchmark test.

This research Benchmark test

Superimposing method (Irikura, 1986; Yokoi and Irikura, 1991)

Amplitude Boore (1983)

Phase angle Yamane and Nagahashi

(2008)

Boore (1983)

The inverse Fourier transform of AS ij (ω) leads to the
acceleration aS ij (t) at the earthquake bedrock due to the fault
element ij. Finally, the substitution of this aS ij (t) into Equation
(7) (difference of displacement and acceleration does not matter)
provides the acceleration a (t) at the earthquake bedrock due to
the whole fault.

VERIFICATION OF THE METHOD OF
GROUND MOTION GENERATION USING
PHASE DIFFERENCE METHOD

The benchmark test was conducted by Kato et al. (2011) and the
model S21 is used for comparison. The benchmark test uses an
empirical envelope function of acceleration time histories. On
the other hand, the method proposed in this paper employs the
phase difference method for representing the phase. Therefore,
the proposed method was validated against the above benchmark
test. Table 1 shows the similarities and differences between the
proposed method and the method used in the benchmark test.

The fault plane and three recording points for the model
S21 used in the benchmark test Kato et al. (2011) are shown in
Figure 3. The recording points are three points (a), (b), (c). The
fault plane is assumed to be vertical and the fault type is the right-
lateral strike-slip fault. The fault length=8000m, fault width =

4,000m, fault slip quantity = 1m, the seismic moment =M0 =

1.04 × 1018Nm, strike angleθ , dip angle δ and rake angle λ are
(90◦, 90◦, 180◦). The hypocenter is located at (0, 1,000, 4,000m)
and the fault rupture is propagated concentrically with rupture
velocity Vr = 3000(m/s). The hypocenter of each sub-fault is
assumed to be located at the center.

In Somerville et al. (1999), Eshelby (1957), and Brune (1970),
the area S(km2) of the fault, the stress drop 1σ of large
earthquakes and the corner frequency fc are described by the
following equations:

S = 2.23×
(

M0 × 107
)3/2

× 10−15 (17)

1σ =
7

16

M0

R3
× 10−14 (18)

fc = 4.9 · 106Vs

(

1σ

M0

)1/3

(19)

where R(km) is the effective radius (S = πR2). In these equations,
the unit ofVs is km/s, that of1σ is bar and that ofM0 is dyne-cm.

From Equations (17–19), 1σ = 13.95(Mpa) and fc =

0.404(Hz) are calculated, then τ = 2/fc ≈ 5.0(s) is set from
Boore (1983). The soil conditions are summarized in Table 2

and the amplification of the ground motion is evaluated by
one-dimensional wave propagation theory.

The fault plane is divided into NW × NL elements. NW = 4 is
set in the fault width direction andNL = 8 is set in the fault length
direction. The area of sub-fault is SS = 1 (km2). The seismic
moment in each fault element (M0S) is 5.40 × 1015Nm and the
stress drop (1σS) is assumed to be 13.95(Mpa). The slip DS of
each sub-fault is 0.167(m) from M0S = µSSDS and ND = 6
from the ratio of fault plane to sub-fault (1/0.167m). Thus the
seismicmoment after superimposing the small earthquakes (M0

′)
is calculated as M0

′ = NW · NL · ND · M0S ≈ 1.04 × 1018(Nm),
which is the same as M0. The corner frequency (fcS) is 2.33Hz
from Equation (19) and the radiation pattern (Rθφ) is set to 0.63,
which is a uniform value in the frequency domain. As for the
phase angle, the standard deviation of phase differences (σij/π )
are calculated from Equation (14) and its meanµ/π in each point
is set to −0.140 at Point (a), −0.125 at Point (b) and −0.130 at
Point (c). Regarding the horizontal component of superimposing
wave, only the SH wave is generated by setting PRRITEN to
1 for simplification. Each small earthquake is generated by
disassembling into the NS direction component and the EW
direction component. Table 3 summarizes the source parameters
of the fault plane and sub-faults.

As described above, the amplification of ground motion at
the above control points of the soil surface is evaluated by one-
dimensional wave propagation theory. In this model, the number
of layer is one and the transfer function for describing ground
amplification is defined by the following equation:

HG (ω) =
1

cos kH + iα sin kH
(20)

where k, H, and α are the complex wave number, the thickness
of layer and the complex impedance, defined by the following
equations:

k = ω
√

ρ/G∗, G∗
= (1+ 2ξ i)G, α =

√

ρ1G1
∗/
√

ρ2G2
∗ (21)

G and G∗ are the shear modulus and the complex shear modulus.
Furthermore ξ is the hysteretic damping ratio of soil. In the
benchmark test, ξ =0 is given. It is noted that, since the radiation
damping is taken into account at the earthquake bedrock, the
amplification divergence does not occur.

Figure 4 shows the comparison between the proposedmethod
and the abovementioned benchmark test (Kato et al., 2011). The
upper one in Figure 4 presents the acceleration at the free ground
surface at three points. The lower one in Figure 4 illustrates the
pseudo velocity response spectrum. The numbers 1, 2, 3 in figure
legend indicate the difference of uniform random numbers for
phase angles in Hisada (Kato et al., 2011) and the difference of
Gaussian random numbers for phase difference (Equation 15) in
Makita et al. (2018). It can be observed from these figures that,
while the acceleration time histories exhibit somewhat different
properties, especially in its envelope, the pseudo velocity response
spectra of both approaches correspond fairly well. This result
supports the validity of the method used in this paper. A less-
damped response (acceleration time history) by the proposed
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FIGURE 3 | Fault plane and three recording points replotted based on Kato et al. (2011).

TABLE 2 | Soil conditions.

Layer Thickness

H (m)

Shear wave

velocity Vs (m/s)

Mass

densityρ (kg/m3)

Q-value

Q (−)

1 1,000 2,000 2,600 —

2 (half-space) — 3,464 2,700 70f1.0

method with respect to the benchmark test case may result from
the fact that, while an envelope function is used in the benchmark
test, such function is not used in the proposed method. However,
such difference does not cause serious difference in the structural
response because the envelope function influences only the initial
and ending parts of acceleration time histories with slight effect
on the maximum structural response.

CRITICAL FAULT RUPTURE SLIP
MAXIMIZING THE STRUCTURAL
RESPONSE

Concept of Critical Setting of Fault Rupture
Slip Distribution and Fault Rupture Front
Maximizing the Structural Response at the
Earthquake Bedrock and Free-Ground
Surface
The soil model and the fault model treated in section Verification
of the Method of Ground Motion Generation Using Phase
Difference Method (Tables 2, 3) are used again in this section.
Although the soil model used in this section (the same as in the
benchmark test) seems rather simple, it is noted that the principal
objective of this paper is to pay attention to the influence of
the fault rupture process on the response of structures on the
surface ground. More detailed examination of the effect of the
soil properties above the earthquake bedrock will be made in the
future as discussed in the previous paper (Makita et al., 2018).

Figure 5 presents the conceptual diagram of the critical setting
of the fault rupture slip distributionDij and the fault rupture front

TABLE 3 | Source parameters.

SCALING PARAMETERS

Along the fault width direction NW 4

Along the fault length direction NL 8

Along the slip ND 6

FAULT PARAMETERS FAULT ELEMENT PARAMETERS

Fault length W 4 km Area of fault element SS 1 km2

Fault width L 8 km Seismic moment M0S 5.40× 1015 Nm

Area of fault plane S 32 km2 Slip DS 0.167 m

Earthquake focal depth 4 km Stress drop △ σS 13.95 Mpa

Seismic moment M0 1.04× 1018Nm Radiation pattern Rθφ 0.63

Slip D 1 m Cutoff frequency fm 6 Hz

Stress drop △ σL 13.95 Mpa – –

Rupture velocity Vr 3000 m/s – –

maximizing the structural response at the earthquake bedrock
and free-ground surface (Case A: elastic SDOF model at the
earthquake bedrock, Case B: elastic SDOF model at free-ground
surface). T is the natural period of the SDOF model and h is the
damping ratio. The fault rupture front includes the fault rupture
initiation time trij (related to the rupture propagation velocity in
the fault) and the rise time τij of the slip in each fault element.
More specifically, trij and τij are treated as independent uncertain
parameters in the latter uncertainty modeling. The uncertainty in
the fault rupture slip distribution (quantity of slip) for the fixed
fault rupture front (concentrically) is treated in section Critical
Setting of Fault Rupture Slip Distribution and the uncertainty
in the fault rupture front (trij and τij) for the fixed fault rupture
slip distribution is dealt with in section Critical Setting of Fault
Rupture Front.

A genetic algorithm (GA) has been used for optimization
(Goldberg, 1989), i.e., the maximization of the response for
uncertain parameters. In this paper, a candidatemodel of the fault
rupture slip distribution or the fault rupture front are treated
as chromosomes, and the parameters of each fault element
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FIGURE 4 | Comparison between the result due to the present method and the result due to the benchmark test [partly from Kato et al. (2011)].

are treated as genes. First, we generate a number of candidate
models (first generation), in which fault parameters are changed
randomly. Then, we evaluate these models and generate the
next generation by selecting elite individuals, do mutation and
conduct crossover. In this GA, the Elitist expected value model
is used in which the population size is 200, the number of elite
individuals is 2 and the probability of crossover is 0.8. It is noted
that global and local search of the optimal solution is possible
via GA.

Critical Setting of Fault Rupture Slip
Distribution
The quantities of the fault rupture slip in fault elements
are selected as uncertain parameters. The fault rupture
initiation time trij and the rise time τij of the slip in
each fault element are fixed to the nominal values in
this section, i.e., the fault rupture develops from the

initiation point concentrically. The ( )C denotes the
nominal value and α is the uncertain parameter. The
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FIGURE 5 | Conceptual diagram of critical setting of fault rupture slip distribution and fault rupture front maximizing the structural response at the earthquake bedrock

and free-ground surface (Case A: SDOF model at the earthquake bedrock, Case B: SDOF model at free-ground surface).

TABLE 4 | Parameters of interval analysis.

DC
ij

0.167 (m) α 30 (%)

1 D 0.167 (m) 1D 0.167 (m)

interval parameters of the fault rupture slip can be
expressed by

DI
=

{[

Dij
C
− α1D–

ij
,Dij

C
+ α1D̄ij

]}

(

i = 1, · · ·NW , j = 1, · · ·NL

)

(22)

The over-bar indicates the upper-side value and the under-bar
does the lower-side value. The parameters of the interval analysis
are shown in Table 4.

In this section, the quantities of the fault rupture slip in
fault elements are varying in accordance with the following
condition.

DI
= [Dc

− α1D– Dc
+ α1D̄]

= [0.167(m)− 0.3× 0.167(m) 0.167(m)+ 0.3× 0.167(m)]

= [0.117(m) 0.217(m)] (23)

Furthermore, the rise time is set to τ = W/(2Vr) = 0.67s from
Day (1982) because τ = 5.0s is too long in this model as shown
in Kato et al. (2011).

Time–History of Wave
Figure 6 shows the critical ground surface acceleration and
deformation of the SDOF model (T = 0.5 s) at three points for
Case A (earthquake bedrock motion) and Case B (free-ground
surface motion) with respect to uncertain fault rupture slip
distribution. Furthermore, Figure 7 presents the critical ground
surface acceleration and deformation of SDOF model (T=1.0,
2.0 s) at three points for Case A (earthquake bedrockmotion) and
Case B (free-ground surface motion).

It can be observed from Figures 6, 7 that the amplification of
the ground motion acceleration and the deformation response of
the SDOF model of T = 0.5, 1.0 s is larger than those of T =

2.0 s. This means that the effect of the criticality in the uncertainty
of the fault rupture slip is larger in the model of shorter natural
periods T = 0.5, 1.0 s. In other words, the deviation of structural
response between the critical and the nominal case is larger for
the natural periods of the SDOF model at T = 0.5 s and T = 1.0 s
compared to the case where T = 2.0 s.

Fourier Amplitude Spectrum
Figure 8 shows the Fourier amplitude of critical ground-surface
acceleration at three points for three SDOF models (T = 0.5, 1.0,
2.0 s) for Case A (earthquake bedrock motion) and Case B (free-
ground surface motion). The broken line indicates the natural
frequency of the SDOFmodel. It can be observed that the Fourier
amplitude of critical ground-surface acceleration is amplified
much around the natural frequency of the SDOF model. This
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FIGURE 6 | Critical ground surface acceleration and deformation of SDOF model (T = 0.5 s) at three points for Case A (earthquake bedrock motion) and Case B

(free-ground surface motion).

phenomenon is remarkable in the SDOF model of T = 0.5 s at
Point (c). It may be concluded that the critical setting of the
fault rupture slip quantity makes the SDOF model resonant to
the input.

Phase Difference Distribution
Figure 9 presents the phase difference distribution of critical
ground-surface acceleration at three points for three SDOF
models (T = 0.5, 1.0, 2.0 s) for Case A (earthquake bedrock
motion) and Case B (free-ground surface motion). It can be seen
that the standard deviation σ/π at Point (c) is the smallest and
that at Point (a) is the largest. This may be related to the forward
directivity effect. Furthermore σ/π of the critical model is larger
than that of the nominal model at Point (b) and that is smaller
than that of the nominal model at Point (c) except (i) of Case B.
In addition,µ/π of the critical model becomes larger than that of
the nominalmodel. Thismeans that the critical setting of the fault
rupture slip quantity makes the acceleration time history delayed.

Fault Rupture Slip Distribution
Figure 10 illustrates the fault rupture slip distribution
maximizing the response of the three SDOF models (T = 0.5,

1.0, 2.0 s) at three points for Case A (earthquake bedrock
motion) and Case B (free-ground surface motion). The
seismic moment is indicated at the top of the figures. It
can be observed that the seismic moment of the critical
fault rupture distribution exhibits a value close to the value
for the nominal model M0 = 1.04 × 1018Nm. It can also
be seen that the critical fault rupture distributions are
different in Case A and Case B. This may be because the
site amplification is included in Case B in the process of
criticality.

Figure 11A shows wave superimposing time tij (from the
fault rupture initiation in the fault to the arrival at the
earthquake bedrock) for each fault element at three points and
Figure 11B presents the grouping of fault elements with large
slip maximizing the response of two SDOF models (T = 1.0,
2.0 s) at three points for Case B (free-ground surface motion).
The triangle in Figure 11A indicates the rupture initiation
point and the numbers above Figure 11B indicate the mean
of wave superimposing time tij at grouping fault elements.
It can be observed from Figure 11B that the mean of wave
superimposing time tij at grouping fault elements is slightly
shorter than the natural period of the SDOF model. This
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FIGURE 7 | Critical ground surface acceleration and deformation of SDOF model (T = 1.0, 2.0 s) at three points for Case A (earthquake bedrock motion) and Case B

(free-ground surface motion).
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FIGURE 8 | Fourier amplitude of critical ground-surface acceleration at three points for three SDOF models (T = 0.5, 1.0, 2.0 s) for Case A (earthquake bedrock

motion) and Case B (free-ground surface motion).

may lead to the fact that the acceleration input reflecting the
critical fault rupture slip distribution contains the component
resonant to the natural period of the SDOF model and amplifies
the structural response. In other words, the Fourier amplitude
spectrum at the ground surface is amplified in the frequency
range of the critical mean of wave superimposing time at
grouping fault elements resonant to the natural period of
the SDOF model. In addition, the slip of the fault element
with the wave superimposing time of 3.71 s becomes large
and this may induce a pulse-type wave. Furthermore, the slip
distribution in Figure 11B may be regarded as an asperity
distribution and this distribution can be used as a tool for
setting an asperity in the characteristic model of the fault
rupture.

Critical Setting of Fault Rupture Front
The fault rupture initiation time trij and the rise time τij of the
slip in each fault element are selected as uncertain parameters.
The quantities of the fault rupture slip in fault elements are fixed

to the nominal values in this section. ( )C denotes the nominal
value and α is the uncertain parameter. The interval parameters
of the fault rupture initiation time and the rise time of the slip can
be expressed by

tr
I
=

{[

tr ij
C
− α1t–

rij
, trij

C
+ α1t̄rij

]}

(

i = 1, · · ·NW , j = 1, · · ·NL

)

(24)

τr
I
=

{[

τij
C
− α1τ–

ij
, τij

C
+ α1τ̄ij

]}

(

i = 1, · · ·NW , j = 1, · · ·NL

)

(25)

Frontiers in Built Environment | www.frontiersin.org 11 November 2018 | Volume 4 | Article 64

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Makita et al. Uncertainty in Fault Rupture Slip

FIGURE 9 | Phase difference distribution of critical ground-surface acceleration at three points for three SDOF models (T = 0.5, 1.0, 2.0 s) for Case A (earthquake

bedrock motion) and Case B (free-ground surface motion).
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FIGURE 10 | Critical fault rupture slip distribution for three SDOF models (T = 0.5, 1.0, 2.0 s) at three points for Case A (earthquake bedrock motion) and Case B

(free-ground surface motion).
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FIGURE 11 | Wave superimposing time tij for each fault element and grouping of fault elements with large slip, (A) Wave superimposing time for each fault element at

three points for Case A and Case B, (B) Grouping of fault elements with large slip maximizing the response of two SDOF models (T = 1.0, 2.0 s) at three points for

Case B (free-ground surface motion).

where

1t–
r ij

= tr ij
C, 1t̄r ij = tr ij

C

1τ–
ij
= 1τ– = τij

C, 1τ̄ij = 1τ̄ = τij
C (26)

As explained before, the over-bar indicates the upper-side value
and the under-bar does the lower-side value. Furthermore 1( )
indicates the parameter for normalization of variation. The
parameters for interval analysis is shown in Table 5.

Time–History
Figure 12 presents the critical ground surface acceleration and
deformation of three SDOF models (T = 0.5, 1.0, 2.0 s) at three
points for Case B (free-ground surface motion) with respect to
uncertain fault rupture front. It can be observed that the critical

TABLE 5 | Parameters of interval analysis.

tr ij
C Concentrically distributed

α 30 (%)

1tr ij tr ij
C

1tr ij tr ij
C

τij
C 0.67 (s)

α 30 (%)

1 τ 0.67 (s)

1τ 0.67 (s)

acceleration record at Point (c) is amplified much as a pulse-type
one and those at Point (a) and (b) are also amplified largely.
It can also be seen that, while the uncertainty in the quantity
of the fault rupture slip increases the response for the nominal
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FIGURE 12 | Critical ground surface acceleration and deformation of three SDOF models (T = 0.5, 1.0, 2.0 s) at three points for Case B (free-ground surface motion)

with respect to uncertain fault rupture front.

parameters up to about two times as observed in the previous
figures, the uncertainty in the rupture propagation velocity in the
fault and the rise time of the slip amplifies the response several
times. This phenomenon is remarkable in the model of T = 0.5,
1.0 s. However, this is less obvious for T = 2.0 s at Point (c).

Fourier Amplitude of Ground-Surface
Acceleration
Figure 13A presents the Fourier amplitude of ground-surface
acceleration at three points maximized for fault rupture front
for three SDOF models (T = 0.5, 1.0, 2.0 s) and Case B
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FIGURE 13 | Critical ground surface acceleration at three points with respect to uncertain fault rupture front for three SDOF models (T = 0.5, 1.0, 2.0 s) and Case B

(free-ground surface motion), (A) Fourier amplitude, (B) Phase difference distribution.
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FIGURE 14 | Critical fault rupture front obtained for three points and three SDOF models (T = 0.5, 1.0, 2.0 s) corresponding to Case B (free-ground surface motion),

(A) wave superimposing time tij at each fault element, (B) Rise time τij at each fault element.
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FIGURE 15 | Robustness function with respect to deformation of three SDOF models (T = 0.5, 1.0, 2.0 s) at three points corresponding to Case B (free-ground

surface motion), (A) Uncertain quantity of fault rupture slip, (B) Uncertain quantity of fault rupture front.

(maximization for free-ground surface motion). The broken
line indicates the natural frequency of the SDOF model. It can
be observed that, as seen in the case of the uncertainty in
the fault rupture slip, the Fourier amplitude of ground-surface
acceleration is amplified much around the natural frequency of
the SDOF model. This phenomenon is remarkable at Point (c)
and this may be related to the fact that the critical acceleration
record at Point (c) is amplified much as a pulse-type one
in Figure 12. Furthermore, the amplification is larger than
that considering the uncertainty in the quantity of the fault
rupture slip. It should be remarked that the natural period
of the SDOF model does not coincide with the amplified
range of the Fourier amplitude for the model T = 2.0s at
Point (c). This may cause the lower response amplification of
the model T = 2.0s at Point (c) in Figure 12(iii) than other
models.

Phase Difference Distribution
Figure 13B shows the phase difference distribution of ground-
surface acceleration at three points maximized for fault rupture

front for three SDOF models (T = 0.5, 1.0, 2.0 s) and Case B
(free-ground surface motion). It can be seen that the standard
deviation σ/π of the critical one is larger than that of the
nominal one. On the other hand, the standard deviation σ/π

of the critical one becomes smaller than that of the nominal
one at Point (c). It may result from the fact that, while
the duration time at Point (a) and (b) becomes longer, the
duration at Point (c) becomes shorter as a result of pulse-
type ground motion. In addition, µ/π becomes larger as a
result of criticalization of the rupture front (the uncertainty
in the rupture propagation velocity in the fault and the rise
time of the slip). This phenomenon was also observed in
considering the uncertainty in the quantity of the fault rupture
slip.

Critical Fault Rupture Front
Figure 14 presents the wave superimposing time tij (from the
fault rupture initiation in the fault to the arrival at the earthquake
bedrock) at each fault element and the rise time τij at each fault
element characterizing the critical fault rupture front maximized
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for three points and three SDOF models (T = 0.5, 1.0, 2.0 s)
corresponding to Case B (free-ground surface motion). The
triangle in Figure 14 indicates the rupture initiation point. It
can be observed from Figure 14A that the fault element rupture
occurs in a concentrated manner corresponding to the time
interval of the natural period of the SDOF model. In addition,
the rupture directivity effect can be observed in the model of T =

1.0, 2.0 s at Point (c) and it may be related to the fact that the
pulse-type input induces larger responses. Furthermore, it can be
observed from Figure 14B that, while the rate of τij around the
nominal value is large in the model of T = 0.5 s, τij moves to
the lower limit around τij = 0.47–0.49 s in the model of T = 1.0,
2.0 s.

Robustness Evaluation for Uncertain Fault
Rupture Slip Distribution and Uncertain
Fault Rupture Front
Figure 15A shows the robustness function α̂, proposed by Ben-
Haim (2006), with respect to the deformation of the SDOF
model for uncertain parameters of quantity of fault rupture
slip for Case (B). Once the value α̂ in the vertical axis is
fixed, the corresponding deformation of the SDOF model in
the horizontal axis indicates the maximum value for varied
uncertain parameters (quantity of fault rupture slip) prescribed
by α̂. In particular, the deformation of the SDOF model for
α̂ = 0 indicates the maximum response for the nominal
parameters. It can be observed that the robustness becomes
the smallest for the model at Point (b). This is because the
response of the SDOF model is the largest at Point (b). The
slope of the robustness function indicates the degree of the
robustness. As the slope becomes steeper, the model becomes
more robust.

Figure 15B presents the robustness function α̂ with respect to
the deformation of the SDOF model for uncertain parameters
of fault rupture front (slip initiation time and rise time) for
Case (B). Once the value α̂ in the vertical axis is fixed,
the corresponding deformation of the SDOF model in the
horizontal axis indicates the maximum value for varied uncertain
parameters (slip initiation time and rise time) prescribed by α̂.
It can be observed that the robustness becomes the smallest for
the model at Point (b) as in Figure 15A. Compared to the case
in Figure 15A, the slope of the robustness function becomes
small.

Since the robustness is closely related to the resilience, the
presented method using the robustness function seems useful
for the evaluation of resilience of buildings against uncertain
fault rupture slip distribution and uncertain fault rupture
front.

CONCLUSIONS

To promote a new methodology for resilient building design,
a critical excitation method has been proposed in which the
whole process of theoretical groundmotion generation is treated.

The process consists of (i) the fault rupture process, (ii) the
wave propagation from the fault to the earthquake bedrock,
(iii) the site amplification. The uncertainty in the fault rupture
slip has been dealt with in the present paper, i.e., the quantity
of the fault rupture slip, the rupture propagation velocity in
the fault and the rise time of the slip. The wave propagation
from the fault to the earthquake bedrock has been expressed
by the stochastic Green’s function method in which the Fourier
amplitude at the earthquake bedrock from a fault element has
been represented by the Boore’s model and the phase angle
has been modeled by the phase difference method. The validity
of the proposed method has been investigated through the
comparison with the existing simulation result by other methods
incorporating the empirical envelope function of acceleration
time histories. By using the proposed method for ground motion
generation and for optimization under uncertainty in the fault
rupture slip, a methodology has been presented for deriving
the critical ground motion causing the maximum response
of an elastic SDOF model at the earthquake bedrock or at
the free ground surface. A genetic algorithm (GA) has been
used for optimization, i.e., the maximization of the response
for uncertain parameters. The following conclusions have been
derived.

(1) While the uncertainty in the quantity of the fault rupture
slip increases the response for the nominal parameters up to
about two times, the uncertainty in the rupture propagation
velocity in the fault and the rise time of the slip amplifies the
response up to 1.7–8.0 times.

(2) The response at the epicenter becomes larger than that at
other recording point.

(3) The setting of the objective function for criticality, i.e.,
the maximum response of an elastic SDOF model at the
earthquake bedrock or at the free ground surface, does not
affect largely the result of the critical excitation problem.
In other words, the ground above the earthquake bedrock
plays a role as a filter of ground motions and it does not
affect the critical nature of groundmotions at the earthquake
bedrock.

Since the critical ground motion produces the worst building
response among possible scenarios, the proposed method can be
a reliable tool for resilient building design.
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