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Abstract 11 

 A new Monte Carlo method is developed to calculate the sensitivity coefficients of the 12 

-eigenvalue (the time decay constant) and the -eigenvalue (the spatial decay constant in an 13 

exponential experiment) with respect to nuclear data. A method that was previously developed for 14 

the sensitivity analyses of the -eigenvalue, which is not based on the normal k- algorithm, is not 15 

applicable to the -eigenvalue due to its inability to obtain a converged source distribution. Then, a 16 

two-step method in which two sensitivity coefficients are separately calculated using the k- or 17 

k- algorithm and the differential operator sampling method is newly developed. The sensitivity 18 

coefficient of the - or -eigenvalue is represented by the ratio of the two sensitivity coefficients. 19 

Some numerical tests for three-energy group problems are performed using the new method. The 20 

sensitivity coefficients that are obtained by the new method are verified by comparing them to the 21 

solutions of deterministic transport calculations or to the approximate results that are obtained 22 

from the direct perturbations of the cross-sections. 23 

 24 

Keywords: alpha-eigenvalue; gamma-eigenvalue, Monte Carlo; sensitivity analysis; differential 25 

operator 26 

 27 

1. Introduction 28 

 These days, the development of Monte Carlo methods for sensitivity and uncertainty (S/U) 29 

analysis with respect to nuclear data has been intensively conducted. The capability of the 30 
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sensitivity analysis of the keff-eigenvalue or neutron general responses (e.g., the capture to fission 1 

ratio) are now installed in many production-level Monte Carlo calculation codes, such as SCALE 2 

(Rearden, 2004; Perfetti, 2012; Perfetti and Rearden, 2016), MCNP (Kiedrowski et al., 2011; 3 

Kiedrowski and Brown, 2013), SERPENT (Aufiero et al., 2015), TRIPOLI (Terranova et al., 4 

2018), MORET (Jinaphanh et al., 2016), McCARD (Shim and Kim, 2011), and RMC (Qiu et al., 5 

2015; Qiu et al., 2016a; Qiu et al., 2016b). 6 

In addition to the sensitivity analyses of the keff-eigenvalue and neutron general responses, the 7 

sensitivity analysis of the -eigenvalue (the prompt neutron time decay constant) is also important 8 

for the purpose of retaining the accuracy of calculation predictions of subcritical systems because 9 

the -eigenvalue is closely related with the subcriticality. Recently, some deterministic methods 10 

for the sensitivity coefficients of the -eigenvalue that use the forward and adjoint fluxes in an 11 

-eigenvalue mode calculation were developed by Endo and Yamamoto (2018) and Favorite 12 

(2018). A new Monte Carlo method for the sensitivity coefficients of the -eigenvalue was 13 

developed by the authors of this paper (Yamamoto and Sakamoto, 2019). Unlike the conventional 14 

Monte Carlo methods for the -eigenvalue calculation that use the power iteration of fission 15 

sources (the “k-” iteration method hereafter) (Brockway et al., 1985; Zoia et al., 2014), the new 16 

method introduces the “time source” that is the fundamental-mode eigenfunction of the 17 

-eigenvalue mode transport equation (Shim et al., 2014; Shim et al., 2015). In the time source 18 

method, the  is truly the eigenvalue of the -mode transport equation. Although the time source 19 

method outperforms the conventional k- iteration method for deep subcritical systems in terms of 20 

its robustness in stability, it has several weaknesses. The normal Monte Carlo procedure can 21 

generate no time source in a void region. To circumvent this weakness, a virtual total cross-section 22 

is assigned in the void region, which is similar to the Woodcock delta tracking method (Woodcock, 23 

1965). In the time source method, the fission neutrons and all their progenies that are generated in 24 

a cycle have to be followed within the cycle, just as with a fixed source problem. As a system gets 25 

closer to criticality, the computation time for a cycle becomes longer. 26 

Another important eigenvalue whose sensitivity coefficient is analyzed in a subcritical system 27 
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is the -eigenvalue. The -eigenvalue is the spatial decay constant of the neutron flux in a 1 

subcritical system that has a uniform composition in one of three directions. The spatial decay 2 

constant is obtained from an exponential experiment by fitting the neutron flux distribution to an 3 

exponential function (Suzaki, 1991; Yamamoto et al., 2003). If the flux is fitted in a region far 4 

enough away from the neutron source in order to exclude the effect of higher harmonics, the decay 5 

constant is equal to the fundamental mode eigenvalue of the -eigenvalue mode transport equation. 6 

The -eigenvalue is an important indicator of the subcriticality. This indicator is useful for the 7 

criticality safety control of fresh or spent nuclear fuel assemblies (Suzaki et al., 1995). The 8 

-eigenvalue correlates to the subcriticality more strongly than the -eigenvalue, especially in a 9 

deep subcritical system where the -eigenvalue increases very little regardless of the increase in 10 

the subcriticality (Suzaki, 1991). A Monte Carlo algorithm for calculating the -eigenvalue, which 11 

solves the -eigenvalue mode transport equation, was developed by Yamamoto and Miyoshi 12 

(2003) and Yamamoto (2012). The algorithm is essentially the same as the k- iteration method. 13 

However, unlike the -eigenvalue, the algorithm for the time source method cannot be applied to 14 

the -eigenvalue due to a reason that will be described later. Thus, we still have to use the k--like 15 

iteration method for the sensitivity analysis of the -eigenvalue (in this case, it should be called the 16 

“k-” iteration method). 17 

The objective of this paper is to propose a novel two-step Monte Carlo method for sensitivity 18 

analysis that uses the k- or k- iteration method instead of the time source method. The proposed 19 

method is applicable to the sensitivity analyses of the - and -eigenvalue. The new method is 20 

particularly the only way for the sensitivity coefficients of the -eigenvalue to be calculated. The 21 

theory and the numerical tests of the new method are presented in the sections that follow. 22 

 23 

2. Review of Monte Carlo - and -eigenvalue calculation methods 24 

2.1 k- method 25 

 Before proceeding to the newly developed two-step method, the conventional Monte Carlo 26 

method for obtaining the - and -eigenvalues are briefly reviewed. 27 

 The neutron transport equation to be solved for obtaining the -eigenvalue is 28 
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The operators in Eq. (1) are written as 1 

                                         

     
  

          
               

     , 
(2) 

and 2 

            
     

  
                

        
     

  

                  

where    the macroscopic total cross-section,    the macroscopic scattering cross-section, 3 

   the macroscopic fission cross-section,    the prompt neutron spectrum,    the number 4 

of prompt neutrons per fission,    the fundamental mode eigenfunction of the -eigenvalue 5 

mode equation,   the neutron direction, and   the neutron velocity. Although kp in Eq. (1) is 6 

supposed to be unity in the -eigenvalue mode equation, it is explicitly shown. A commonly 7 

adopted method for obtaining the fundamental mode -eigenvalue is the k- method, in which the 8 

kp-eigenvalue calculation is performed with an additional term containing the -eigenvalue (i.e., 9 

the second term on the left-hand side of Eq. (1)). In the method proposed by Yamamoto and 10 

Miyoshi (2003), the additional term is handled during the course of the random walk process by 11 

changing the particle weight as it flies the distance   : 12 

            
 

     
                                                                 

where   =the jth flight path,      =the neutron velocity of the jth flight path, and    and 13 

     the particle weight before and after the jth flight path, respectively. This technique is 14 

referred to as the “continuous absorption weighting” (CAW) in the field of optics (Hayakawa et al., 15 

2014). Using Eq. (4), the additional term can be incorporated into the -eigenvalue mode 16 

calculation, even for a void region where no collision occurs. The Monte Carlo algorithm to solve 17 

Eq. (1) is almost the same as the one for the keff-eigenvalue calculations. Thus, the “source” of the 18 

k- method is the fission source, and the true eigenvalue is kp instead of . The  is an adjustment 19 

parameter that makes kp unity. In each cycle of the power iteration,    is calculated with an  20 

value in the same manner as the keff-eigenvalue calculation. The  that is used for the next cycle is 21 

determined so that kp approaches unity as 22 
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where m is the cycle number and c is an arbitrary positive value. If the c value is not large enough, 1 

the convergence is slow and the inter-cycle correlation of the  becomes strong. If this value is too 2 

large, the variances of the  and keff become unnecessarily large. An appropriate c value should be 3 

determined by trial and error by monitoring the convergence and the fluctuation of the  in each 4 

cycle. 5 

  6 

2.2 k- method 7 

This section briefly describes the Monte Carlo algorithm of the k- method. Suppose a 8 

subcritical system where the horizontal buckling in the x- and y-directions is larger than the 9 

material buckling and that an external neutron source is located far enough away in the z-direction. 10 

If the subcritical system is homogeneous and infinitely long in the z-direction, the asymptotic 11 

neutron flux distribution in the z-direction decays exponentially according to          , where  12 

is a spatial decay constant in the z-direction. The  is also a fundamental mode eigenvalue of the 13 

-mode transport equation (Yamamoto, 2012): 14 

                       
 

  
                                        

where =the direction cosine of  with the z-axis, and    the fundamental mode eigenfunction 15 

of the  -eigenvalue mode equation. F is the same as Eq. (3) but  and  are for the sums of the 16 

prompt and delayed neutrons. Similarly, the second term on the left-hand side of Eq. (6) is taken 17 

into account by 18 

                                                                              

where   =  of the jth flight path. The remaining procedure is the same as that for the k- method. 19 

In the k- method, the weight of a particle always increases due to Eq. (4) when it moves. On the 20 

other hand, in the k- method, the weight of a particle increases when it moves upward (i.e., 21 

    ), and the weight decreases when it moves downward (i.e.,     ). After the convergence 22 

of the k- iteration is achieved, the net current across the horizontal plane eventually is directed 23 

towards the upward direction. 24 

 25 
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3. Sensitivity analysis methods of - and -eigenvalues 1 

3.1 Sensitivity analysis method of -eigenvalue 2 

 The Monte Carlo methods for the sensitivity analyses of the keff-eigenvalue that have been 3 

developed thus far cannot be straightforwardly applied to the -eigenvalue in the k- method 4 

because the -eigenvalue is not a true eigenvalue. Yamamoto and Sakamoto (2019) introduced the 5 

“time source” method to obtain the -eigenvalue for the sensitivity analyses of the -eigenvalue. 6 

The details of the “time source” method are presented in Shim et al. (2014, 2015) and Yamamoto 7 

and Sakamoto (2019). The equation to be solved for the “time source method” is 8 

                       
 

    
                                         

which is the same as Eq. (1) except that kp is not included. The source in this calculation mode is 9 

               on the right-hand side instead of the fission source. The power iteration method 10 

is used to solve this equation by updating the source distribution in each cycle in the same way as 11 

with keff-eigenvalue problems. The sources for the next cycle are determined at each collision 12 

point as follows: 13 

        
 

           
                                                               

where n=the number of sources at the collision point, w=the weight of the colliding particle, and 14 

  uniform pseudo random number from (0,1). Int [x] denotes the largest integer not exceeding x. 15 

The  in Eq. (9) is introduced in order to keep the number of source particles almost constant 16 

throughout the cycles, and usually the -eigenvalue that is obtained in the previous cycle is used 17 

for it. However, a difficulty arises if the subcritical system contains a void region because no 18 

source can be defined by Eq. (9) in the void region. A workaround employed by Yamamoto and 19 

Sakamoto (2019) is to assign a virtual total cross-section to the void region. This method is similar 20 

to the Woodcock delta tracking method (Woodcock, 1965). A free flight distance s in the void 21 

region is determined by            , where     is the virtual total cross-section. If a virtual 22 

collision occurs within the void region, the number of source particles is determined at the 23 

collision point by using     in Eq. (9). Then, the particle keeps flying without changing the 24 

weight and the direction as if it had undergone no reaction in the void region. At the end of each 25 
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cycle, the -eigenvalue is calculated using the collision estimator as 1 

   
  

           
  

           
  

  

                                               

where i and j denote the ith collision and jth source particles, respectively; m=the cycle number; 2 

and    the sum of the source particle weight in the mth cycle. The -eigenvalue can also be 3 

calculated using the track length estimator. 4 

 Yamamoto and Sakamoto (2019) used the first-order differential operator sampling (DOS) 5 

method (Rief, 1984; McKinney and Iverson, 1996; Raskach, 2009) to calculate the sensitivity 6 

coefficient of the -eigenvalue with respect to nuclear data x. The first derivative of the 7 

-eigenvalue with the DOS method is calculated for each history by 8 

  

  
     

 

              
 

                                                         

where i denotes the ith collision of the history,    is the particle weight at the ith collision, and 9 

the summation is carried out over all collisions during the history.      is the sum of the 10 

first-derivatives of the transport and collision kernels in the Neumann series solution. The explicit 11 

form of      is given in Yamamoto and Sakamoto (2019) and will be presented later in this paper. 12 

The change of x perturbs the distribution of the time source, thereby affecting the sensitivity 13 

coefficients. Eq. (11) does not include the perturbed source effect. A DOS method to estimate the 14 

perturbed source effect was already developed for the sensitivity coefficients of the keff-eigenvalue 15 

(Nagaya and Mori, 2005; Nagaya and Mori, 2011; Kiedrowski, 2017; Yamamoto, 2018). The 16 

perturbed source effect for the sensitivity coefficient of the -eigenvalue can be calculated with 17 

the same procedure as for the keff-eigenvalue (Yamamoto and Sakamoto, 2019). The description of 18 

the perturbed source effect is omitted in this paper because it is not essentially related to the 19 

novelty of this paper. Details on how to calculate the perturbed source effect can be found in the 20 

references (Nagaya and Mori, 2005; Nagaya and Mori, 2011; Kiedrowski, 2017; Yamamoto, 21 

2018). 22 

 23 

3.2 Difficulty in sensitivity analysis method of -eigenvalue 24 

 If a sensitivity analysis method similar to the -eigenvalue that was presented in Sec. 3.1 was 25 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8 

 

applied to the -eigenvalue, the source term would be given by the second term on the left-hand 1 

side of Eq. (6). The equation to be solved is rewritten from Eq. (6) as 2 

                                                                        

As in Eq. (9), the number of sources would be determined at each collision point: 3 

        
    

       
                                                                 

As described at the end of Sec.2.2, the directional cosine  can be positive and negative, 4 

depending on the particle direction. Thus, the positive and negative sources are produced by Eq. 5 

(13). In such a case, the cancellation of the positive and negative sources needs to be performed at 6 

the end of each cycle. Without the cancellation, the number of positive and negative sources keeps 7 

growing, eventually resulting in divergence after several cycle iterations. The most common 8 

technique for the cancellation is the “binning procedure”. In the “binning procedure”, the whole 9 

region is divided into a large number of small bins where positive and negative weights are 10 

summed up and cancelled (Booth, 2003; Yamamoto, 2009; Yamamoto, 2011; Zhang et al., 2016; 11 

Yamamoto and Sakamoto, 2018). Although the authors attempted to apply the “binning procedure” 12 

to -eigenvalue calculations, the procedure was unable to succeed in suppressing the growing 13 

positive and negative sources. According to (Mancusi and Zoia, 2018), chaotic behaviors that 14 

resulted in a series of periodic-doubling bifurcation were observed in buckling search calculations. 15 

The chaotic behavior might be related to the failure of the –eigenvalue mode calculations of this 16 

paper. Although regularization techniques could be attempted to prevent such a chaotic behavior, 17 

this issue is out of the scope of this paper. Consequently, the authors abandoned the attempt as a 18 

method to perform the sensitivity analysis of the -eigenvalue. In the next section, a newly 19 

developed sensitivity analysis method for - and -eigenvalues is presented. 20 

 21 

4. Two-step method for sensitivity analyses of - and -eigenvalues 22 

4.1 Two-step sensitivity analysis method of -eigenvalue 23 

 In this section, we devise a new algorithm for the sensitivity analyses of - and -eigenvalues. 24 

For this purpose, the k- or k- iteration method are revisited. The sensitivity coefficient of the 25 

-eigenvalue with respect to nuclear data x based on the linear perturbation theory is 26 
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where    and   
  are the forward flux and the adjoint flux of -eigenvalue mode, respectively; 1 

     the integration over all the phase space;    the production operator;   the scattering 2 

operator; and     the inverse of neutron velocity. The formula in Eq. (14) is almost the same as 3 

the one in (Endo and Yamamoto, 2018). Eq. (14) can be rearranged to yield the following: 4 

     
 

 

  

  
 

    
  

    
                                                                        

where 5 

    
  

 

  

   

  
 

    
  

   

  
       

  
  
  

       
  

   

  
   

   
      

                     

and 6 

    
  

 

  

   

  
 

    
       

   
      

                                                     

kp does not explicitly appear in the right-hand side of both Eqs. (16) and (17) because      in 7 

the -eigenvalue mode solution. 8 

 The sensitivity coefficient     
 

 (i.e., Eq. (16)) can be calculated using the k- iteration 9 

method in the same manner as the Monte Carlo method for the keff-eigenvalue sensitivity 10 

coefficients. The sensitivity coefficient     
 

 (i.e., Eq. (17)) is the product of the prompt neutron 11 

generation time and the -eigenvalue. Thus, the Monte Carlo methods for calculating a prompt 12 

neutron generation time (e.g., Kiedrowski et al., 2011; Leppänen et al., 2014; Terranova and Zoia, 13 

2017) can be used for calculating     
 

. The sensitivity coefficients     
 

 and     
 

 can be 14 

calculated with several Monte Carlo methods. The generalized iteration fission probability (IFP) 15 

method (Terranova and Zoia, 2017; Jinaphanh and Zoia, 2019) is usable for this purpose. The 16 

generalized IFP can be extended to the -eigenvalue problem from the standard keff-eigenvalue 17 

problem. 18 

 This paper focuses on applying the differential operator sampling (DOS) method to calculate 19 

the sensitivity coefficients     
 

 and     
 

. The DOS method for the sensitivity coefficients of the 20 

keff-eigenvalue and its memory reduction technique using the superhistory method (Brissenden and 21 
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Garlick, 1986) were developed in (Yamamoto, 2018). The DOS method for the sensitivity 1 

coefficients of the kp-eigenvalue is almost the same as in (Yamamoto, 2018) except that the k- 2 

iteration is performed to obtain the -eigenvalue according to Eq. (1) instead of the keff-eigenvalue. 3 

The procedure of the DOS method is briefly described here. Refer to (Yamamoto, 2018) for a 4 

complete description of the DOS method. 5 

The sensitivity coefficient of the kp-eigenvalue with respect to nuclear data x for the mth 6 

particle history is given by 7 

       
  

 

  

 

  
     

 

  
 

      

    
                                                      

 

 

where i denotes the ith collision within the mth history,    is the particle weight at the ith 8 

collision, and the summation is carried out at every collision during the mth history.      is the 9 

weighting coefficient at the ith collision, and it is defined as 10 

     
 

       

 

  
         

 

    

 

  
    

   

   

  
 

  

 

  
  

   

   

    

 

  
    

 

                      

where    is the angular and energy distribution of a scattered neutron. The second term on the 11 

right-hand side of Eq. (19) represents the sum of                  until the (i-1)th collision, 12 

where      is the macroscopic scattering cross-section for the lth scattering. The fourth term on 13 

the right-hand side of Eq. (19) denotes the sum of             in the kth flight until the ith 14 

collision, where    is the flight distance of the kth flight.      is explicitly represented for some 15 

macroscopic cross-sections x as follows: 16 

     

 
 
 
 
 
 

 
 
 
 
     

 

                       

 
 

    

   

   

    

 

               

 

    
    

 

                 

                 

 

  
                      

  

Eq. (23) represents the weighting coefficient for the sensitivity with respect to the fission spectrum. 17 
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In this paper, the sensitivity coefficient with respect to the fission spectrum is an unconstrained 1 

one (Nagaya et al., 2009). Eq. (18) does not take into account the perturbation of the fission source 2 

distribution caused by the change of the nuclear data. The perturbation has a significant effect on 3 

the sensitivity coefficients. The formulation of the source perturbation effect is complicated and 4 

not essentially related to the objective of this paper. Presenting the detailed formulation for the 5 

source perturbation effect is omitted in this paper, and it can be found in (Nagaya and Mori, 2005; 6 

Kiedrowski, 2017; Yamamoto, 2018). After finishing all the histories in a cycle, the sensitivity 7 

coefficients that are calculated with Eq. (18) plus the source perturbation effect are averaged over 8 

all particle histories in the cycle, thus yielding the result of the cycle. Then, we proceed to the next 9 

cycle. 10 

Next, the formulation of     
 

 for the DOS method is derived. A very similar DOS method 11 

was derived for the sensitivity of the keff-eigenvalue with respect to a complex-valued buckling 12 

(Yamamoto and Sakamoto, 2018). When a particle moves from position r to the collision point   , 13 

the transport kernel in an -eigenvalue calculation is given by 14 

                        
 

    
  

 

                                              

where         . In the normal Monte Carlo calculations,              in Eq. (25) is not 15 

included in the transport kernel. In the Monte Carlo calculation for the -eigenvalue, this term has 16 

to be multiplied because the particle weight changes during its flight, as given in Eq. (4). The 17 

weighting coefficient of the transport kernel with respect to , which is to be scored in each flight 18 

path, is 19 

 

       
 

 

  
        

 

    
                                                             

Eq. (26) is scored for each flight path until the particle is discarded. This scoring is carried out 20 

throughout the whole system, including the void regions. The sensitivity coefficient of the 21 

kp-eigenvalue with respect to  for the mth particle history is given by 22 

      
  

 

  

 

  
     

 

  
 

       

     
    

 

                                              

where    the particle weight of the ith collision. The summation for i is carried out at every 23 
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collision point during the mth history. The score    at the ith collision is 1 

    
  

     
 

                                                                    

where the subscript k denotes the kth flight path and the summation is carried out for every flight 2 

path until the ith collision. 3 

 Eqs. (18) and (27) do not include the perturbed source effect. How to calculate this effect is 4 

presented in (Yamamoto, 2018) and (Yamamoto and Sakamoto, 2019). Thus, it is omitted in this 5 

paper. 6 

 7 

4.2 Two-step sensitivity analysis method of -eigenvalue 8 

 A Monte Carlo algorithm for the sensitivity analysis of the -eigenvalue is straightforwardly 9 

derived according to the procedure in Sec. 4.1. The sensitivity coefficient of the -eigenvalue with 10 

respect to nuclear data x based on the linear perturbation theory is 11 

     
 

 

  

  
 

    
  

  
  

       
  

  
  

       
  

   

  
   

    
     

                            

where    and   
  are the forward flux and the adjoint flux of -eigenvalue mode, respectively. 12 

In the same manner as in Sec. 4.1, Eq. (29) can be rearranged to yield the following: 13 

     
 

 

  

  
 

    
  

    
                                                                      

where 14 

    
  

 

  

   

  
 

    
  

  
  

       
  

  
  

       
  

   

  
   

   
     

                

and 15 

    
  

 

  

   

  
 

    
     

   
     

                                                             

The sensitivity coefficient     
  in Eq. (30) can be calculated in the same manner as for     

 
 16 

in Sec. 4.1 during the course of the -mode eigenvalue calculation. While     
 

 is obtained by the 17 

-eigenvalue mode calculation,     
  is obtained by the -eigenvalue mode calculation. Thus,     

 
 18 

is not equal to     
 , even for the same subcritical system. 19 

Next, the formulation of     
  for the DOS method is derived. The transport kernel in the 20 

-eigenvalue calculation is given by 21 

                                                                            



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

13 

 

Thus, the weighting coefficient of the transport kernel with respect to  is 1 

 

       
 
 

  
                                                                       

The sensitivity coefficient of the ke-eigenvalue with respect to  for the mth particle history is 2 

given by 3 

       
 

  

 

  
     

 

  
 

      

     
    

 

                                               

The score    at the ith collision is 4 

        

 

                                                                       

where the subscript k denotes the kth flight path and the summation is carried out for every flight 5 

path until the ith collision. 6 

 7 

5. Numerical tests of the two-step method for sensitivity coefficients 8 

5.1 Two-step sensitivity analyses of -eigenvalue 9 

 The two-step sensitivity calculation method for the -eigenvalue using the DOS method is 10 

tested in this section. The geometry of the test problem is shown in Fig. 1 (the water-hole 11 

problem). The geometry is a two-dimensional rectangular shape where a light-water region is 12 

surrounded by a homogenized light-water moderated UO2 fuel rod array. Throughout this paper, 13 

the calculations are performed with three-energy group cross-sections and the scatterings are 14 

isotropic. Table 1 shows the group constants for the two materials. The sensitivity coefficients are 15 

calculated with respect to the macroscopic cross-sections (the capture, fission, and scattering 16 

cross-sections) and the fission spectrum in the UO2 region. A test Monte Carlo program is used for 17 

the numerical tests. The keff- and -eigenvalues of this subcritical system are keff=0.84561 ± 18 

0.00004 and =3823.8 ± 0.2 s
−1

, respectively. The reference calculations for the sensitivity 19 

coefficients are performed with the discrete ordinates transport code DANTSYS (Alcouffe et al., 20 

1995) using the same group constants. The three-energy group forward and adjoint angular fluxes 21 

of the -eigenvalue mode are calculated with the angular quadrature order 8. Using the angular 22 

fluxes, the sensitivity coefficients are calculated according to Eq. (14) using a post-processing 23 

program developed by the authors. 24 
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[Fig. 1][Table 1] 1 

 The sensitivity coefficients calculated with DANTSYS, the time source method, and the 2 

two-step method are compared in Table 2 (capture), Table 3 (fission), Table 4 (scattering), and 3 

Table 5 (fission spectrum (unconstrained)). The results of the Monte Carlo calculations include the 4 

perturbed source effect. The sensitivity coefficient with respect to the scattering cross-section in 5 

the third group is insignificant and it is omitted in Table 4. The sensitivity calculations are 6 

performed with 50,000 neutrons per cycle, skipping 30 cycles and running 5,000 active cycles. 7 

The number of iterations for the perturbed source effect is 10. This number of iterations is large 8 

enough to obtain the converged solutions for the perturbed source effect. As an example, Fig. 2 9 

shows the perturbed source effect of the sensitivity coefficient of keff with respect to the 1st group 10 

capture cross-section as a function of the number of iterations. The results of the two-step method 11 

agree well with DANTSYS and the time source method within 0.4%. The two-step method is 12 

much faster than the time source method. The figure of merit (=1/(square of standard 13 

deviation)/(cpu time)) of the two-step method is 17 times larger than that of the time source 14 

method. 15 

[Fig. 2][Table 2][Table 3][Table 4][Table 5] 16 

 Another numerical test is performed for a two-dimensional graphite-reflected plutonium 17 

metal system. The configuration is shown in Fig. 3 (the Pu metal problem). Table 6 shows the 18 

group constants for the two materials. This problem is a small fast system where a large portion of 19 

neutrons are lost by leakage. The keff- and -eigenvalues of the Pu metal problem are keff=0.92241 20 

± 0.00004 and =244367 ± 11 s
−1

, respectively. The ray effect in this system is significant, which 21 

makes the -eigenvalue (and possibly the sensitivity coefficients) sensitive to the angular 22 

quadrature order. Thus, the deterministic calculations using DANTSYS are not necessarily 23 

accurate and are omitted. The verification is performed by comparing the two-step method with 24 

the time source method. The sensitivity coefficients that are calculated with the time source 25 

method and the two-step method are compared in Table 7 (capture), Table 8 (fission), Table 9 26 

(scattering), and Table 10 (fission spectrum (unconstrained)). The results of the two Monte Carlo 27 

methods are in good agreement with each other within 0.2 % except for one case (fission spectrum 28 
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in the 3rd group). 1 

[Fig. 3][Table 6][Table 7][Table 8][Table 9][Table 10] 2 

 A test problem showing that the new method performs properly for a subcritical system 3 

containing a void region is presented in Appendix. 4 

5.2 Two-step sensitivity analyses of -eigenvalue 5 

 The sensitivity analyses of the -eigenvalue are performed for the two test problems in Sec. 6 

5.1. The -eigenvalue of the first example (water-hole problem) is =0.099972 ± 0.000005 cm
−1

 7 

(keff is the same as in Sec. 5.1). No currently available deterministic transport code is capable of 8 

performing -eigenvalue mode calculations. Thus, the reference solutions of the first-derivative of 9 

 with respect to a cross-section are approximately obtained from the two-independent Monte 10 

Carlo calculations for -eigenvalues as 11 

  

  
 

     

     
                                                                    

where the subscripts p and 0 denote the perturbed and unperturbed quantities, respectively. The 12 

sensitivity coefficients that are calculated with the two-step method are compared with those with 13 

the two-independent runs in Table 11 (capture), Table 12 (fission), and Table 13 (scattering). The 14 

sensitivity coefficient with respect to the fission spectrum is omitted because the two-independent 15 

runs cannot be performed for unconstrained sensitivity coefficients. It is difficult to draw a 16 

significant conclusion regarding the validity of the two-step method for -eigenvalue because the 17 

reference solutions are not exact, and furthermore, they entail relatively large statistical 18 

uncertainties. However, the results of the two-step method agree with the reference solutions 19 

within two standard deviations, which supports the validity of the proposed new method. 20 

[Table 11][Table 12][Table 13] 21 

The -eigenvalue of another example (the Pu metal problem) is =0.075933 ± 0.000002 cm
−1

. 22 

The sensitivity coefficients of the Pu metal problem are shown in Table 14 (capture) and Table 15 23 

(fission). This fast subcritical system has very minor sensitivities to the scattering cross-sections. 24 

The results of the scattering cross-sections are omitted because accurate reference solutions can 25 

hardly be obtained from two independent runs. Again, the results of the two-step method agree 26 
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well with the reference solutions within two standard deviations. The results in this section 1 

suggest that the sensitivity coefficients of the -eigenvalue could be calculated correctly by using 2 

the proposed two-step method. 3 

[Table 14][Table 15] 4 

6. Conclusions 5 

 The authors recently developed a Monte Carlo sensitivity analysis method for the 6 

-eigenvalue without using the k- algorithm. However, the method is found to be inapplicable to 7 

the sensitivity analyses of the -eigenvalue (the spatial decay constant in an exponential 8 

experiment) because the positive and negative sources are generated in the -eigenvalue mode and 9 

the converged source distribution cannot be attained despite introducing the cancellation 10 

technique. 11 

 The sensitivity coefficient of the -eigenvalue,       is expressed differently using the ratio of 12 

two sensitivity coefficients as     
 

     
 

. Both sensitivity coefficients can be obtained by the k- 13 

algorithm using the differential operator sampling (DOS) method. In the same manner, the 14 

sensitivity coefficient of the -eigenvalue can be obtained by the k- algorithm. This newly 15 

developed method is dubbed as the “two-step method” in this paper. The perturbed source effect 16 

and its memory reduction technique of the DOS method were already developed and these are also 17 

available for the purpose of this paper. Unlike the time source method, the two-step method can 18 

be applicable to critical or supercritical systems. The verification of the new method is performed 19 

by comparing the results for the three-energy group problems to the solutions of the deterministic 20 

transport method or to the approximate results that are obtained from the direct perturbations of 21 

the cross-sections. 22 

The algorithm that is presented in this paper can be straightforwardly expanded to the 23 

sensitivity analyses of the - and -eigenvalues in the continuous energy Monte Carlo. The 24 

sensitivity analysis of the effective delayed neutron fraction can be performed with the differential 25 

operator sampling method, which will be done as a future work. 26 

 27 
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Appendix 1 

The time source method and the two-step method for the sensitivity analysis of the 2 

-eigenvalue are tested for a subcritical system containing a void region. The geometry is shown 3 

in Fig. A1, which is very similar to Fig. 1. The cross-sections listed in Table 1 are used for the fuel 4 

region. The keff- and -eigenvalues of this subcritical system are keff= 0.88386 ± 0.00006 and = 5 

3575.8 ± 0.3 s
−1

, respectively. To avoid the redundancy, only the results for the 1st group are 6 

shown in Table A1, where the sensitivity coefficients calculated with DANTSYS, the time source 7 

method, and the two-step method are compared. The results of the discrete ordinates method are 8 

slightly biased due to the ray effect for the void-containing test problem. Thus, the results of 9 

DANTSYS do not exactly agree with the Monte Carlo methods. The newly proposed two-step 10 

method agree with the time source method within the two standard deviations, which suggests that 11 

the new method works properly for void-containing systems. 12 

[Fig. A1][Table A1] 13 
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Fig. 1 Geometry of the test problem for sensitivity analyses (the water-hole problem). 
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Fig. 2 Convergence of the perturbed source effect as a function of the number of 

iterations (    
 

 of the 1st group capture cross-section). 
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Fig. 3 Geometry of the test problem for sensitivity analyses (the Pu metal problem). 
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Fig. A1 Geometry of the test problem for sensitivity analyses (the void problem). 
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Table 1 Three-group constants for UO2 fuel rod array and light water 

 

 
 

UO2 fuel rod 

array 

 Light water 

Total cross 

section (cm
-1

) 

    0.29829 0.33207 

    0.83334 1.1265 

    1.6389 2.7812 

Fission cross 

section (cm
-1

) 

    0.0030586   

    0.0021579   

    0.056928   

Absorption 

cross section 

(cm
-1

) 

    0.003385 0.00030500 

    0.011895 0.00036990 

    0.086180 0.0182500 

Group transfer 

cross section 

(cm
-1

) 

  
    0.073843 0.10464 

  
    0.0 0.0 

  
    0.043803 0.097961 

Neutrons per 

fission 
        2.4   

Fission 

spectrum 

         0.878198   

         0.121802   

         0   

Neutron velocity 

(cm/s) 

   1.66743×10
9
 

   1.73734×10
7
 

   3.46850×10
5
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table



Table 2     to the capture cross section (the water-hole problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS 1.1468×10
−2

 5.4915×10
−1

 1.5962 

Differential operator (MC)    

Time source method 1.1413×10
−2

 

(1.5×10
−5

)
*
 

5.4934×10
−1

 

(7.2×10
−4

) 

1.5948 

(1.8×10
−3

) 

Two-step method    

    
 

 −2.3210×10
−1

 (4×10
−5

) 

    
 

 −2.6532×10
−3

 

(6×10
−7

) 

−1.2707×10
−1

 

(3×10
−5

) 

−3.7011×10
−1

 

(7×10
−5

) 

           
      

   1.1431×10
−2

 

(3×10
−6

) 

5.4749×10
−1

 

(1.4×10
−4

) 

1.5946 

(4×10
−4

) 

MC/DANTSYS 1.003 1.003 1.000 

*Absolute one standard deviation 

 

 

Table 3     to the fission cross section (the water-hole problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS −1.7234×10
−1

 −1.2738×10
−1

 −1.4688 

Differential operator (MC)    

Time source method −1.7145×10
−1

 

(1.9×10
−4

)
*
 

−1.2711×10
−1

 

(5.4×10
−4

) 

−1.4679 

(2.5×10
−3

) 

Two-step method    

    
 

 −2.3210×10
−1

 (4×10
−5

) 

    
 

 3.9950×10
−2

 

(4.0×10
−5

) 

2.9486×10
−2

 

(3.8×10
−5

) 

3.4027×10
−1

 

(1.1×10
−4

) 

           
 

     
 

  −1.7212×10
−1

 

(1.8×10
−4

) 

−1.2704×10
−1

 

(1.6×10
−4

) 

−1.4661 

(6×10
−4

) 

MC/DANTSYS 0.9987 0.9973 0.9982 

* Absolute one standard deviation 

 

 

  



Table 4     to the scattering cross section (the water-hole problem). 

 1st Gr. 2nd Gr. 

DANTSYS −1.1903 −1.4938 

Differential operator (MC)   

Time source method −1.1893 

(3.4×10
−3

)
*
 

−1.4978 

(5.7×10
−3

) 

Two-step method   

    
 

 −2.3210×10
−1

 (4×10
−5

) 

    
 

 2.7634×10
−1

 

(2.6×10
−4

) 

3.4593×10
−1

 

(5.9×10
−4

) 

           
      

   −1.1906 

(1.1×10
−3

) 

−1.4904 

(2.5×10
−3

) 

MC/DANTSYS 1.000 0.998 

* Absolute one standard deviation 

 

 

Table 5     to the fission spectrum (the water-hole problem). 

 1st Gr. 2nd Gr. 

DANTSYS −4.3654 −7.3868×10
−1

 

Differential operator (MC)   

Time source method −4.3549 

(5.2×10
−3

)
*
 

−7.3906×10
−1

 

(1.22×10
−3

) 

Two-step method   

    
 

 −2.3210×10
−1

 (4×10
−5

) 

    
 

 1.0114 

(1.8×10
−3

) 

1.7125×10
−1

 

(7×10
−5

) 

           
 

     
 

  −4.3577 

(7.8×10
−3

) 

−7.3782×10
−1

 

(3.2×10
−4

) 

MC/DANTSYS 0.9982 0.9988 

* Absolute one standard deviation 

 

 

 

 

 

 

 

 

 



 

Table 6 Three-group constants for the plutonium metal and the graphite 

  Plutonium metal Graphite 

Total cross 

section 

    (cm
-1

) 0.28573 0.21053 

    (cm
-1

) 0.35423 0.45009 

    (cm
-1

) 0.62448 0.53500 

Production 

cross section 

    (cm
-1

)  0.072424   

    (cm
-1

) 0.052973   

    (cm
-1

) 0.13267   

Absorption 

cross section 

    (cm
-1

) 0.073056 0.00013890 

    (cm
-1

) 0.064640 0.0000017 

    (cm
-1

) 0.022681 0.000021 

Group transfer 

cross section 

  
   (cm

-1
) 0.029374 0.029672 

  
   (cm

-1
) 0 0 

  
   (cm

-1
) 0.00030767 0.015913 

Neutrons per 

fission 
        3.2   

Fission 

spectrum 

         0.774148   

         0.22485   

         0.001002   

Neutron 

velocity (cm/s) 

   1.91275×10
9
 

   6.97560×10
8
 

   1.68994×10
7
 

 

 

Table 7     to the capture cross section (the Pu metal problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

Differential operator (MC)    

Time source method 

(reference) 

9.6011×10
−3

 

(8.7×10
−6

)
*
 

1.6637×10
−1

 

(1×10
−5

) 

4.2247×10
−1

 

(3.2×10
−4

) 

Two-step method    

    
 

 −1.5392×10
−1

 (1.4×10
−4

) 

    
 

 −1.4795×10
−3

 

(2×10
−7

) 

−2.5573×10
−2

 

(6×10
−6

) 

−3.7011×10
−1

 

(7×10
−5

) 

           
 

     
 

  9.6116×10
−3

 

(8.8×10
−6

) 

1.6614×10
−1

 

(1.6×10
−4

) 

4.2271×10
−1

 

 (4.4×10
−4

) 

(Two-step)/(reference) 1.001 0.999 1.001 

* Absolute one standard deviation 



 

Table 8     to the fission cross section (the Pu metal problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

Differential operator (MC)    

Time source method 

(reference) 

−2.6969 

(2.6×10
−3

)
*
 

−1.3722 

 (1.4×10
−3

) 

−5.8808×10
−1

 

(2.1×10
−4

) 

Two-step method    

    
 

 −1.5392×10
−1

 (1.4×10
−4

) 

    
 

 4.1529×10
−1

 

(6×10
−5

) 

2.1149×10
−1

 

(3×10
−5

) 

9.0640×10
−2

 

(6.9×10
−5

) 

           
      

   −2.6980 

(2.5×10
−3

) 

−1.3740 

(1.2×10
−3

) 

−5.8886×10
−1

 

 (7.0×10
−4

) 

(Two-step)/(reference) 1.000 1.001 1.001 

* Absolute one standard deviation 

 

 

Table 9     to the scattering cross section (the Pu metal problem). 

 1st Gr. 2nd Gr. 

Differential operator (MC)   

Time source method 

(reference) 

−2.2085×10
−1

 

 (1.03×10
−3

)
*
 

−5.6971×10
−2

 

 (7.65×10
−4

) 

Two-step method   

    
 

 −1.5392×10
−1

 (1.4×10
−4

) 

    
 

 3.4291×10
−2

 

(9.0×10
−5

) 

8.8336×10
−3

 

(9.45×10
−5

) 

           
      

   −2.2278×10
−1

 

(6.2×10
−4

) 

−5.7390×10
−2

 

(6.16×10
−4

) 

(Two-step)/(reference) 1.009 1.007 

* Absolute one standard deviation 

 

 

 

 

 

 

 

 

 

 



 

Table 10     to the fission spectrum (the Pu metal problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

Differential operator (MC)    

Time source method 

(reference) 

−5.3214 

 (4.7×10
−3

)
*
 

−1.7099 

 (1.6×10
−3

) 

−1.0964×10
−2

 

(7×10
−6

) 

Two-step method    

    
 

 −1.5392×10
−1

 (1.4×10
−4

) 

    
 

 8.1928×10
−1

 

(7×10
−5

) 

2.6309×10
−1

 

(6×10
−5

) 

1.6999×10
−3

 

(5.3×10
−6

) 

           
      

   −5.3226 

(4.9×10
−3

) 

−1.7092 

(1.6×10
−3

) 

−1.1044×10
−2

 

 (3.6×10
−5

) 

(Two-step)/(reference) 1.000 1.000 1.007 

* Absolute one standard deviation 

 

 

Table 11     to the capture cross section (the water-hole problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

Two-independent runs 

(reference) 

7.535×10
−3

 

(6.1×10
−5

)
*
 

3.247×10
−1

 

(1.8×10
−3

) 

7.618×10
−1

 

(3.5×10
−3

) 

Two-step method    

    
  −3.5678×10

−1
 (1.3×10

−4
) 

    
  −2.6490×10

−3
 

(6×10
−7

) 

−1.1640×10
−1

 

(2×10
−5

) 

−2.7428×10
−1

 

(4×10
−5

) 

           
      

   7.425×10
−3

 

(3×10
−6

) 

3.262×10
−1

 

(2×10
−4

) 

7.687×10
−1

 

 (3×10
−4

) 

(Two-step)/(reference) 0.985 1.005 1.009 

* Absolute one standard deviation 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 12     to the fission cross section (the water-hole problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

Two-independent runs 

(reference) 

−1.039×10
−1

 

(6×10
−4

)
*
 

−8.676×10
−2

 

(5.3×10
−4

) 

−9.738×10
−1

 

(7.0×10
−3

) 

Two-step method    

    
  −3.5678×10

−1
 (1.3×10

−4
) 

    
  3.6857×10

−2
 

(2.8×10
−5

) 

3.1157×10
−2

 

(2.7×10
−5

) 

3.4753×10
−1

 

(7×10
−5

) 

           
      

   −1.0330×10
−1

 

(9×10
−5

) 

−8.733×10
−2

 

(8×10
−5

) 

−9.741×10
−1

 

 (4×10
−4

) 

(Two-step)/(reference) 0.994 1.007 1.000 

* Absolute one standard deviation 

 

 

Table 13     to the scattering cross section (the water-hole problem). 

 1st Gr. 2nd Gr. 

Two-independent runs 

(reference) 

−3.306×10
−1

 

(2.1×10
−3

)
*
 

−6.841×10
−1

 

(4.6×10
−3

) 

Two-step method   

    
  −3.5678×10

−1
 (1.3×10

−4
) 

    
  1.1863×10

−1
 

(2.2×10
−4

) 

2.4645×10
−1

 

(3.9×10
−4

) 

           
      

   −3.3251×10
−1

 

(6.4×10
−4

) 

−6.9077×10
−1

 

(1.14×10
−3

) 

(Two-step)/(reference) 1.006 1.010 

* Absolute one standard deviation 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 14     to the capture cross section (the Pu metal problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

Two-independent runs  

(reference) 

8.019×10
−3

 

(2.1×10
−5

)
*
 

1.224×10
−1

 

(3×10
−4

) 

2.027×10
−1

 

(1.6×10
−3

) 

Two-step method    

    
  −1.8358×10

−1
 (7×10

−5
) 

    
  −1.4694×10

−3
 

(3×10
−7

) 

−2.2421×10
−2

 

(6×10
−6

) 

−3.7156×10
−2

 

(1.9×10
−5

) 

           
      

   8.004×10
−3

 

(3×10
−6

) 

1.2212×10
−1

 

(6×10
−5

) 

2.024×10
−1

 

 (1×10
−4

) 

(Two-step)/(reference) 0.998 1.005 0.996 

* Absolute one standard deviation 

 

 

Table 15     to the fission cross section (the Pu metal problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

Two-independent runs 

(reference) 

−2.143 

(1.1×10
−2

)
*
 

−1.181 

(3×10
−4

) 

−3.821×10
−1

 

(1.1×10
−3

) 

Two-step method    

    
  −1.8358×10

−1
 (7×10

−5
) 

    
  3.9023×10

−1
 

(6×10
−5

) 

2.1761×10
−1

 

(5×10
−5

) 

6.9856×10
−2

 

(3.1×10
−5

) 

           
      

   −2.1256 

 (9×10
−4

) 

−1.1853 

(5×10
−4

) 

−3.805×10
−1

 

 (2×10
−4

) 

(Two-step)/(reference) 0.992 1.004 0.996 

* Absolute one standard deviation 

 

  



Table A1      for the 1st group cross-sections (the void problem). 

 Capture Fission Scattering 

DANTSYS 1.9533×10
−2

 −2.9620×10
−1

 −2.1415 

Differential operator (MC)    

Time source method 

(reference) 

1.9241×10
−2

 

 (5.6×10
−5

)
*
 

−2.9005×10
−1

 

 (1.03×10
−3

) 

−2.1177 

(7.1×10
−3

) 

Two-step method    

    
 

 −1.5463×10
−1

 (1.4×10
−4

) 

    
 

 −2.9836×10
−3

 

(6×10
−7

) 

4.5015×10
−2

 

(3.5×10
−5

) 

3.2963×10
−1

 

(2.3×10
−4

) 

           
      

   1.9296×10
−2

 

(1.8×10
−5

) 

−2.9111×10
−1

 

(3.5×10
−4

) 

−2.1318 

 (2.5×10
−3

) 

(Two-step)/(reference) 1.003 1.004 1.007 

* Absolute one standard deviation 

 

 

 




