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Chronic cerebral hypoperfusion is a characteristic seen in widespread CNS diseases, including neurodegenerative and mental disorders,
and is commonly accompanied by cognitive impairment. Recently, several studies demonstrated that chronic cerebral hypoperfusion can
induce the excessive inflammatory responses that precede neuronal dysfunction; however, the precise mechanism of cognitive impair-
ment due to chronic cerebral hypoperfusion remains unknown. Transient receptor potential melastatin 2 (TRPM2) is a Ca 2�-permeable
channel that is abundantly expressed in immune cells and is involved in aggravation of inflammatory responses. Therefore, we investigated the
pathophysiological role of TRPM2 in a mouse chronic cerebral hypoperfusion model with bilateral common carotid artery stenosis (BCAS).
When male mice were subjected to BCAS, cognitive dysfunction and white matter injury at day 28 were significantly improved in TRPM2
knock-out (TRPM2-KO) mice compared with wild-type (WT) mice, whereas hippocampal damage was not observed. There were no differences
in blood– brain barrier breakdown and H2O2 production between the two genotypes at 14 and 28 d after BCAS. Cytokine production was
significantly suppressed in BCAS-operated TRPM2-KO mice compared with WT mice at day 28. In addition, the number of Iba1-positive cells
gradually decreased from day 14. Moreover, daily treatment with minocycline significantly improved cognitive perturbation. Surgical tech-
niques using bone marrow chimeric mice revealed that activated Iba1-positive cells in white matter could be brain-resident microglia, not
peripheral macrophages. Together, these findings suggest that microglia contribute to the aggravation of cognitive impairment by chronic
cerebral hypoperfusion, and that TRPM2 may be a potential target for chronic cerebral hypoperfusion-related disorders.
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Introduction
Chronic cerebral hypoperfusion, resulting in an inadequate sup-
ply of blood to the brain, is elicited by aging (Aanerud et al., 2012)
and a variety of risk factors such as atherosclerosis, hypertension,

and obesity (Daulatzai, 2017). It has been previously suggested
that chronic cerebral hypoperfusion is highly related to dementia
diseases such as Alzheimer’s disease (Zlokovic, 2005) and vas-
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Significance Statement

Chronic cerebral hypoperfusion is manifested in a wide variety of CNS diseases, including neurodegenerative and mental disorders that
are accompanied by cognitive impairment; however, the underlying mechanisms require clarification. Here, we used a chronic cerebral
hypoperfusion mouse model to investigate whether TRPM2, a Ca2�-permeable cation channel highly expressed in immune cells, plays a
destructive role in the development of chronic cerebral hypoperfusion-induced cognitive impairment, and propose a new hypothesis in
which TRPM2-mediated activation of microglia, not macrophages, specifically contributes to the pathology through the aggravation of
inflammatory responses. These findings shed light on the understanding of the mechanisms of chronic cerebral hypoperfusion-related
inflammation, and are expected to provide a novel therapeutic molecule for cognitive impairment in CNS diseases.
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cular dementia (Gorelick et al., 2011), and other CNS diseases
including multiple sclerosis (D’haeseleer et al., 2013), major de-
pression (Nagafusa et al., 2012), and epilepsy (Sone et al., 2017).
Recently, emerging evidence has suggested that cognitive impair-
ment, which causes difficulties in memory functioning and
information processing, is associated not only with dementia
(Gorelick et al., 2011), but also a number of CNS diseases, includ-
ing multiple sclerosis (Chiaravalloti and DeLuca, 2008), Parkin-
son’s disease (Kehagia et al., 2010), major depression (Marazziti
et al., 2010), schizophrenia (Aquila and Citrome, 2015), and ep-
ilepsy (Holmes and Lenck-Santini, 2006). These facts could im-
ply that chronic cerebral hypoperfusion is an upstream change in
a wide variety of CNS diseases presenting with cognitive impair-
ment. In line with this hypothesis, several studies have reported
that chronic cerebral hypoperfusion leads to a variety of CNS
pathologies associated with the above-mentioned neurode-
generative and mental disorders (Daulatzai, 2017), with the
precise molecular mechanism of chronic cerebral hypoper-
fusion-induced cognitive impairment still needing to be
identified.

Current studies indicate that chronic cerebral hypoperfusion
contributes to the progression of inflammatory responses (Aki-
guchi et al., 1997). It was previously reported that chronic cere-
bral hypoperfusion-induced cognitive impairment is highly
associated with inflammation in mice (Saggu et al., 2016) and
humans (Kawamoto et al., 2006). Moreover, the application of
anti-inflammatory drugs reduces chronic cerebral hypoperfusion-
induced cognitive impairment (Fu et al., 2014), suggesting that
regulation of the inflammatory response is a potential target for cog-
nitive decline in chronic cerebral hypoperfusion.

Transient receptor potential melastatin 2 (TRPM2) is a mem-
ber of the TRPM superfamily, and is a Ca 2�-permeable channel
with a unique C-terminal adenosine diphosphate ribose (ADPR)
pyrophosphatase domain (Perraud et al., 2001). TRPM2 is func-
tionally expressed in the brain, including neurons (Kaneko et al.,
2006) and microglia (Kraft et al., 2004; Miyake et al., 2014), and
peripheral inflammatory cells including monocytes/macrophages
(Yamamoto et al., 2008) and neutrophils (Hiroi et al., 2013). In
addition, TRPM2 is involved in the production of proinflammatory
cytokines/chemokines in monocytes/macrophages, and aggrava-
tion of inflammation-related disorders such as ulcerative colitis
(Yamamoto et al., 2008) and neuropathic pain (Haraguchi et al.,
2012), implying that TRPM2 could be involved in chronic in-
flammation during chronic cerebral hypoperfusion.

In this study, we used genetically engineered mice to investi-
gate the possible involvement of TRPM2 in chronic cerebral hy-
poperfusion, and evaluated the effects of TRPM2 deficiency on
cognitive impairment using a mouse bilateral common carotid
artery stenosis (BCAS) model. In this model, mild chronic cere-
bral hypoperfusion, but not a stroke-like condition, is observed
(Temma et al., 2017); the extent of this may be more like that seen
in non-stroke-related CNS diseases accompanied by cognitive
impairment.

Materials and Methods
Animals. The experiments were conducted in accordance with the ethical
guidelines of the Kyoto University animal experimentation committee
and the guidelines of the Japanese Pharmacological Society. Male C57BL/6J

mice (RRID:IMSR_JAX:000664) and TRPM2 knock-out (TRPM2-KO)
mice (9 –12 weeks old, 20 –30 g) used in the study were maintained in our
laboratory. TRPM2-KO mice were generated as reported previously
(Yamamoto et al., 2008), and backcrossed with C57BL/6J mice for 10
generations to eliminate any background effects on the phenotype.
C57BL/6J mice and C57BL/6-Tg (CAG-EGFP) transgenic mice (GFP-
transgenic mice) were purchased from Japan SLC. They were kept at a
constant ambient temperature of 22 � 2°C under a 12 h light/dark cycle
and fed water and chow ad libitum.

Bilateral common carotid artery stenosis. Mice were subjected to BCAS
using microcoils with an internal diameter of 0.18 mm (Sawane Spring),
as previously described (Temma et al., 2017). First, mice were anesthe-
tized with 3% isoflurane in 30% O2 and 70% N2O, and maintained on
1.5% isoflurane in 30% O2 and 70% N2O using a face mask. After a
midline skin incision, the bilateral common carotid artery was isolated
and a microcoil was applied to it. Regional cerebral blood flow (rCBF) in
the middle cerebral artery territory was monitored by laser Doppler flow-
metry (Omegaflow, Omegawave). A flexible probe was fixed to the skull
(2 mm posterior and 6 mm lateral to the bregma) before BCAS. A sham
operation was performed in the same fashion as the BCAS operation, but
without using a microcoil: the common carotid artery was isolated and
the Doppler probe was fixed for monitoring rCBF while the sham control
mice were subjected to anesthesia for the same amount of time as the
BCAS-operated mice.

Y-maze test. The Y-maze test was conducted at days 14 and 28 after the
operation. The Y-maze had three arms (40 cm long, 12 cm high, and 3 cm
wide) at equal angles. The arm where the mice were initially placed was
labeled A, with the other two arms being labeled B and C. Experiments
were performed over an 8 min period, and the total number and se-
quence of arm entries were recorded with a video camera. Alternation
behavior was defined and counted as when mice entered all three of the
arms consecutively (ABC, CAB, or BCA, but not BAB). The alternation
count was divided by the maximum alternation (the total number of
entries minus 2) and multiplied by 100 to create the percentage of alter-
nation behavior. The total number of arm entries was recorded as spon-
taneous activity. Different cohorts of mice were assessed in experiments
14 and 28 d after BCAS. Mice that made �15 arm entries were excluded.

Novel object recognition test. Cognitive assessment by novel object rec-
ognition test was performed on days 14 and 28 after surgery. Experiments
were conducted in a dimly illuminated situation (30 lux), with mice
being habituated to the black box (30 � 30 � 30 cm) for 3 d (10 min a
day) before the training. In the training session, two different objects (a
yellow triangular prism and a blue quadrangular pyramid) were placed in
the box and mice were allowed to freely interact with the objects for 10
min. Six hours after the training session, the test session was performed,
and the blue quadrangular object was replaced by a wooden ball to serve
as a novel object. Exploratory time was defined as the time spent explor-
ing the blue quadrangular object in the training session and the wooden
ball in the test session, and was considered an indicator of locomotor
activity. Exploratory preference was defined as the ratio of the explor-
atory time versus the total time spent exploring both of the objects, and
was considered to be an indicator of recognition memory.

Fluoromyelin staining. Mice were intraperitoneally injected with 50
mg/kg pentobarbital and perfused transcardially with 0.1 M PBS followed
by 4% paraformaldehyde in 0.1 M PBS. Brains were stored in the fixative
for 3 h and then transferred into 15% sucrose in 0.1 M phosphate buffer
for 24 h. Coronal sections of 20 �m thickness were cut using a cryomi-
crotome (Leica). For fluoromyelin staining, brain sections were soaked
in 0.2% Triton X-100 for at least 1 h. The sections were incubated with
Fluoromyelin Green fluorescent myelin stain (1:300; Invitrogen) for 1 h
at room temperature. Fluorescence was visualized with an Olympus
Fluoview microscope equipped with a laser scanning confocal imaging
system. The mean intensity of fluoromyelin staining in the corpus
callosum was measured in a 200 � 200 �m field at approximately the
bregma � 0.7 mm.

Immunofluorescence. The coronal sections were then incubated with
the primary antibodies for GSTpi (rabbit anti-GSTpi antibody, 1:200;
MBL Life Science), Iba1 (rabbit anti-Iba1 antibody, 1:500; Wako Pure
Chemical Industries), GFAP (rabbit anti-GFAP antibody, 1:1000; Dako),
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or CD3 (rat anti-CD3 antibody, 1:100; BD Biosciences), at 4°C overnight.
Sections were then labeled with fluorescence-labeled secondary antibod-
ies (AlexaFluor 594-labeled donkey anti-rabbit or anti-rat IgG, 1:300;
Invitrogen) at room temperature for 1.5 h in the dark. Images were
captured with a confocal fluorescence microscope. GSTpi-, Iba1-, and
GFAP-positive cells in a 0.125 mm 2 field of the corpus callosum at the
bregma � 0.7 mm, and in the hippocampus at the bregma �2.8 mm,
were counted.

NeuN and IgG staining. For NeuN staining, the coronal sections were
then incubated with primary antibody for NeuN (mouse anti-NeuN
antibody, 1:500) at 4°C overnight. Sections were then labeled with bio-
tinylated horse anti-mouse IgG (1:200; Vector Laboratories) for 1.5 h,
followed by ABC Elite reagent (1:200; Vector Laboratories) for 1 h. Im-
munoreactivity was visualized using diaminobenzidine (Dojindo) as a
chromogen. The numbers of NeuN-positive cells in the cortex at the
bregma � 0.7 mm and the hippocampus at the bregma �2.8 mm were
evaluated. For IgG staining, IgG leakage was immunostained with bio-
tinylated horse anti-mouse IgG (1:200; Vector Laboratories) for 1.5 h,
and then visualized by an avidin-biotin complex, as described above. The
mean intensity of the leakage area in the corpus callosum was calculated
per image.

Measurement of H2O2 content. The corpus callosum and hippocampus
were removed from the brains, frozen in liquid nitrogen, and stored at
�80°C until use. They were homogenized with a Polytron homogenizer
in ice-cold 50 mM phosphate buffer, pH 7.4, with 0.5% hexadecyltrim-
ethyl ammonium bromide. The homogenates were centrifuged at
22,000 � g at 4°C for 10 min to remove debris. The supernatants were
heated at 95°C for 5 min followed by centrifugation at 22,000 � g at 4°C
for 10 min. The H2O2 contents in the supernatants were determined
using an Amplex Red Assay Kit (Invitrogen) in accordance with the
manufacturer’s protocol.

ELISA. The brain tissues were homogenized with a Polytron homoge-
nizer in ice-cold homogenizing buffer (PBS containing 0.1% Triton
X-100 and 1% protease-inhibitor mixture). The homogenates were cen-
trifuged to remove debris, and protein concentrations in the superna-
tants were measured using DC protein assay reagents (Bio-Rad). The
tissue homogenates and culture media suspected to have higher cyto-
kine/chemokine levels than the linear range of the standard curve were
diluted with homogenizing buffer or fresh culture media respectively, as
appropriate. The IL1�, TNF�, and IL6 levels in the tissue homogenates
and culture media were determined using mouse IL1�, TNF�, and IL6
ELISA kits (R&D Systems), in accordance with the manufacturer’s pro-
tocols. Every sample was assayed in duplicate in the same plate.

Real-time PCR. The removed brains were flash-frozen in liquid nitro-
gen and stored at �80°C until use. Total RNA from brain tissues was
isolated with ISOGEN reagent (Nippon Gene) in accordance with the
manufacturer’s suggested protocols, total RNA from the cells was iso-
lated with the FastPure RNA Kit (Takara Bio), and cDNA was synthe-
sized with ReverTra Ace (Toyobo) with 1 �g of total RNA, as described
previously (Shirakawa et al., 2017). Real-time quantitative PCRs were
performed using the StepOne real-time PCR system (Life Technologies) in a
final volume of 20 �l containing 1 �g of cDNA with THUNDERBIRD SYBR
qPCR Mix (Toyobo). Each PCR amplification consisted of heat activa-
tion for 10 min at 95°C followed by 40 cycles of 95°C for 10 s and 60°C for
1 min. The quantitative measurements of mRNA expression levels were
performed using the oligonucleotide primers (TRPM2: 5�-TGG ATC
ATG AGT GTG CAG GT-3� and 5�-ACA GAC AAT GCC TGG ATC
G-3�; CX3CR1: 5�-TCA CCG TCA TCA GCA TCG A-3� and 5�-CTG
CAC TGT CCG GTT GTT CA-3�; CX3CL1: 5�-GCG ACA AGA TGA
CCT CAC GA-3� and 5�-TGT CGT CTC CAG GAC AAT GG-3�; MHCII
(H2-Aa): 5�-GAC GCT CAA CTT GTC CCA AAA C-3� and 5�-GCA
GCC GTG AAC TTG TTG AAC-3�; CD68: 5�-TTC TGC TGT GGA AAT
GCA AG-3� and 5�-AGA GGG GCT GGT AGG TTG AT-3�; TLR4: 5�-
TCC AGC CAC TGA AGT TCT GA-3� and 5�-ACC AGG AAG CTT GAA
TCC CT-3�; CD14: 5�-AGG GTA CAG CTG CAA GGA C-3� and 5�-CTT
CAG CCC AGT GAA AGA CA-3�; TREM2: 5�-GCA CCT CCA GGA
ATC AAG AG-3� and 5�-GGG TCC AGT GAG GAT CTG AA-3�; IL1�:
5�-TGA GCA CCT TCT TTT CCT TCA-3� and 5�-TTG TCT AAT GGG
AAC GTC ACA C-3�; TNF�: 5�-TGC CTA TGT CTC AGC CTC TTC-3�

and 5�-GAG GCC ATT TGG GAA CTT CT-3�; IL6: 5�-GTG GCT AAG
GAC CAA GAC CA-3� and 5�-TAA CGC ACT AGG TTT GCC GA-3�;
18S: 5�-GCA ATT ATT CCC CAT GAA CG-3� and 5�-GGC CTC ACT
AAA CCA TCC A-3�). Measurement of the 18S rRNA level of the samples
was used to normalize mRNA contents, with the mRNA level being ex-
pressed relative to the corresponding control.

Drug treatment. Thirty minutes after BCAS, mice were intraperitone-
ally injected with 50 mg/kg �1 minocycline hydrochloride (Sigma-
Aldrich). Thereafter, the animals were injected once a day after BCAS, at
a dose of 50 mg/kg �1. Control groups were treated with PBS 30 min after
stroke and once a day thereafter.

Generation of bone marrow chimeric mice. Homozygous TRPM2 �/�

male mice were crossed with GFP-transgenic female mice to produce
GFP � TRPM2 �/� mice. GFP � TRPM2 �/� (WT) mice were obtained
by the hetero-mating of GFP � TRPM2 �/� female and male mice to
obtain suitable bone marrow (BM) donor mice. BM transplantation was
performed as previously reported (Isami et al., 2013), with slight modifica-
tions. BM recipients were male 6-week-old C57BL/6J WT or TRPM2-KO
mice. Recipient mice were irradiated with 8 Gy total body irradiation to
kill the BM cells. GFP � WT donor mice were killed by decapitation, their
femurs were isolated, and both ends were cut and placed into a micro-
tube. The femurs were centrifuged at 400 � g for 10 min, and the pellet of
GFP � BM cells was suspended in sterile PBS. Between 3 and 5 h after the
irradiation, the WT or TRPM2-KO recipient mice were transplanted
with 4.0 � 10 6 BM cells by an intravenous injection into the tail vein. WT
recipient mice transplanted with WT donor mouse-derived GFP� BM
cells (WTWT-BM), and TRPM2-KO recipient mice transplanted with WT
donor mouse-derived GFP� BM cells (TRPM2-KOWT-BM), were housed in
an environment of specific pathogen-free conditions with ad libitum access
to autoclaved pellets and autoclaved water. After 6 weeks, all chimeric ani-
mals were housed in a conventional environment, and male BM chimeric
mice were used for BCAS surgery at the age of 12 weeks.

Flow cytometry. Flow cytometry was used to identify the purity of
GFP � cells in the blood after the BM transplantation. Peripheral blood
(100 �l) was collected from the tail vein of each chimeric mouse at 6
weeks after BM transplantation. Collected blood was dissolved in 300 �l
of saline diluted three times for �10 s to hemolyze the erythrocytes. After
adding 1000 �l of saline to restore the osmotic pressure, the solution was
centrifuged for 5 min at 2000 � g. After pipetting off the supernatant, the
cells were washed by adding 1000 �l of saline and were again centrifuged
for 5 min at 2000 g. After again pipetting off the supernatant, 500 �l of
fluorescence-activated cell sorting (FACS) buffer (0.02 M ethylene di-
aminetetraacetic acid and 0.01% bovine serum albumin in PBS) was added.
The purity of the GFP� cells was assessed by FACS (BD FACSAriaII, Becton
Dickinson).

Experimental design and statistical analysis. Statistical analysis was per-
formed using Prism 6 software (GraphPad Software; RRID:SCR_002798).
Details on statistical analyses and experimental design, including tests
performed, exact p values, and sample sizes, are provided with the results
describing each figure, or within the legend of each figure. Briefly, for
comparisons between a single experimental group and a control group
Student’s t test or a Mann–Whitney test was used. For comparisons
between multiple experimental groups, one-way ANOVA followed by
Dunnett’s post hoc comparison test or Kruskal–Wallis test followed by
Dunn’s post hoc comparison test was used. In addition, two-way ANOVA
with Bonferroni’s post hoc test was used as appropriate. In all cases, dif-
ferences of p � 0.05 were considered statistically significant. Data are
given as mean � SEM.

Each data point represents one sample (section or extracts from spe-
cific brain regions, such as corpus callosum or hippocampus) of one
individual mouse. The numbers of animals used in each experiment are
indicated in the figure legends. The assessor was blinded to treatment
condition assignment.

Results
Assessment of BCAS-induced cognitive impairment
When mice were subjected to BCAS, the rCBF 60 min after the
operation was successfully decreased to �60% compared with
the sham operation, with the change not differing between the
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WT and TRPM2-KO mice (WT BCAS: 60.72 � 8.18%,
TRPM2-KO BCAS: 58.08 � 6.09%; sham vs BCAS: F(1,11) 	
34.35, p 	 0.0001, WT vs TRPM2-KO: F(1,11) 	 0.04, p 	 0.8508,
two-way ANOVA; WT sham vs WT BCAS: t 	 4.099, p 	 0.0035,
TRPM2-KO sham vs TRPM2-KO BCAS: t 	 4.189, p 	 0.0030,
Bonferroni post hoc test). The Y-maze test was conducted to as-
sess the involvement of TRPM2 in cognitive impairment induced
by chronic cerebral hypoperfusion (Fig. 1A–D). At day 14 after
BCAS, alternation behavior had not decreased in either of the
BCAS-operated mouse groups in comparison with the sham
groups (Fig. 1A; sham vs BCAS: F(1,48) 	 0.18, p 	 0.6761, WT vs
TRPM2-KO: F(1,48) 	 0.55, p 	 0.4609, two-way ANOVA). At

day 28, however, there were significant
decreases in BCAS-operated WT mice,
whereas the reduction was significantly
suppressed in BCAS-operated TRPM2-KO
mice (Fig. 1B; sham vs BCAS: F(1,71) 	
7.05, p 	 0.0098, WT vs TRPM2-KO:
F(1,71) 	 6.04, p 	 0.0164, two-way
ANOVA; WT sham vs WT BCAS: t 	
2.525, p 	 0.0270, WT BCAS vs
TRPM2-KO BCAS: t 	 2.735, p 	 0.0157,
Bonferroni post hoc test). The number of
arm entries as an index of locomotor ac-
tivity did not differ between the genotypes
on days 14 and 28 [(Fig. 1C) sham vs
BCAS: F(1,48) 	 3.55, p 	 0.0655, WT vs
TRPM2-KO: F(1,48) 	 0.37, p 	 0.5443,
two-way ANOVA; (D) sham vs BCAS:
F(1,71) 	 0.77, p 	 0.3840, WT vs TRPM2-
KO: F(1,71) 	 1.30, p 	 0.2584, two-way
ANOVA]. The novel object recognition
test was performed to further evaluate
cognitive performance (Fig. 1E,F). Ex-
ploratory preferences to the two different
objects were �50%, with no significant
difference being observed in the training
sessions on days 14 and 28 (day 14; sham
vs BCAS: F(1,40) 	 0.05, p 	 0.8284, WT vs
TRPM2-KO: F(1,40) 	 2.64, p 	 0.1118,
two-way ANOVA, data not shown; day
28; sham vs BCAS: F(1,44) 	 0.06, p 	
0.8024, WT vs TRPM2-KO: F(1,44) 	 1.97,
p 	 0.1673, two-way ANOVA, data not
shown). In the test session, exploratory
preferences to the novel object after the
training session and interval did not differ
between the groups at day 14 after BCAS,
whereas at day 28 there were significant
decreases in BCAS-operated WT mice,
with the reduction being significantly sup-
pressed in BCAS-operated TRPM2-KO
mice [(Fig. 1E) sham vs BCAS: F(1,40) 	
0.69, p 	 0.4123, WT vs TRPM2-KO:
F(1,40) 	 0.04, p 	 0.8484, two-way
ANOVA; (F) sham vs BCAS: F(1,44) 	
20.13, p � 0.0001, WT vs TRPM2-KO:
F(1,44) 	 7.38, p 	 0.0094, two-way
ANOVA; WT sham vs WT BCAS: t 	
5.777, p � 0.0001, WT BCAS vs
TRPM2-KO BCAS: t 	 4.498, p � 0.0001,
Bonferroni post hoc test]. These results
suggest that TRPM2 could be involved in

the development of cognitive impairment induced by chronic
cerebral hypoperfusion.

Evaluation of BCAS-induced white matter injury
White matter damage is a characteristic of a variety of CNS dis-
eases, and is associated with cognitive impairment in dementia
cases (Douaud et al., 2013) and other psychological disorders (de
Groot et al., 2000). To evaluate the involvement of TRPM2 in
white matter injury due to chronic cerebral hypoperfusion, my-
elin staining was performed in the corpus callosum at days 14 and
28 after BCAS (Fig. 2A–C). In BCAS-operated WT mice, there

Figure 1. BCAS-induced cognitive decline at day 28 was not observed in TRPM2-KO mice. A–D, Alternation behavior at day 14
(A) and day 28 (B) and the number of arm entries at day 14 (C) and day 28 (D) after BCAS in the Y-maze test. E, F, Exploratory
preference to the novel object in the novel object recognition test session at days 14 (E) and 28 (F ) after BCAS. *p � 0.05 and
***p � 0.001 vs WT sham; #p � 0.05 and ###p � 0.001 vs WT BCAS. Values are mean � SEM. A, C, n 	 12–14; B, D, n 	 14 –25;
E, n 	 10 –13; F, n 	 11–13.
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was a gradual decrease in myelin density
compared with the sham mice (Fig. 2A,B;
sham vs BCAS: F(2,28) 	 3.163, p 	 0.0578,
one-way ANOVA; sham vs D28: q 	
2.513, p 	 0.0333, Dunnett’s multiple-
comparison test). By contrast, such a
decrease was not observed in BCAS-
operated TRPM2-KO mice (Fig. 2A,C;
sham vs BCAS: F(2,25) 	 0.6848, p 	
0.5134, one-way ANOVA). For a further
assessment of white matter damage, im-
munostaining of GSTpi, a marker of
oligodendrocytes, was performed. In
BCAS-operated WT mice, the number of
GSTpi-positive cells in the corpus callo-
sum decreased in a time-dependent man-
ner, similar to myelin density, whereas in
TRPM2-KO mice, such a decrease was not
observed [(Fig. 2D,E) sham vs BCAS:
F(2,22) 	 2.914, p 	 0.0754, one-way
ANOVA; sham vs D28: q 	 2.411, p 	
0.0452, Dunnett’s multiple-comparison
test; (D,F) sham vs BCAS: F(2,18) 	
0.1525, p 	 0.8596, one-way ANOVA].
These results imply that TRPM2 plays a
critical part in the aggravation of white
matter injury.

Next, we investigated the condition of
gray matter when mice were subjected to
chronic cerebral hypoperfusion for 28 d.
Immunostaining with the neuron marker NeuN revealed that, in
comparison with the sham groups, there was no clear pathologi-
cal change in the number of NeuN-positive cells after BCAS sur-
gery in the hippocampus, including CA1 (Fig. 3A,E), CA3 (Fig.
3B,F), dentate gyrus (DG; Fig. 3C,G), and the cerebral cortex
(Fig. 3D,H), which is a finding consistent with those of previous
studies [Nishio et al., 2010; Yamada et al., 2011; (Fig. 3A,E) sham
vs BCAS: F(1,15) 	 0.01, p 	 0.9146, two-way ANOVA; (B,F)
sham vs BCAS: F(1,15) 	 0.13, p 	 0.7207, two-way ANOVA;
(C,G) sham vs BCAS: F(1,15) 	 0.20, p 	 0.6579, two-way
ANOVA; (D,H) sham vs BCAS: F(1,15) 	 0.03, p 	 0.8710, two-
way ANOVA].

Inflammatory changes in the corpus callosum after BCAS
We attempted further investigations into the pathological
changes in the white matter area at days 14 and 28 after BCAS. As
blood– brain barrier (BBB) breakdown appears to be one of the
exacerbating factors in this chronic cerebral hypoperfusion
model (Seo et al., 2013), IgG staining in the corpus callosum was
performed to explore the leakage of serum. At days 14 and 28
after BCAS, IgG leakage tended to increase in both the WT and
TRPM2-KO mice in comparison with the sham operation
mice, although there were no significant differences between
the WT and TRPM2-KO groups (Fig. 4A,B; sham vs BCAS:
F(1,26) 	 1.11, p 	 0.3441, WT vs TRPM2-KO: F(1,26) 	 0.01, p 	
0.9363, two-way ANOVA). Next, we measured the tissue content
of H2O2, as it is an endogenous stimulator for TRPM2 (Hara et
al., 2002). The H2O2 levels were significantly increased from day
14 after BCAS surgery in comparison with the sham operation,
although there was no significant difference between WT and
TRPM2-KO mice (Fig. 4C; sham vs BCAS: F(2,28) 	 7.22, p 	
0.0030, WT vs TRPM2-KO: F(1,28) 	 0.06, p 	 0.8089, two-way
ANOVA; WT sham vs WT D14: t 	 3.209, p 	 0.0100,

TRPM2-KO sham vs TRPM2-KO D14: t 	 2.109, p 	 0.1322,
Bonferroni post hoc test).

We next determined inflammatory signals at days 14 and 28
after BCAS. TRPM2 mRNA expression in the corpus callosum
was increased at day 28 after BCAS surgery (Fig. 5A; p 	 0.00064,
Kruskal–Wallis test; sham vs D28: p 	 0.0033, Dunn’s multiple-
comparison test). In addition, proinflammatory cytokines in-
cluding IL1� (Fig. 5B), TNF� (C), and IL6 (D) were detected in
the corpus callosum after chronic cerebral hypoperfusion, and
the protein levels of IL1� [(Fig. 5B) sham vs BCAS: F(2,59) 	
10.45, p 	 0.0001, WT vs TRPM2-KO: F(1,59) 	 16.30, p 	
0.0002, two-way ANOVA; WT sham vs WT D28: t 	 5.148, p �
0.0001, WT D28 vs TRPM2-KO D28: t 	 4.888, p � 0.0001,
Bonferroni post hoc test) and TNF� (C) sham vs BCAS: F(2,59) 	
1.83, p 	 0.1695, WT vs TRPM2-KO: F(1,59) 	 4.46, p 	 0.0389,
two-way ANOVA; WT sham vs WT D28: t 	 2.583, p 	 0.0369,
WT D28 vs TRPM2-KO D28: t 	 2.775, p 	 0.0222, Bonferroni
post hoc test] at day 28 were significantly decreased in
TRPM2-KO mice compared with WT mice, when the change in
the IL6 level between genotypes was slight [(Fig. 5D) sham vs
BCAS: F(2,58) 	 5.48, p 	 0.0066, WT vs TRPM2-KO: F(1,58) 	
2.00, p 	 0.1628, two-way ANOVA; WT sham vs WT D28: t 	
3.402, p 	 0.0037, Bonferroni post hoc test]. These findings indi-
cate that TRPM2 is needed for inflammatory responses after
chronic cerebral hypoperfusion.

Involvement of Iba1-positive cells in the white matter
after BCAS
To identify the type of cells responsible for the exacerbation of
chronic cerebral hypoperfusion-induced inflammatory events,
we performed immunostaining with the astrocyte marker GFAP
(Fig. 6A,B), and Iba1 (C,D) as a marker for microglia and mac-
rophages in the corpus callosum. The number of GFAP-positive
cells was increased in both WT and TRPM2-KO mice from day 14

Figure 2. BCAS-induced white matter injury at day 28 was not observed in TRPM2-KO mice. A–C, Representative images of
white matter in the corpus callosum by fluoromyelin staining (A) and the relative myelin density in WT (B) and TRPM2-KO mice (C).
D–F, Representative images of immunostaining with GSTpi antibody in the corpus callosum (D) and the number of positive cells
counted in WT (E) and TRPM2-KO mice (F ). A, D, Bottom, Magnified images from the location marked by the boxed area of the
above panels. *p � 0.05 vs WT sham. Values are mean � SEM. B, C, n 	 8 –12; E, F, n 	 6 –9.
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after the BCAS surgery, although there were no differences
between these two groups (Fig. 6B; sham vs BCAS: F(2,31) 	
12.33, p 	 0.0001, WT vs TRPM2-KO: F(1,31) 	 0.38, p 	 0.5408,
two-way ANOVA; WT sham vs WT D14: t 	 2.904, p 	 0.0202,
TRPM2-KO sham vs TRPM2-KO D14: t 	 2.598, p 	 0.0427, WT

sham vs WT D28: t 	 3.065, p 	 0.0134,
TRPM2-KO sham vs TRPM2-KO D28:
t 	 3.477, p 	 0.0046, Bonferroni post hoc
test). By contrast, an observed increase in
Iba1-positive cells gradually decreased to
day 28 after BCAS in TRPM2-KO mice
compared with the WT mice, when a sig-
nificant change was observed (Fig. 6D;
sham vs BCAS: F(2,41) 	 8.37, p 	 0.0009,
WT vs TRPM2-KO: F(1,41) 	 9.43, p 	
0.0038, two-way ANOVA; WT sham vs
WT D14: t 	 3.827, p 	 0.0013, WT sham
vs WT D28: t 	 3.086, p 	 0.0109, WT D14
vs TRPM2-KO D14: t 	 2.702, p 	 0.0299,
WT D28 vs TRPM2-KO D28: t 	 2.927,
p 	 0.0167, Bonferroni post hoc test). Gr1-
immunopositive neutrophils were not de-
tected in brain parenchyma at day 28 after
the BCAS surgery (data not shown). We
then investigated the possible involve-
ment of microglia/macrophage-related
genes. In brain tissue, CX3CR1 is exclu-
sively expressed on microglia (Y. Liu et al.,
2015), whereas in the circulating blood,
CX3CR1 is primarily expressed on circu-
lating monocytes and tissue macrophages,
and also on a subset of T cells and natural
killer cells (Böttcher et al., 2015). The
mRNA level of this receptor was signifi-
cantly increased in WT mice after BCAS
and TRPM2 deletion significantly sup-
pressed an increase (Fig. 6E; sham vs
BCAS: F(2,64) 	 4.37, p 	 0.0166, WT vs
TRPM2-KO: F(2,64) 	 8.20, p 	 0.0057,
two-way ANOVA; WT sham vs WT D14:
t 	 3.421, p 	 0.0033, WT sham vs WT
D28: t 	 3.054, p 	 0.0099, WT D14 vs
TRPM2-KO D14: t 	 2.522, p 	 0.0425,
WT D28 vs TRPM2-KO D28: t 	 2.487,
p 	 0.0465, Bonferroni post hoc test),
whereas the mRNA level of CX3CL1,
which is a specific ligand for CX3CR1 and
expressed primarily in neurons (Y. Liu et
al., 2015), showed no changes between
sham and BCAS groups (Fig. 6F; sham vs
BCAS: F(1,51) 	 0.23, p 	 0.6301, WT vs
TRPM2-KO: F(2,51) 	 0.09, p 	 0.9119,
two-way ANOVA). In addition, the ex-
pression levels of the activated microglia/
macrophage markers, such as MHCII and
CD68 (Perry and Holmes, 2014), were sig-
nificantly increased in WT mice at day 14
after BCAS, whereas no change was ob-
served in TRPM2-KO mice [Fig. 6G; sham
vs BCAS: F(2,50) 	 5.27, p 	 0.0084, WT vs
TRPM2-KO: F(1,50) 	 3.61, p 	 0.0630,
two-way ANOVA; WT sham vs WT D14:
t 	 3.748, p 	 0.0014, WT D14 vs

TRPM2-KO D14: t 	 2.972, p 	 0.0136, Bonferroni post hoc test;
(H) sham vs BCAS: F(2,47) 	 4.68, p 	 0.0140, WT vs TRPM2-KO:
F(1,47) 	 7.18, p 	 0.0101, two-way ANOVA; WT sham vs WT D14:
t 	 3.777, p 	 0.0013, WT D14 vs TRPM2-KO D14: t 	 3.550, p 	
0.0027, Bonferroni post hoc test]. We also examined the key in-

Figure 3. Neuronal death was not observed in either WT or TRPM2-KO mice at day 28 after BCAS. A–D, Representative images
of NeuN-positive neurons in CA1 (A), CA3 (B), DG (C), and cerebral cortex (D) at 28 d after BCAS. E–H, The number of NeuN-positive
cells measured in each area. Values are mean � SEM. n 	 3– 6.

Figure 4. No differences were observed in BBB permeability and ROS production in the corpus callosum between WT and
TRPM2-KO mice at days 14 and 28 after BCAS. A, B, Representative images (A) and relative leakage (B) evaluated by IgG staining.
C, The level of measured H2O2 content. **p � 0.01 vs WT sham. Values are mean � SEM. B, n 	 4 – 8; C, n 	 5– 6. n.s., Not
significant.
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nate immune receptor toll-like-receptor 4
(TLR4) and its coreceptor CD14, and
found that the mRNA levels of TLR4 and
CD14 were significantly increased in WT
mice after the BCAS surgery; however,
there was no difference between WT and
TRPM2-KO mice, implying that signifi-
cant changes in TLR4 in microglia/mac-
rophages might be masked by the
upregulated TLR4 expression in neurons
(Vindiš et al., 2014) and astrocytes [Shen
et al., 2016; (Fig. 6I) sham vs BCAS: F(2,41)

	 6.39, p 	 0.0038, WT vs TRPM2-KO:
F(1,41) 	 0.23, p 	 0.6305, two-way
ANOVA; (J) sham vs BCAS: F(2,49) 	 3.43,
p 	 0.0402, WT vs TRPM2-KO: F(1,49) 	
0.20, p 	 0.6542, two-way ANOVA].
Moreover, we checked the expression of
triggering receptor by myeloid cells 2
(TREM2), which has anti-inflammatory
properties and is linked to phagocytosis
on microglia/macrophages (Jay et al.,
2017). However, throughout the hypo-
perfusion period there was no difference
between WT and TRPM2-KO mice, and
between sham and BCAS groups (Fig. 6K;
sham vs BCAS: F(2,55) 	 0.76, p 	 0.4717,
WT vs TRPM2-KO: F(1,55) 	 0.00, p 	
0.9908, two-way ANOVA).

To investigate whether suppression of
Iba1-positive cells affects chronic cerebral
hypoperfusion-induced cognitive impair-
ment, we systemically administered minocycline, an inhibitor for
microglia and macrophages, into BCAS-operated mice. Daily
treatment with minocycline significantly diminished the number
of Iba1-positive cells in comparison with vehicle-treated mice at
day 28 after BCAS, as expected (Fig. 6L,M; sham vs BCAS: F(1,14) 	
3.132, p 	 0.0986, vehicle vs minocycline: F(1,14) 	 6.63, p 	 0.0221,
two-way ANOVA; vehicle sham vs vehicle BCAS: t 	 2.716, p 	
0.0335, vehicle BCAS vs minocycline BCAS: t 	 3.484, p 	 0.0073,
Bonferroni post hoc test). Furthermore, in the test session of the
novel object recognition test, minocycline-treated mice showed
significant reductions in cognitive disturbance compared with
vehicle-treated mice (Fig. 6N; sham vs BCAS: F(1,45) 	 11.53, p 	
0.0014, vehicle vs minocycline: F(1,45) 	 9.23, p 	 0.0040, two-way
ANOVA; vehicle sham vs vehicle BCAS: t 	 4.020, p 	 0.0004,
vehicle BCAS vs minocycline BCAS: t 	 3.764, p 	 0.0010; Bonfer-
roni post hoc test). These results suggest that Iba1-positive cells are
involved in the aggravation of cognitive dysfunction induced by
chronic cerebral hypoperfusion.

Involvement of Iba1-positive cells in the hippocampus
after BCAS
As with the corpus callosum, we further examined the possible
involvement of astrocytes,microglia/macrophages,andneutrophils in
the hippocampus, which is important for cognitive function. Im-
munostaining revealed that the numbers of GFAP-positive astro-
cytes in CA1, CA3, and DG areas of the hippocampus were either
significantly increased or showed a tendency to increase in both
WT and TRPM2-KO mice at day 28 after the BCAS surgery;
however, there were no differences between these genetic groups
[(Fig. 7A,B) sham vs BCAS: F(1,15) 	 15.19, p 	 0.0014, WT vs
TRPM2-KO: F(1,15) 	 0.00, p 	 0.9612, two-way ANOVA; WT

sham vs WT D28: t 	 3.079, p 	 0.0153, TRPM2-KO sham vs
TRPM2-KO D28: t 	 2.421, p 	 0.0572, Bonferroni post hoc test;
(E,F) sham vs BCAS: F(1,15) 	 11.89, p 	 0.0036, WT vs TRPM2-
KO: F(1,15) 	 0.07, p 	 0.7983, two-way ANOVA; WT sham vs
WT D28: t 	 2.357, p 	 0.0649, TRPM2-KO sham vs
TRPM2-KO D28: t 	 2.523, p 	 0.0468, Bonferroni post hoc test;
( I, J) sham vs BCAS: F(1,15) 	 16.71, p 	 0.0010, WT vs TRPM2-
KO: F(1,15) 	 0.22, p 	 0.6424, two-way ANOVA; WT sham vs
WT D28: t 	 3.038, p 	 0.0166, TRPM2-KO sham vs
TRPM2-KO D28: t 	 2.738, p 	 0.0305, Bonferroni post hoc test].
By contrast, significant increases in the numbers of Iba1-positive
microglia/macrophages in CA1, CA3, and DG areas of the hip-
pocampus were observed in WT mice, whereas they were signif-
icantly decreased or showed a tendency to decrease in
TRPM2-KO mice at day 28 after the BCAS operation [(Fig. 7C,D)
sham vs BCAS: F(1,22) 	 11.93, p 	 0.0023, WT vs TRPM2-KO:
F(1,22) 	 5.02, p 	 0.0355, two-way ANOVA; WT sham vs WT
D28: t 	 2.984, p 	 0.0137, TRPM2-KO sham vs TRPM2-KO
D28: t 	 1.888, p 	 0.1446, WT D28 vs TRPM2-KO D28: t 	
2.353, p 	 0.0559, Bonferroni post hoc test; (G,H) sham vs BCAS:
F(1,22) 	 11.57, p 	 0.0026, WT vs TRPM2-KO: F(1,22) 	 1.49, p 	
0.2357, two-way ANOVA; WT sham vs WT D28: t 	 3.443,
p 	 0.0046, TRPM2-KO sham vs TRPM2-KO D28: t 	 1.343,
p 	 0.3862, WT D28 vs TRPM2-KO D28: t 	 2.113, p 	 0.0924,
Bonferroni post hoc test; (K,L) sham vs BCAS: F(1,22) 	 9.96, p 	
0.0046, WT vs TRPM2-KO: F(1,22) 	 2.57, p 	 0.1229, two-way
ANOVA; WT sham vs WT D28: t 	 3.324, p 	 0.0062,
TRPM2-KO sham vs TRPM2-KO D28: t 	 1.112, p 	 0.5562,
WT D28 vs TRPM2-KO D28: t 	 2.467, p 	 0.0437, Bonferroni
post hoc test]. Gr1-positive neutrophils were not detected in any
of the regions of the hippocampus (data not shown). We then

Figure 5. TRPM2 mRNA upregulation and proinflammatory cytokine production were detected in the corpus callosum at days
14 and 28 after BCAS. A, The mRNA expression level of TRPM2 by real-time PCR. B–D, The protein levels of IL1� (B), TNF� (C), and
IL6 (D) measured by ELISA. *p � 0.05, **p � 0.01, and ***p � 0.001 vs WT sham; #p � 0.05 and ###p � 0.001 vs WT BCAS.
Values are mean � SEM. A, n 	 10 –13; B–D, n 	 9 –14. n.s., Not significant.
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investigated the expression of TRPM2 and microglia/macrophage-
related genes in the hippocampus at day 28 after BCAS operation.
TRPM2 mRNA expression in the hippocampus showed a tendency
to increase in BCAS-operated WT mice (Fig. 7M). CX3CR1 mRNA
expression was significantly increased at day 28 after BCAS, although
this increase was not observed in TRPM2-KO mice (Fig. 7N; sham
vs BCAS: F(1,31) 	 4.70, p 	 0.0379, WT vs TRPM2-KO: F(1,31) 	
2.61, p 	 0.1162, two-way ANOVA; WT sham vs WT D28:

t 	 3.210, p 	 0.0062, WT D28 vs TRPM2-KO D28: t 	 2.429,
p 	 0.0422, Bonferroni post hoc test.). CX3CL1 mRNA expres-
sion was not changed (Fig. 7O; sham vs BCAS: F(1,19) 	 0.16, p 	
0.6970, WT vs TRPM2-KO: F(1,19) 	 0.39, p 	 0.5398, two-way
ANOVA.). Moreover, in comparison with the sham operation,
there was only a slight increase in the production of cytokines in
the hippocampus after BCAS operation, including IL1�, TNF�,
and IL6 [(Fig. 7P) sham vs BCAS: F(1,32) 	 3.35, p 	 0.0767, WT

Figure 6. The number of Iba1-positive cells in the corpus callosum and microglia-related genes were decreased in TRPM2-KO mice at days 14 and 28, with the pharmacological inhibition
ameliorating the cognitive outcomes in BCAS-operated mice at day 28. A, B, Representative images (A) and the number (B) of GFAP-positive cells in the corpus callosum. C, D, Representative images
(C) and the number (D) of Iba1-positive cells in the corpus callosum. A, C, Bottom, Magnified images from the location marked by the boxed area of the above panels. *p � 0.05 and **p � 0.01 vs
sham groups; #p � 0.05 vs WT BCAS. E–K, The mRNA expression levels of CX3CR1 (E), CX3CL1 (F ), MHCII (H2-Aa, G), CD68 (H ), TLR4 (I ), CD14 (J ), and TREM2 (K ) by real-time PCR. **p � 0.01 vs
WT sham; #p � 0.05 and ##p � 0.01 vs WT BCAS. L–N, Representative images (L) and the number (M ) of Iba1-positive cells in the corpus callosum, and exploratory preference to the novel object
in the test session (N ), at day 28 after daily treatment with minocycline or vehicle. L, Bottom, Magnified images from the location marked by the boxed area of the above panels. *p � 0.05 and
***p � 0.001 vs vehicle sham; ##p � 0.01, and ###p � 0.001 vs vehicle BCAS. Values are mean � SEM. B, D, n 	 5–12; E–K, n 	 6 –16; M, n 	 4 –5; N, n 	 12–13.
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vs TRPM2-KO: F(1,32) 	 4.33, p 	 0.0456, two-way ANOVA; (Q)
sham vs BCAS: F(1,31) 	 6.75, p 	 0.0142, WT vs TRPM2-KO:
F(1,31) 	 0.10, p 	 0.7540, two-way ANOVA; (R) sham vs BCAS:
F(1,33) 	 3.84, p 	 0.0587, WT vs TRPM2-KO: F(1,33) 	 2.33, p 	
0.1361, two-way ANOVA]. H2O2 production in the hippocampus
was not changed at day 28 after BCAS (Fig. 7S; sham vs BCAS:
F(1,19) 	 0.05, p 	 0.8185, WT vs TRPM2-KO: F(1,19) 	 0.07, p 	
0.7917, two-way ANOVA). Together with the observation in Fig-
ure 3, these findings indicate that hippocampal damage did not
occur at day 28 after BCAS operation.

Identification of Iba1-positive cells after BCAS
Finally, we addressed the remaining question as to whether these
accumulated Iba1-positive cells are peripheral macrophages or
brain-resident microglia. To identify these cells, we generated
BM chimeric mice, whose BM-derived cells were replaced with

GFP-labeled BM-derived cells harvested from GFP-positive WT
mice. These chimeric mice were divided into two groups: WT
chimeric mice transplanted with GFP-positive WT BM (WTWT-BM

mice), and TRPM2-KO mice transplanted with GFP-positive WT
BM (TRPM2-KO WT-BM mice). BM-derived cells in these chime-
ric mice were successfully replaced with 
90% GFP-positive BM
(data not shown). There were no changes in the number of Iba1-
positive cells in sham-operated chimeric mice (Fig. 8A,C; t(4) 	
0.4392, p 	 0.6832, unpaired Student’s t test), which showed a
similarly small number as the sham-operated groups shown in Fig-
ure 6. Almost no GFP-positive cells were detected in these groups
(Fig. 8B; t(4) 	 0.5000, p 	 0.6433, unpaired Student’s t test), dem-
onstrating that the irradiation did not affect the general morphol-
ogy and proliferation of microglia. At day 28 after performing
BCAS on the chimeric mice, infiltration of GFP-positive cells was
observed in the corpus callosum, in contrast to the situation in

Figure 7. The numbers of GFAP- and Iba1-positive cells were increased but there was a slight change of cytokines in the hippocampus of WT mice at 28 d after BCAS. A, B, E, F, I, J, Representative
images (A, E, I ) and the number (B, F, J ) of GFAP-positive cells in CA1 (A, B), CA3 (E, F ), and DG (I, J ). C, D, G, H, K, L, Representative images (C, G, K ) and the number (D, H, L) of Iba1-positive cells
in CA1 (C, D), CA3 (G, H ), and DG (K, L). *p � 0.05 and **p � 0.01 vs WT sham; #p � 0.05 vs WT BCAS. M–R, The mRNA expression level of TRPM2 (M ), CX3CR1 (N ), CX3CL1 (O), IL1� (P), TNF� (Q),
and IL6 (R) by real-time PCR. **p � 0.01 vs WT sham; #p � 0.05 vs WT BCAS. S, The level of measured H2O2 content. Values are mean � SEM. B, D, F, H, J, L, n 	 4 – 6; M–R, n 	 5–13; S, n 	 5– 6.
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the sham-operated groups, whereas the
numbers were not different between
BCAS-operated WT WT-BM mice and
TRPM2-KO WT-BM mice (Fig. 8D,E; t(16)

	 0.4793, p 	 0.6382, unpaired Student’s
t test). Importantly, immunostaining with
Iba1 revealed that Iba1-positive cells did
not emerge with GFP fluorescence (Fig.
8D). This observation suggests that pe-
ripheral Iba1-positive cells no longer infil-
trate into the brain in this chronic cerebral
hypoperfusion model. Furthermore, BCAS-
operated TRPM2-KO WT-BM mice showed
a significant decrease in Iba1-positive
cells, similar to that shown in Figure 6
(Fig. 8D,F; t(16) 	 3.449, p 	 0.0036, un-
paired Student’s t test), although their BM
was WT. In addition, the number of
GSTpi-positive cells after BCAS was sig-
nificantly higher in TRPM2-KO WT-BM

mice than in WT WT-BM mice (Fig. 8G,H;
t(13) 	 3.266, p 	 0.0061, unpaired Stu-
dent’s t test). Approximately 50% of GFP-
positive cells merged with CD3, a marker
of T cells (Fig. 8 I, J; t(23) 	 0.1065, p 	
0.9161, unpaired Student’s t test). To as-
sess the cognitive performance of these
chimeric mice, Y-maze tests (Fig. 8K) and
novel object recognition tests (Fig. 8L)
were conducted. BCAS-operated TRPM2-
KOWT-BM mice showed significantly higher
alternation behavior (Fig. 8K; t(28) 	
2.241, p 	 0.0331, unpaired Student’s t
test) and exploratory preference to the novel
object than the WTWT-BM mice (Fig. 8L;
t(13) 	 3.704, p 	 0.0026, unpaired Stu-
dent’s t test). Together, these findings in-
dicate that the Iba1-positive cells that
accumulated in the brain were not macro-
phages, but resident microglia, and cen-
tral TRPM2 activation is crucial for
microglial activation.

Discussion
In the present study, we provide the first
evidence that TRPM2 in resident micro-
glia plays critical roles in the pathogenesis
of chronic cerebral hypoperfusion through
the aggravation of inflammatory responses,
as supported by the following findings.
(1) TRPM2 deficiency suppressed cogni-
tive function and white matter injury after
BCAS. (2) Releases of proinflammatory
cytokines, such as TNF� and IL6, were re-
duced in TRPM2-KO mice. (3) The ex-
pression of TRPM2 mRNA was increased
at the lesion site with the production of
reactive oxygen species (ROS). (4) TRPM2
deficiency significantly decreased the ac-
cumulation of Iba1-positive cells in the
corpus callosum, without a change in the
number of GFAP-positive cells between
genotypes. (5) Minocycline, which is an

Figure 8. In chimeric mice, Iba1-positive cells activated 28 d after BCAS were microglia, not macrophages. A–C, Repre-
sentative images (A) and the number of GFP-positive cells (B) and Iba1-positive cells (C) in the corpus callosum of
sham-operated chimeric mice. D–F, Representative images (D) and the number of GFP-positive cells (E) and Iba1-positive
cells (F ) in the corpus callosum of BCAS-operated chimeric mice. D, Bottom, Magnified images from the location marked by
the boxed area of the above panels. G, H, Representative images (G) and the number of GSTpi-positive cells (H ) in the
corpus callosum. I, J, Representative image (I ) and the number of GFP and CD3 double-positive cells (J ) in the corpus
callosum. K, Alternation behavior in the Y-maze test at day 28 after BCAS. L, Exploratory preferences to the novel object in
the novel object recognition test session at day 28 after BCAS. *p � 0.05 and **p � 0.01 vs WT WT-BM. Values are mean �
SEM. B, C, n 	 3; E, F, H, J–L, n 	 9 –15.
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inhibitor of microglia/macrophage activation, prevented cogni-
tive decline in WT mice. (6) BM chimeric TRPM2-KOWT-BM mice
showed a significant decrease in the number of Iba1-positive cells, as
well as attenuation of cognitive impairment, in comparison with
WTWT-BM mice, the extent of which was similar to that observed
in TRPM2-global knock-out mice. Figure 9 shows the schematics
for the role of TRPM2 under chronic cerebral hypoperfusion.

It would be of interest to know the precise mechanisms of
TRPM2-mediated cognitive impairment induced by chronic cere-
bral hypoperfusion. A number of studies on BCAS models have
indicated that one of the initial pathophysiological changes induced
by chronic cerebral hypoperfusion is BBB breakdown. Seo et al.
(2013) reported that IgG leakages (namely, BBB breakdown) in the
corpus callosum are detected by immunohistochemistry at days 3
and 7 after BCAS; these are times when activation of glial cells, in-
cluding astrocytes and microglia, is not observed (Duan et al., 2009).
In patients with neuromyelitis optica, the severity of BBB breakdown
was shown to correlate with the levels of proinflammatory mark-
ers (Uchida et al., 2017). Given that peripheral bloodborne sub-
stances such as thrombin (Yang et al., 2015) and CCL11 (Villeda
et al., 2011) aggravate CNS inflammation, BBB integrity could
play an important role as a barrier contributing to prevention of
extravasation of these toxic factors from the circulation into the
brain parenchyma. In fact, BBB permeability is associated with
white matter hyperintensity in patients with manifestations of
vascular dementia and Alzheimer’s disease (Farrall and Wardlaw,
2009). In the present study, there were no differences between
WT and TRPM2-KO mice in the extent of BBB breakdown, im-
plying that TRPM2 is not involved in BBB disruption, and may
therefore be involved in more delayed phases of pathogenesis
after chronic cerebral hypoperfusion.

ROS have detrimental roles for oligodendrocyte vulnerability
(Volpe et al., 2011) and BBB permeability (Toyama et al., 2014),
which are involved in chronic cerebral hypoperfusion-induced
cognitive impairment (H. Liu and Zhang, 2012). More impor-
tantly, ROS are well known as endogenous agonists for TRPM2
(Hara et al., 2002). Several studies using scavengers or markers
for ROS suggest that they are produced and released in chronic
cerebral hypoperfusion (Dong et al., 2011; Miyamoto et al., 2013;
Yang et al., 2017). In this study, we directly detected the levels of
ROS in the corpus callosum at day 14 after BCAS and found them

to be similar between WT and TRPM2-KO mice, indicating that
TRPM2 is not involved in ROS production itself after the induc-
tion of cerebral hypoperfusion, and that the protective effect in
TRPM2-KO mice is not attributed to the suppression of direct
oxidative damage to white matter.

Next, we investigated changes in proinflammatory cytokines
and white matter injury during chronic cerebral hypoperfusion,
and found that knocking out TRPM2 markedly suppressed the
production of proinflammatory cytokines such as TNF� and
IL1�, and white matter injury. It was previously reported that
IL1� levels are upregulated in serum from patients with vascular
dementia (Zuliani et al., 2007) and monocytes derived from pa-
tients with schizophrenia (Uranova et al., 2017). In the mouse
chronic cerebral hypoperfusion model, IL1R deletion and neu-
tralization improved white matter damage and facilitated the
migration of oligodendrocyte precursor cells (OPCs) from the
subventricular zone (Zhou et al., 2017). TNF�, a proinflamma-
tory cytokine, as well as IL1�, were expressed abundantly in pa-
tients with subcortical vascular dementia (Tarkowski et al., 2003)
and schizophrenia (Pandey et al., 2018). TNF� levels have also
been found to be associated with white matter hyperintensities in
patients with bipolar disorder (Benedetti et al., 2016) and prema-
ture newborns (Ellison et al., 2005), indicating that excessive
production and release of proinflammatory cytokines is highly
involved in white matter injury. In the context of these studies, it
has been reported that TRPM2 is involved in NLRP3 inflamma-
some-mediated IL1� secretion (Zhong et al., 2013), and that
TRPM2 is required for the LPS-induced production of TNF� and
IL6 in human monocytes (Wehrhahn et al., 2010) and A�42-
induced generation of TNF� in mouse cultured microglia (Ala-
wieyah Syed Mortadza et al., 2018), findings consistent with our
own in vivo observations. Therefore, it is conceivable that TRPM2
contributes to chronic cerebral hypoperfusion-related cognitive
impairment through the enhancement of cytokine production
and subsequent white matter injury.

One could raise a question as to which types of cells are re-
sponsible for the TRPM2-mediated signaling that can result in
the upregulation of proinflammatory cytokines in the corpus cal-
losum. TRPM2 is expressed broadly in immune cells, including
microglia (Kraft et al., 2004), monocytes/macrophages (Yamamoto
et al., 2008), and neutrophils (Hiroi et al., 2013). We therefore inves-
tigated the activation of glial cells and the infiltration of neutrophils
during chronic cerebral hypoperfusion, and found that knocking
out TRPM2 suppressed the activation of Iba1-positive microglia/
macrophages, but not GFAP-positive astrocytes and Gr1-positive
neutrophils. In addition, the expression of CX3CR1, MHCII, and
CD68, which were predominantly expressed in activated micro-
glia/macrophages (Perry and Holmes, 2014; Y. Liu et al., 2015),
was significantly upregulated in WT mice after BCAS, whereas
the changes in these markers were not observed in TRPM2-KO
mice. Consistent with these observations, previous studies re-
ported that immunosuppressants ameliorate white matter injury
in a rat chronic cerebral hypoperfusion model (Wakita et al.,
1998). Moreover, TRPM2 plays an important role in microglial
activation (Haraguchi et al., 2012; Miyake et al., 2014; Jeong et al.,
2017) and the development of inflammatory processes in in vivo
mouse models (Yamamoto et al., 2008; Haraguchi et al., 2012;
Huang et al., 2017). Together, our data suggest that TRPM2 ex-
pressed in microglia/macrophages is responsible for TRPM2-
mediated upregulation of proinflammatory cytokines in the
white matter.

In the present study, we performed an experiment using BM
chimeric mice to identify whether Iba1-positive cells are brain-

Figure 9. Schematics for the role of TRPM2 under chronic cerebral hypoperfusion.
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resident microglia or peripheral macrophages, as the number of
Iba1-positive cells was markedly decreased in TRPM2-KO mice
compared with WT mice. We concluded that the decreased num-
ber of Iba1-positive cells were brain-resident microglia, but not
peripheral macrophages, because these Iba1-positive cells were
almost all GFP-negative, defining them as brain-resident micro-
glia. Intriguingly, TRPM2-KO WT-BM mice showed a significant
decrease in the number of Iba1-positive cells and a higher cogni-
tive performance, the extents of which were similar to those of
TRPM2-global knock-out mice, which clearly indicates the ex-
clusive role of resident microglia in a mouse chronic cerebral
hypoperfusion model for the first time. It was recently reported
that microglial CX3CR1 silencing reduces cytokine release, white
matter injury, and cognitive impairment (Y. Liu et al., 2015),
which is consistent with our findings.

It is well known that an overwhelming production of proin-
flammatory cytokines results in cumulative damage to tissue
(Smith et al., 2012). In this context, in the present study, in-
creased production of proinflammatory cytokines, such as IL1�,
TNF�, and IL6, and tissue damage were markedly observed in the
white matter, but only slightly in the hippocampus, although the
numbers of Iba1-positive microglia and GFAP-positive astro-
cytes in both regions increased to the same extent. The reason
why there was a significant difference between these brain regions
remains unclear. However, proinflammatory cytokines released
by activated microglia are known to play an important role
in oligodendrocyte toxicity (Peferoen et al., 2014), which is
maturation-dependent (i.e., greater toxicity to actively prolifer-
ating OPCs and immature oligodendrocytes than to mature oli-
godendrocytes; Bradl and Lassmann, 2010; Volpe et al., 2011).
Taking into consideration that oligodendrocytes and their pre-
cursor OPCs are more abundant in the white matter than in the
hippocampus, it is conceivable that a wide variety of damage-
associated molecular patterns (DAMPs), which are passively re-
leased from dying, dead, or injured cells (Seong and Matzinger,
2004), could be more dominant in the white matter than the
hippocampus. We believe that enhanced activation of microglia
with DAMPs results in increased release of proinflammatory cy-
tokines (Perry and Holmes, 2014), which subsequently leads to
more severe tissue injury in the white matter, unlike in the
hippocampus.

There remains controversy over whether astrocytes are harm-
ful or protective for chronic cerebral hypoperfusion. NF�B sup-
pression in GFAP-positive cells reduced white matter injury and
cognitive impairment (Saggu et al., 2016), whereas BDNF dele-
tion in GFAP-positive cells worsened cognitive outcomes (Miy-
amoto et al., 2015). Although the present study revealed that the
number of GFAP cells was increased by the BCAS operation,
there were no differences between WT and TRPM2-KO mice,
suggesting that TRPM2 is not involved in astrocyte activation by
the BCAS operation. However, global knock-out of TRPM2 di-
minishes the number of both Iba1- and GFAP-positive cells in
neonatal hypoxic-ischemic (HI) brain injury (Huang et al.,
2017), suggesting that TRPM2 plays a role in reactive astrogliosis
following HI injury. Future investigations will help in under-
standing the precise roles of astrocytic TRPM2 in chronic cere-
bral hypoperfusion.

TRPM2 is also expressed in CNS neurons including cortical
neurons (Kaneko et al., 2006) and hippocampal neurons (Alim et
al., 2013). In the present study, there was no obvious change in
hippocampal and cortical neurons, although microglia and astro-
cytes were clearly activated after BCAS operation. A high concen-
tration of H2O2, when present at 0.1–1 mM, can open TRPM2

(Hara et al., 2002) and induce neuronal death (Kaneko et al.,
2006), whereas a relatively low level of ROS can induce TRPM2-
mediated chemokine production in monocytes/macrophages
(Yamamoto et al., 2008) and augment nitric oxide production in
microglia (Miyake et al., 2014), implying that the ROS produced
after the BCAS operation could be insufficient to cause TRPM2-
mediated neuronal injury in the CNS. Future investigations are
required to explore the different sensitivities of TRPM2-expressing
cells to ROS in chronic cerebral hypoperfusion.

Yata et al. (2014) reported that two-photon imaging in the
small cerebral arteries showed rolling of leukocytes in BCAS-
operated mice; however, the mechanism of leukocyte infiltration
was not fully described. In the present study using BM chimeric
mice, the numbers of GFP-positive BM-derived cells were similar
between the different BCAS-chimeric groups. Moreover, a few
GFP-positive BM-derived cells were observed in BCAS-operated
chimeric mice, and among them �50% population of these cells
merged with CD3, suggesting that a few of the cells infiltrating
into the brain parenchyma are T cells and the other BM-derived
cells, but not macrophages or neutrophils.

In conclusion, TRPM2 plays a critical role in the development
of inflammation by chronic cerebral hypoperfusion, and this may
be mediated through the activation of microglia. TRPM2 in
microglia is a potential therapeutic target for hypoperfusion-
induced CNS diseases.
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