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Central nervous system (CNS) inflammation is a potential therapeutic target for neurodegenerative dis-
eases. In recent years, a number of studies have focused on the links between neurodegenerative diseases and 
CNS glial cells, especially microglia. Microglia are the main resident immune cells in the CNS and represent 
approximately 10–15% of all CNS cells. Microglia play an important role in maintaining brain homeostasis 
at rest by surveying the environment, and engulfing apoptotic cells and debris in the healthy brain. However, 
under certain pathological conditions, microglia can generate neurotoxic factors, such as pro-inflammatory 
cytokines and molecules like nitric oxide (NO), which lead to CNS inflammatory diseases. In this review, 
we discuss the evidence that regulation of microglial ion channels may modulate CNS inflammation and 
subsequent tissue damage in neurological disorders. In particular, we discuss the role of transient receptor 
potential (TRP) channels in microglia in both acute and chronic inflammatory conditions, and describe the 
physiological and pathophysiological roles of TRP channels in CNS inflammatory pathways. Additionally, we 
describe the benefits of stimulation/inhibition of TRP channels in animal models of microglia-related CNS 
inflammatory diseases.
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1. INTRODUCTION

The brain has long been regarded as an immune-privileged 
organ, where inflammation can only occur after the break-
down of the blood–brain barrier and subsequent infiltration 
by peripheral immune cells.1,2) However, immunocompetent 
cells residing in the central nervous system (CNS) express 
pattern recognition receptors (PRRs), such as toll-like recep-
tors (TLRs) and nucleotide binding oligomerization domain 
(NOD)-like receptors, which mediate innate immunity.3,4) 
PRRs recognize microbial molecular motifs, known as patho-
gen-associated molecular patterns (PAMPs), which are not 
generally found in normal brain tissue but which typically 
accumulate in infected tissues. Recent studies clearly indi-
cate that, in the absence of CNS infection, endogenous PRR 
ligands—so-called damage associated molecular patterns 
(DAMPs), also known as alarmins—are released in dam-
aged CNS tissue, resulting in activation of the innate immune 
system within the CNS.3,4) These pro-inflammatory responses 
in the immunocompetent cells in the brain contribute to the 
progression of neurodegenerative diseases by sustained release 
of pro-inflammatory mediators, which leads to CNS inflam-
mation.5,6) Although the molecular mechanisms remain to be 
elucidated, the inflammatory response during a wide variety 
of chronic CNS diseases is likely controlled by microglia, the 
main type of immunocompetent cells residing in the CNS.7,8) 
In various chronic disease states, microglia are primed by 
prior pathological changes in the CNS to respond more vigor-

ously to subsequent inflammatory stimulation, leading to more 
deleterious consequences.7,8) Conversely, microglia also engulf 
and degrade apoptotic cells in the injured brain, resulting in 
neuroprotection, tissue repair, and regeneration.2,9) Microglia 
switch to an activated phenotype in response to multiple fac-
tors, including PAMPs and DAMPs2,9); therefore, the mecha-
nisms underlying microglial regulation of neuronal damage 
and dysfunction are the subject of much research.

Microglia express a wide variety of ion channels that are 
involved in their cellular inflammatory responses.10) Some 
of these channels are of particular interest because of their 
potential as targets for treatment of neurological diseases.10,11) 
In this review, we focus on transient receptor potential (TRP) 
channels, which are widely expressed in many different tis-
sues and cell types. The TRP family currently comprises 28 
mammalian cation channels, subdivided into six subfamilies 
according to their sequence homology: TRPC (canonical), 
TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), 
TRPML (mucolipin) and TRPP (polycystic). Most TRP chan-
nels are nonselective Ca2+-permeable cation channels that 
serve as cellular sensors for mechanical, thermal, and chemi-
cal stimuli.12,13) TRP channels are involved in cellular process-
es such as cytokine production, proliferation, and migration, 
all of which are important cellular activities in microglia.13,14) 
In this review, we will discuss the preclinical evidence for 
a significant role of TRP channels in microglial activation, 
particularly in neurological diseases. Mechanisms by which 
microglia may affect neuronal activity will be highlighted.
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2. PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL 
ROLES OF TRPC CHANNELS IN MICROGLIA

The TRPC subfamily comprises seven members, namely 
TRPC1–C7, all of which are Ca2+-permeable nonselective 
cation channels that are strongly expressed in neurons and 
glia in the brain.15) TRPC members are classified into two 
groups on the basis of their sequence homology and functional 
similarity: the TRPC1/TRPC4/TRPC5 and TRPC3/TRPC6/
TRPC7 groups.16) TRPC3, TRPC6, and TRPC7 form the dia-
cylglycerol (DAG)-sensitive group and are activated by DAG 
after stimulation of phospholipase C (PLC)-coupled receptors 
such as Gq/11-type G-protein-coupled receptors or receptor 
tyrosine kinases. In microglia, there are only a few studies 
on the functional expression of TRPC channels. Quantitative 
comparisons of mRNA expression have shown that TRPC1, 
TRPC3, and TRPC6 are highly expressed in cultured microg-
lia.17) In line with this finding, double-label immunofluores-
cence studies show that TRPC3 and TRPC6 are weakly local-
ized in microglia in vivo.18,19) Recently, Liu et al. reported that 
amyloid β-protein (Aβ) upregulates TRPC6 via nuclear factor-
kappaB (NF-κB) and promotes the production of cyclooxy-
genase-2 (COX-2) in BV-2 microglia, which could be involved 
in microglial activation-induced hippocampus neuronal dam-
age.20) Moreover, Mizoguchi et al. reported that brain-derived 
neurotrophic factor (BDNF) induces sustained elevation of 
the intracellular Ca2+ concentration ([Ca2+]i) through the up-
regulation of surface TRPC3 channels.21) They also found that 
TRPC3 channels is important for the BDNF-induced suppres-
sion of nitric oxide (NO) production in activated microglia, 
which might be important for the regulation of inflammatory 
responses and involved in the treatment of neuropsychiatryic 
disorders including depression. Further investigation would 
be expected to reveal the physiological and pathophysiological 
roles of TRPC channels in microglia.

In additional to their physiological role, TRPC channels 
also play a pathophysiological role in microglia-related in-
flammatory diseases in the CNS. In this context, Munakata 
et al. demonstrated that, in the collagenase/autologous blood 
infusion mouse model of intracerebral hemorrhage (ICH) 
that is a subtype of hemorrhagic stroke with high morbidity 
and mortality, Pyr3, a selective TRPC3 inhibitor, can reduce 
the perihematomal accumulation of microglia and astrocytes 
and attenuate neurological deficits, neuronal injury, and brain 
edema, clearly suggesting that TRPC3 contributes to the out-
comes after ICH.22) Since thrombin, a critical blood-derived 
factors that invades the brain tissue in ICH, has been shown 
to activate TRPC3 via protease-activated receptor-1 (PAR-1, a 
G-protein-coupled receptor that activated by thrombin proteo-
lytically) in 1321N1 human astrocytoma cells23) and cultured 
rat primary astrocytes in vitro,24) thrombin in the hematoma 
may induce TRPC3-mediated astrocyte activation via PAR-1 
and result in neuroinflammation and neurodegeneration after 
ICH. However, PAR-1 is important for ICH-induced microglia 
activation,25) implying TRPC3 in microglia might be a new 
therapeutic target for the prevention of secondary brain injury 
and neurological deficits after ICH.

3. PHYSIOLOGICAL ROLES OF TRPM CHANNELS 
IN GLIA

The TRPM subfamily comprises eight members, namely 
TRPM1–M8, some of which are sensitive to oxidative stress.26) 
TRPM2 was the first TRP channel to be identified as redox-
sensitive.27) It is strongly expressed in the brain and immune 
cells and its role in the CNS has been studied extensively. 
TRPM2 forms a Ca2+-permeable cation channel that is acti-
vated by oxidative stress mediated by reactive oxygen species 
(ROS), such as hydrogen peroxide (H2O2), through the produc-
tion of nicotinamide adenine dinucleotide and its metabolites, 
such as ADP-ribose (ADPR) and cyclic ADPR.27,28) Studies in-
dicate that TRPM2 mediates H2O2-induced Ca2+ influx, which 
modulates physiological and pathological cellular functions. 
TRPM2 is expressed in both neurons and glia, and oxidative-
stress-induced TRPM2 activation is implicated in neuronal 
diseases. Several studies have focused on the physiological 
and pathophysiological roles of TRPM2 in microglia because 
of the myeloid–monocytic lineage of micro glia. TRPM2 func-
tions as a Ca2+-permeable channel in mouse monocytes.29) 
Kraft et al. reported that TRPM2 is functionally expressed 
at high levels in cultured rat microglia.30) Using cultured mi-
croglia derived from wild-type and TRPM2 knockout mice, 
Haraguchi et al. showed that TRPM2 is involved in NO pro-
duction.31) Subsequently, Miyake et al. examined the intracel-
lular signaling mechanisms underlying these phenomena and 
demonstrated that combined application of lipopolysaccharide 
(LPS) and interferon-γ can stimulate TRPM2-mediated extra-
cellular Ca2+ influx in cultured microglia.32) They also showed 
that activation of TRPM2 results in proline-rich tyrosine ki-
nase 2 (Pyk2)-mediated activation of p38 mitogen-activated 
protein kinase and c-Jun N-terminal kinase (JNK) signaling, 
leading to the increased NO production in microglia. The sul-
fonylurea receptor 1-TRPM4 channel regulates NO synthase 2 
transcription in TLR4-activated microglia.33) TRPM7 is func-
tionally expressed in cultured rat microglia,34) and is essential 
for the enhanced ability of microglia to migrate and invade 
during anti-inflammatory states.35)

4. PATHOPHYSIOLOGICAL ROLES OF TRPM 
CHANNELS IN MICROGLIA

4.1. Microglial/Macrophagic TRPM2 Channels in Neu-
ropathic Pain  TRPM2 is thought to be involved in a range 
of pathological pain states, including neuropathic pain.31,36,37) 
Evidence suggests that peripheral and spinal neuroinflamma-
tion mediated by the interaction between nociceptive neurons 
and immune/glial cells plays a pivotal role in neuropathic 
pain.38) After peripheral nerve injury, pro-nociceptive in-
flammatory mediators, such as pro-inflammatory cytokines, 
chemokines, and excess ROS produced by peripheral tissues 
and the spinal cord, can lead to peripheral and central sen-
sitization of nociceptive neurons. In this context, Haraguchi 
et al., demonstrate that TRPM2 expressed in macrophages and 
microglia plays a critical role in neuropathic pain. TRPM2 is 
responsible for chemokine (C-X-C motif) ligand 2 (CXCL2) 
and NO production in macrophages and microglia, which 
aggravate peripheral and spinal pro-nociceptive inflamma-
tory responses, respectively, in inflammatory and neuropathic 
pain models.31,32) Furthermore, TRPM2 may play a role in the 
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infiltration of peripheral immune cells into the spinal cord 
after peripheral nerve injury.36) Consequently, TRPM2 is 
involved in a wide range of pathological pain states induced 
by peripheral and spinal neuroinflammation—such as inflam-
matory pain, osteoarthritic pain, neuropathic pain induced 
by peripheral nerve injury, chemotherapy-induced peripheral 
neuropathy, and painful diabetic neuropathy—rather than in 
physiological nociceptive pain.37)

4.2. TRPM2 Channels in Cerebrovascular Disease  
TRPM2 is thought to be involved in stroke, especially in isch-
emic cerebral infarction, which is the leading cause of death 
and permanent disability in adults worldwide. TRPM2 is thus 
a potential therapeutic target for stroke. The injury mecha-
nisms following ischemic stroke are multifaceted. Oxidative 
stress induced by cerebral ischemia–reperfusion injury is con-
sidered to be the main event leading to neuronal death. Several 
lines of evidence indicate that TRPM2 mediates ROS-induced 
neuronal death. TRPM2 acts as a redox-sensitive Ca2+-per-
meable channel and thus has a pivotal role in H2O2-induced 
neuronal death in primary cultured neurons.39) TRPM2 is 
activated by intracellular ADPR that is overproduced in re-
sponse to oxidative stress and ROS, such as H2O2.27) In line 
with these findings, several studies indicate that TRPM2 me-
diates ischemic brain damage. For example, Alim et al. used 
wild-type and TRPM2 knockout mice to show that the genetic 
ablation of TRPM2 causes a shift in the expression ratio of the 
GluN2A/GluN2B subunits of the N-methyl-D-aspartate recep-
tor, which may selectively upregulate survival pathways and 
result in neuroprotection from cerebral-ischemia-induced neu-
ronal cell death in vivo.40) Shimizu et al. reported an extended 
therapeutic window for treatment with a novel peptide inhibi-
tor of TRPM2 channels after focal cerebral ischemia, demon-
strating that TRPM2 is a promising candidate for treatment of 
acute cerebral ischemic infarction.41) However, recent studies 
have focused extensively on the pathophysiological role of 
TRPM2 in microglia/macrophages. Application of lysophos-
phatidylcholine induces intracellular Ca2+ influx and increases 
phosphorylation of p38 mitogen-activated protein kinase 
(MAPK) via TRPM2, which in turn activates microglia.42) In 
addition, TRPM2-mediated Ca2+ influx induces the production 
of pro-inflammatory cytokines/chemokines in monocytes.29) 
TRPM2 is also involved in chemokine CXCL2 and NO pro-
duction in cultured macrophages and microglia.31,32) In line 

with these findings, TRPM2 regulates the migratory capacity 
of neutrophils and macrophages in response to ischemic brain 
injury, thereby secondarily perpetuating brain injury after the 
ischemic event.43) Taken together, these results suggest that 
TRPM2 in microglia/macrophages could mainly contribute to 
the development of cerebral ischemic injury.

4.3. Microglial TRPM2 Channels in Cognitive Im-
pairment in CNS Diseases  Recently, TRPM2 channels in 
resident microglia were shown to play a critical role in the 
pathogenesis of chronic cerebral hypoperfusion through the 
aggravation of inflammatory responses.44) Chronic cerebral 
hypoperfusion manifests in a wide range of CNS diseases, 
including neurodegenerative disorders and mental disorders 
that are accompanied by cognitive impairment; however, the 
underlying mechanisms remain unclear. In this study, chronic 
cerebral hypoperfusion can be modeled in mice by bilat-
eral common carotid artery stenosis (BCAS), which results 
in a decline in cognitive function and excessive release of 
pro-inflammatory cytokines such as tumor necrosis factor α 
(TNFα) and interleukin 6 (IL6), all of which were suppressed 
in TRPM2 knockout mice. TRPM2 knockout mice also had 
significantly decreased accumulation of microglia in the cor-
pus callosum, although there was no difference in the number 
of glial fibrillary acidic protein (GFAP)-positive cells between 
genotypes. Moreover, BCAS mice treated daily with the 
anti-inflammatory antibiotic minocycline showed significant 
improvements in their cognitive function.44) The schematic in 
Fig. 1 summarizes the role of TRPM2 in pathology caused by 
chronic cerebral hypoperfusion. Taken together, these findings 
suggest a new hypothesis, in which TRPM2-mediated acti-
vation of microglia specifically contributes to the pathology 
through the aggravation of inflammatory responses.

In this context, Ostapchenko et al. clearly demonstrate that 
genetic elimination of TRPM2 normalizes deficits in syn-
aptic markers in aged mice, improves age-dependent spatial 
memory deficits and reduces microglial activation of hip-
pocampus in mice designed to model Alzheimer’s disease.45) 
More recently, Alawieyah Syed Mortadza et al. report that 
exposure to 10–300 nM Aβ42 induces concentration-dependent 
microglial activation and generation of TNFα that are ablated 
by genetically deleting of TRPM2 or pharmacologically in-
hibiting TRPM2, revealing a critical role of TRPM2 in Aβ42-
induced microglial activation.46) These reports shed light on 

Fig. 1. Schematic of the Pathophysiological Role of TRPM2 during Chronic Cerebral Hypoperfusion
ROS are produced locally to the chronic cerebral hypoperfusion, resulting in the specific activation of microglial TRPM2 channels. Excessive release of pro-inflammato-

ry cytokines such as TNFα, IL1β, and IL6, presumably from microglia, can induce CNS inflammation and white matter injury, ultimately leading to cognitive impairment 
(see ref. 44).
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our understanding of the mechanisms of chronic cerebral 
hypoperfusion-related inflammation, and suggest a novel 
therapeutic target for the treatment of cognitive impairment in 
CNS diseases.

5. PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL 
ROLES OF TRPV CHANNELS IN MICROGLIA

The TRPV subfamily is expressed in glial cells, especially 
astrocytes and microglia. Microglia express several TRPV 
isoforms, particularly TRPV1, TRPV2, and TRPV4. Activa-
tion of TRPV1 triggers Ca2+ signaling-dependent cell death in 
microglia47) and contributes to reduced nicotinamide adenine 
dinucleotide phosphate (NADPH)-oxidase-mediated produc-
tion of ROS in microglia.48) Miyake et al. demonstrated that 
activation of TRPV1 triggers an increase in intramitochon-
drial Ca2+ concentration and following depolarization of mi-
tochondria, which results in mitochondrial ROS production, 
MAPK activation, and enhancement of chemotactic activity in 
microglia49) (see Fig. 2). Marrone et al. clearly demonstrated 
that stimulation of microglial TRPV1 controls cortical micro-

glia activation per se and indirectly enhances glutamatergic 
transmission in neurons by promoting extracellular microglial 
microvesicles shedding.50) In this context, in an experimental 
model of Parkinson’s disease, the TRPV1 selective agonist 
capsaicin inhibits microglia-mediated ROS production, lead-
ing to the resultant blockade of the death of dopaminergic 
neurons.51) Moreover, TRPV1 partially regulates cytokine 
production induced by elevated hydrostatic pressure in retinal 
microglia.52) Further investigations are warranted to clarify 
the pathophysiological roles of microglial TRPV1 in CNS 
diseases.

With respect to TRPV2 and TRPV4, activation of TRPV2 
(and also TRPV1) by cannabidiol results in enhanced micro-
glial phagocytosis.53) In addition, Konno et al. demonstrates 
that stimulation of TRPV4 in cultured rat microglia suppresses 
LPS-induced TNFα release and galectin-3 upregulation, and 
also suppresses augmentation of voltage-dependent K+ cur-
rents, suggesting that depolarization in response to opening of 
the TRPV4 channel attenuates the driving force for extracel-
lular Ca2+ and suppresses microglial activation54) (see Fig. 3).

6. CONCLUSION

Recent studies emphasize the significance of TRP channels 
and microglial activation in CNS inflammation and the pa-
thologies of various neurological diseases. In this review, we 
summarized the evidence for the potential molecular mecha-
nisms underlying stimulation or inhibition of TRP channels, 
and the pathways leading from TRP activation to the modula-
tion of microglia and resultant CNS inflammation. Notably, 
microglial TRPV1 and TRPM2 play essential roles in various 
pathological CNS conditions, such as Parkinson’s disease, 
neuropathic pain, Alzheimer’s disease and chronic cerebral 
hypoperfusion, and, as such, are promising therapeutic targets 
for these diseases. Of note, suppression of microglial activa-
tion and subsequent downstream signaling can be achieved 
not only through the loss or inhibition of TRP channel func-
tion, but also through TRP stimulation (for example, stimula-
tion of microglial TRPV1 and TRPV4). This suggests that the 
different types of TRP channel affect microglial activation 
independently. Although the precise mechanisms underly-
ing TRP channel function remain to be verified in vivo, our 
hope is that TRP channel activators and/or inhibitors will be 
developed as therapeutic tools to treat neurological diseases in 
which CNS inflammation is a factor.
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