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Hierarchical Schrödinger equations of motion for open quantum dynamics
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We rigorously investigate the quantum non-Markovian dissipative dynamics of a system coupled to a harmonic-
oscillator bath by deriving hierarchical Schrödinger equations of motion (HSEOM) and studying their dynamics.
The HSEOM are the equations for wave functions derived on the basis of the Feynman-Vernon influence functional
formalism for the density operator, 〈q|ρ(t)|q ′〉, where 〈q| and |q ′〉 are the left- and right-hand elements. The time
evolution of 〈q| is computed from time 0 to t , and, subsequently, the time evolution of |q ′〉 is computed from time
t to 0 along a contour in the complex time plane. By appropriately choosing functions for the bath correlation
function and the spectral density, we can take advantage of an HSEOM method to carry out simulations without
the need for a great amount of computational memory. As a demonstration, quantum annealing simulation for a
ferromagnetic p-spin model is studied.

DOI: 10.1103/PhysRevA.98.012109

I. INTRODUCTION

Open quantum systems have been a subject of interest for
many years [1,2]. A great deal of effort has been dedicated
to numerically calculating the time evolution of such model
systems, and several numerically rigorous approaches have
been developed for studying spin-boson systems and Brownian
oscillator systems. These approaches include the quasiadi-
abatic propagator path integral (QUAPI) [3], the density
matrix renormalization group (DMRG) [4], and the reduced
hierarchical equations of motion (HEOM) methods [5–20].
Although the relaxation processes exhibited by a model system
under external perturbations are now well understood, these
processes of complex systems consisting of many energy states
and/or potential-energy surfaces defined in multidimensional
configuration spaces have not been thoroughly explored due
to a lack of computational power. This is due to the fact that
the quantum dynamics of an open N -state system must be
described using an N × N reduced density matrix in order to
have time-irreversible processes described by a non-Hermitian
propagator, while the quantum dynamics of an isolated N -state
system are described using an N × 1 column or a 1 × N row
vector. Moreover, if we consider systems that are strongly
influenced by heat baths and need to adopt a nonperturbative
approach, such as HEOM [21–29], more computational re-
sources are necessary. For this reason, the memory required to
compute the density matrix elements becomes a serious issue
when studying large systems.

Methodologies based on wave functions for the full
Hamiltonian have been developed in order to avoid the
reduced description of the system. The multiconfiguration
time-dependent Hartree (MCTDH) approach [30–33] employs
time-dependent basis sets to represent the total wave function.
Then, a variational principle is applied to derive the optimal
equation of motion in order to reduce the bath degrees of
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freedom. This kind of approach has wider applicability than
the reduced equation of motion. With the MCTDH approach,
we can treat nonlinear system-bath couplings and anharmonic
bath modes [33], which cannot be treated with the conventional
HEOM approach. However, the number of bath modes must
be increased until convergence is reached. This implies that
the study of long-time behavior requires more basis sets,
which makes the calculation more difficult. Moreover, the time
evolution obtained with the wave-function-based approach
describes time-reversible processes and, thus, the thermal
equilibrium state cannot be obtained with this approach.

The stochastic unraveling method [34–38] is another ap-
proach to reduce the computational costs of simulations for
open quantum systems. While the stochastic trajectories ob-
tained from this approach are useful to analyze a role of noise,
the efficiency of calculations is not always high because the
sampling of stochastic variables is not simple, and many of
these approaches have to employ auxiliary variables, including
auxiliary density operators (ADOs), in addition to stochastic
variables.

In the present paper, we derive hierarchical Schrödinger
equations of motion (HSEOM) for wave functions. The time
evolution of the reduced density matrix elements can be
obtained by numerically integrating the HSEOM with respect
to t along the contour in the complex time plane with the aid
of a bath correlation function expressed in terms of a set of
special functions. This expression maintains the stability of the
HSEOM while integrating along the contour in the direction
of decreasing time.

II. HIERARCHICAL SCHRÖDINGER
EQUATIONS OF MOTION

We consider a system S coupled to a bath R of harmonic
oscillators. The Hamiltonian of the total system is given by
[1,2]

Ĥtot = ĤS − V̂
∑

j

kj x̂j +
∑

j

(
p̂2

j

2mj

+ 1

2
mjω

2
j x̂

2
j

)
, (1)
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FIG. 1. The contour C in the complex time plane.

where ĤS is the Hamiltonian of the system and V̂ is the
system part of the system-bath interaction. The bath degrees
of freedom are treated as an ensemble of harmonic oscillators,
with the momentum, position, mass, and frequency of the j th
bath oscillator given by p̂j , x̂j , mj , and ωj , respectively. The
quantity kj is the coupling constant for the interaction between
the system and the j th oscillator. The heat bath is characterized
by the spectral density function, defined as

J (ω) ≡
∑

j

(
k2
j

2mjωj

)
δ(ω − ωj ), (2)

and the inverse temperature β ≡ 1/kBT , where kB is the
Boltzmann constant.

We consider a multitime correlation function,

�AB(t ; t ′) = tr{Â(t)ρ̂tot(0)B̂(t ′)}, (3)

where Â and B̂ are operators acting on the system S, and
ρ̂tot(0) is the initial state of the density operator for the total
system. For the contour illustrated in Fig. 1, we can express
the correlation function in path-integral form. In order to
simplify the derivation, we adopt factorized initial conditions
at t = 0 as ρ̂tot(0) = ρ̂S(0) ⊗ ρ̂

eq

R and do not consider the time
evolution from t = 0 to 0 − iβh̄ along the contour C0 [9,10]. If
necessary, the thermal equilibrium state for the total system can
be obtained from these conditions by integrating the HSEOM
for a sufficiently large time t . Because the operators depend
only on the system variable as A(q̂), B(q̂), and V (q̂), where
q̂ is the position or spin operator, we can trace over the bath
degrees of freedom. For a harmonic heat bath, we can evaluate
�AB(t ; t ′) analytically as [8–10]

�AB(t ; t ′) =
∫

dq ′
i

∫
dqi

∫
C

D[q̃(·)]A(q,t)B(q ′,t ′)

× exp

[
i

h̄

∫
C

dτLS( ˙̃q,q̃,τ )

− 1

h̄2

∫
C

dτ

∫
C ′

dτ ′V (q̃,τ )α(τ − τ ′)V (q̃,τ ′)
]

× 〈qi |ρ̂S(0)|q ′
i〉 , (4)

where LS( ˙̃q,q̃,τ ) is the Lagrangian for the system Hamiltonian
ĤS and the path integral is indicated by

∫
D[q̃(·)]. The contour

C ′, along which the integration over τ ′ is carried out, is C up to
τ . The integrals here are carried out in the direction of the arrow
in Fig. 1. The position of the system along the contour q̃ is q

or q ′, depending on whether the contour integral is along C1

or C2. The variables A(q,t), B(q ′,t ′), and V (q̃,τ ) are the path-
integral representation of A(q̂), B(q̂), and V (q̂), respectively.
For the case of a half-spin system, see the Appendix. The bath
correlation function α(t) is defined as

α(t) ≡ h̄

∫ ∞

0
dωJ (ω)

[
coth

(
βh̄ω

2

)
cos ωt − i sin ωt

]
.

(5)

We then rewrite the correlation function as �AB(t ; t ′) =∫
dq ′

i 〈q ′
i |φC(q ′

i)〉, where |φC(q ′
i)〉 is the reduced wave function

(RWF) integrated along the contour with the initial wave
function ρ̂S(0) |q ′

i〉. We can also evaluate the correlation func-
tion in terms of an energy-state representation as �AB(t ; t ′) =∑

n′
i
〈n′

i |φC(n′
i)〉. In the following, we derive the equations of

motion for |φC(n′
i)〉 in hierarchical form.

The HEOM have been derived for Drude-type [5–13],
Brownian-type [14], and Lorentzian-type [22] spectral den-
sities by expressing α(t) as a sum of exponential functions
as α(t) = ∑

k cke
−ak |t |, where ck and ak are real or complex

constants. Here, we express the bath correlation function using
special functions {ϕk(t)} [18–20] because the exponential form
of α(t) becomes unstable in the time integration along the
returning contour C2. The bath correlation function is now
expressed as α(t) = ∑K−1

k=0 ckϕk(t), where ck are complex
constants and the number of basis elements is restricted to some
value K to facilitate the numerical computations. In order to
obtain a closed set of equations, we choose the set of special
functions {ϕk(t)} so as to “approximately” satisfy the relation

d

dt
ϕk(t) =

K−1∑
k′=0

ηk,k′ϕk′(t), (6)

where ηk,k′ are the expansion coefficients. Although this type
of decomposition requires more hierarchical terms than the
conventional HEOM formalism employing the exponential-
function decomposition scheme, in particular to study long-
time behavior, this allows us to study wider classes of spectral
densities at any temperature, including a sub-Ohmic spectral
density at zero temperature [19]. Using the above relation, we
obtain the HSEOM by differentiating the RWF and auxiliary
wave functions (AWFs) along the contours C1 and C2 in the
same way as in the conventional HEOM approach [8–10]. They
take the following form:

∂

∂s
|φ�n(s; n′

i)〉 = ∓ i

h̄
ĤS |φ�n(s; n′

i)〉±
K−1∑
k=0

K−1∑
k′=0

ηk,k′nk|φ�n−�ek+�ek′ (s; n′
i)〉 ∓ i

h̄
V̂

K−1∑
k=0

ck|φ�n+�ek
(s; n′

i)〉

∓ i

h̄
V̂

K−1∑
k=0

nkϕk(0)|φ�n−�ek
(s; n′

i)〉, (7)
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and the AWFs are expressed in terms of a line integral as follows:

|φ�n(s; n′
i)〉 =

∑
n,ni

|n〉
∫

dq 〈n|q〉
∫

dqi

∫ s

0
D[q̃(τ (·))]

K−1∏
k=0

[
− i

h̄

∫ s

0
ds ′′ dτ (s ′′)

ds ′′ ϕk(τ (s) − τ (s ′′))V (q̃,τ (s ′′))
]nk

× exp

[
i

h̄

∫ s

0
ds ′ dτ (s ′)

ds ′ LS( ˙̃q,q̃,τ (s ′))
]
F(s,V ) 〈qi |ni〉 〈ni |ρ̂S(0)|n′

i〉 , (8)

where the influence functional is expressed as

F(s,V ) = exp

[
− 1

h̄2

∫ s

0
ds ′ dτ (s ′)

ds ′

∫ s ′

0
ds ′′ dτ (s ′′)

ds ′′ V (q̃,τ (s ′))
K−1∑
k=0

ckϕk(τ (s ′) − τ (s ′′))V (q̃,τ (s ′′))

]
, (9)

and we have introduced the time variable τ (s) for 0 � s � 2t

defined as

τ (s) ≡
{
s, 0 � s � t, for C1

2t − s, t � s � 2t, for C2.
(10)

Accordingly, we define q̃ such that q̃ = q for 0 � s � t and
q̃ = q ′ for t � s � 2t .

In Eq. (7), the upper signs of ∓ and ± correspond to 0 �
s � t , while the lower signs correspond to t � s � 2t . The
vector �n = (n0,n1, . . . ,nk, . . . ,nK−1), used as a subscript here,
distinguishes the AWFs and |φ�n=�0(s; n′

i)〉 corresponds to the
RWF. Each nk is a non-negative integer, and �ek is the unit
vector of the kth element. The level of the hierarchy, N , is
given by N = ∑K−1

k=0 nk . We choose a maximum value of this
level, Nmax. Any AWF whose level is higher than Nmax is set
to zero, in order to obtain a closed set of equations.

In order to compute the correlation function, we integrate
Eq. (7) with the upper signs from the initial wave function,
|φ�n(s = 0; n′

i)〉, up to the time s = t . At t , we apply the operator
Â to |φ�n(s = t ; n′

i)〉 as Â |φ�n(s = t ; n′
i)〉 → |φ�n(s = t ; n′

i)〉.
Then, after the time integration of Eq. (7) with the lower signs
along the contour C2 up to the time s = 2t − t ′, we apply the
operator B̂ as B̂ |φ�n(s = 2t − t ′; n′

i)〉 → |φ�n(s = 2t − t ′; n′
i)〉.

We obtain a wave function with a fixed initial wave function
|φ�0(s = 2t ; n′

i)〉 after continuing the integration up to s = 2t .
For the calculations of the two-body correlation function,
we must iterate the above-mentioned calculation with all the
different initial states |n′

i〉. A possible number of initial states is
equivalent to the number of system states, and hence we must
iterate the calculation N times for an N -state system. We then
obtain the two-body correlation function with the equation

�AB(t ; t ′) =
∑
n′

i

〈n′
i |φ�0(s = 2t ; n′

i)〉 . (11)

For the calculations of the equilibrium correlation function,
we can start from any initial state, with the time t ′, at which
B̂ is applied to the system, chosen to be sufficiently large,
because the steady-state solution of the HSEOM is a correlated
equilibrium state [9,10]. The number of operators to be applied
is not restricted to two, and we can evaluate the higher-order
nonlinear response functions by increasing this number [8].
We can also evaluate the reduced density matrix elements,
〈i|trR{ρ̂tot(t)}|j〉, with B̂ chosen to be the unit operator and
Â chosen such that Â = |j 〉 〈i|.

Here, in order to reduce the number of iterations, we
introduce a “localized initial state” of the form ρ̂ loc

S (0) =
|k〉 〈k|. This initial state enables us to evaluate the two-body
correlation functions with the equation

�AB(t ; t ′) = 〈k|φ�0(s = 2t ; n′
i = k)〉 , (12)

reducing the number of iterations N to 1 for N -state sys-
tems. By appropriately choosing the transformation matrix
Ĉ, we can calculate the two-body correlation function from
the desired initial conditions by using the result from the
localized initial state ρ̂ loc

S (0) with the equation �AB(t ; t ′) =
tr{Â(t)Ĉ(0)ρ̂ loc

S Ĉ†(0)B̂(t ′)}.

III. NUMERICAL RESULTS

We now report the results of numerical simulations that
demonstrate the applicability and the validity of the HSEOM,
given in Eq. (7). We first consider the spin-boson case, with
the system Hamiltonian given by

ĤS = − 1
2 h̄ω0σ̂

z, (13)

and the system part of the system-bath interaction given by

V̂ = − 1
2 h̄σ̂ x, (14)

where σ̂ x and σ̂ z are Pauli matrices.
We tested Bessel functions [20] and harmonic-oscillator

wave functions [18] to express the bath correlation function
α(t). We found that Bessel functions allow for a more efficient
treatment than the harmonic-oscillator wave functions for an
Ohmic spectral density. In terms of Bessel functions of the first
kind, Jk(t), the bath correlation function is expressed as

α(t) =
K−1∑
k=0

ckJk(�t), (15)

and ck are approximated as

ck ≡ h̄�

∫ 1

−1
dx(2 − δ0,k)(−i)kTk(x)

J (�x)

1 − e−βh̄�x
. (16)

This equation is derived with the aid of the Jacobi-Anger
identity [20,39],

e−i�xt = J0(�t) +
∞∑

k=1

2(−i)kTk(x)Jk(�t),

∀t ∈ R,∀x ∈ [−1,1].
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Here, Tk is a Chebyshev polynomial and in order to use this
identity we have modified Eq. (5) in the following form:

α(t) = h̄

∫ 1

−1
dx

J (�x)e−i�xt

1 − e−βh̄�x
. (17)

We can reduce the range of the integration in Eq. (17) from
(−∞,∞) to [−�,�] with the appropriate cutoff frequency �

because the spectral density decays to 0 as |ω| → 0. In the zero-
temperature limit (βh̄ → ∞), Eq. (17) is not exact, and for this
case we evaluate ck using the following equations instead of
Eq. (16): for the real part (even k),

ck = h̄�

2

∫ 1

−1
dx(2 − δ0,k)(−i)kTk(x)sgn(x)J (�x), (18)

and for the imaginary part (odd k),

ck = h̄�

2

∫ 1

−1
dx(2 − δ0,k)(−i)kTk(x)J (�x). (19)

We can differentiate Jk(t) with respect to t by setting

ηk,k′ =
{
�/2 (k′ = k − 1)
−�/2 (k′ = k + 1), (20)

η0,1 = −�, and, otherwise, ηk,k′ = 0. Here, we have ap-
proximated the time derivative of the (K − 1)th function
as dJK−1(�t)/dt  �JK−2(�t)/2 for the sake of numerical
computations. This approximation is accurate when we choose
the number of Bessel functions K to satisfy the condition
JK (�t)  0 for all t ∈ [0,T ], where T is the length of the sim-
ulation time. This indicates that even when the bath correlation
function is expressed with a small number of Bessel functions,
we need to set a larger value for K for longer time simulations.
By contrast, in the case of the conventional HEOM, the number
of exponential functions does not depend on T .

We considered the Ohmic spectral density with the expo-
nential cutoff

J (ω) = ηωe−|ω|/γ , (21)

and the circular cutoff [39,40]

J (ω) = ζω
√

1 − (ω/ν)2, (22)

where γ and ν are the cutoff frequencies. We find that if we
choose ν = γ and ζ = 2η/e, where e is the base of the natural
logarithm, the numerical results obtained with these two types
of cutoffs exhibit similar behavior under the condition ω0 � γ ,
where ω0 is the characteristic frequency of the system with the
Hamiltonian given in Eq. (13). For the exponential cutoff, we
set � manually with the condition γ < �, and for the circular
cutoff, we evaluated � analytically as � = ν.

It should be noted that in the case of the Ohmic spectral
density with the circular cutoff, the imaginary part of the
bath correlation function defined by α(t) = α′(t) − iα′′(t) is
analytically evaluated as [40]

α′′(t) = c1J1(νt) + c3J3(νt), (23)

where c1 = c3 = πh̄ζν2/8. In the high-temperature limit
βh̄ → 0, the real part of the bath correlation function reduces to
α′(t) = πζν(J0(νt) + J2(νt))/2β. This indicates that for the
construction of the HSEOM, the circular cutoff allows for a
more efficient approach than the exponential cutoff.

FIG. 2. The imaginary part of the Fourier transform of the first-
order response function R(1)(ω) for a spin-boson system with an
Ohmic spectral density with a circular cutoff (red) and an exponential
(exp.) cutoff (blue). Results for two cases, in which βh̄ = 3 (solid
curve) and βh̄ → ∞ (zero-temperature case, dashed curve) are
displayed. The unit of the frequency ω is set to the characteristic
frequency of the system ω0 in Eq. (13).

In Fig. 2, we depict the imaginary part of the Fourier
transform of the first-order response function for the spin-
boson system, R(1)(ω) = ∫ ∞

0 dte−iωtR(1)(t), where R(1)(t) is
defined by

R(1)(t) ≡ − i

2
〈[σ̂ x(t),σ̂ x]〉eq = Im[�σxσx (t ; t0)]. (24)

We can employ the localized initial state as ρ̂ loc
S (0) = |1〉 〈1|

and reduce the number of iterations because the total equi-
librium state is obtained at time t0 from this initial state. In
the numerical calculations, we chose the system parameters
as ω0 = π , and the bath parameters as h̄ζ = 0.35,ν = 6, and
� = 20 in the case of the exponential cutoff and � = 6 in the
case of the circular cutoff. Two temperature cases (βh̄ = 3 and
βh̄ → ∞) are depicted in Fig. 2. In both cases, the number of
basis elements, K , was set to 80 for the exponential cutoff
and 20 for the circular cutoff, and the maximum level of the
hierarchy, Nmax, was set to 3. The number of AWFs used to
solve the HSEOM in the case of the exponential and circular
cutoffs was 91 881 and 1771, respectively. This indicates that
the circular cutoff allows for a more efficient construction of
the hierarchy, while the results are similar, as illustrated in
Fig. 2.

To confirm the numerical accuracy of our computations, we
calculated the same variable using the extended hierarchical
equations of motion (eHEOM) [18] approach with the same
set of Bessel functions. The results obtained from the HSEOM
and eHEOM are almost identical (not shown). It should be
noted that in the case that we use the same function set for
approximating the bath correlation function, the eHEOM re-
quire more ADOs than the HSEOM because, with the eHEOM,
we need two sets of special functions, one representing the
real part and one representing the imaginary part of the bath
correlation function, while we need only one set to represent
Eq. (15) in the HSEOM case. By contrast, the HSEOM require
more time integrations than the eHEOM because we have to
integrate along C1 and C2 consecutively in the HSEOM case,
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while these integrations can be carried out simultaneously in
the eHEOM case. Moreover, when we calculate over longer
time periods T , both the HSEOM and the eHEOM require
more AWFs or ADOs in order to obtain convergent results
because the long-time behavior can be described only by a
larger set of Bessel functions.

Next we demonstrate quantum annealing [41] of a 10
qubit system for the ferromagnetic p-spin model. The system
Hamiltonian is expressed as [42]

ĤS(t) =
(

1 − t

tf

)
Ĥ0 + t

tf
Ĥ1, (25)

where

Ĥ0 = −h̄�

N−1∑
i=0

σ̂ x
i , (26)

and � is the magnitude of the transverse magnetic field in the
x direction and σ̂ α

i (α = x,y, and z) is the Pauli operator of
the ith site. The targeting Hamiltonian where we want to find
the ground state is given by [43]

Ĥ1 = −h̄N
(N−1∑

i=0

σ̂ z
i

N

)p

. (27)

The system part of the interaction is expressed as

V̂ = h̄

N−1∑
i=0

σ̂ z
i . (28)

We chose the system parameters as N = 10,� = 1,p = 5,
and tf = 1 and the bath parameters for the Ohmic spectral
density with a circular cutoff as βh̄ → ∞ (zero-temperature
case), ν = 3. We consider the (i) weak-, (ii) intermediate-
, and (iii) strong-coupling cases, h̄ζ = 0.01, 0.1, and 0.5,
respectively. We carried out numerical calculation using a
PC with 3.00 GHz Dual Intel Xeon CPU (total 24 cores).
The number of basis elements and the maximum level of the
hierarchy were set to K = 5,Nmax = 3 for the (i) weak- and
(ii) intermediate-coupling cases and K = 5,Nmax = 5 for the
(iii) strong-coupling case. As mentioned before, we have to
employ the larger number of Bessel functions K for larger T .
Here, we found that K is proportional to T . In this simulation,
the length of the simulation time T was set to 1 for all three
cases, and thus we set the same value K = 5, while we had
to set larger Nmax for the (iii) strong-coupling case. As a
result, the total numbers of AWFs used in the calculations
were Ntot = 56 for (i) and (ii), and 252 for (iii), which required
14.0 and 26.3 MB of computational memory, respectively. The
computation time on the Xeon PC for (i) and (ii) was 3 minutes,
whereas that for (iii) was 14 minutes. We note that Nmax also
depends on the characteristic frequency of the system, ωc.
Here, for the ferromagnetic p-spin model defined as Eq. (27),
we have ωc ∝ N because the energies of the ground state and
the most unstable state are −h̄N and h̄N , respectively, while
the other energy states are almost 0. Thus, in the case of the 4
qubit system, we had less AWFs as Nmax = 2 for (i) and (ii),
and Nmax = 4 for (iii), while K did not change.

As the initial conditions, we set all elements of the reduced
density matrix to be the same, and hence the transformation

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 0.2 0.4 0.6 0.8 1
t/tf

|Eg

|Ee

FIG. 3. The time evolution of the ground-state (red) and first-
excited-state (blue) populations in the (i) weak h̄ζ = 0.01 (solid
line), (ii) intermediate h̄ζ = 0.1 (dashed line), and (iii) strong h̄ζ =
0.5 (dot-dashed line) coupling cases calculated from the quantum
annealing simulation at the zero temperature. The unit of the time t

is set to tf in Eq. (25).

matrix of the localized initial state is defined as 〈i|Ĉ|j〉 =
δj,0/32.

In Fig. 3, we depicted the time evolution of the populations
of the ground state, |Eg〉 = ⊗N−1

i=0 |1〉i , and the first-excited
state, |Ee〉 = |0〉j

⊗N−1
i=0,i �=j |1〉i (for the definitions of |0〉 and

|1〉, see the Appendix). As was reported in the previous study
with a perturbative Markovian approach [44], the ground-state
population is larger for the intermediate system-bath coupling
case than the weak-coupling case. We found, however, that the
ground-state population already reaches the maximum values
in the intermediate-coupling case, while the increase of the
population is faster for the stronger-coupling case. Although
the demonstrated calculations are too small to be practical
results, this is the largest annealing simulation in terms of a
quantum dissipative approach. In addition, this simulation was
carried out at zero temperature in a quantum mechanically
rigorous manner merely using a personal computer. This is
because, with the HSEOM, we can reduce the size of the
density matrices from N2 to N for N -state systems.

IV. CONCLUDING REMARKS

We developed the HSEOM for wave functions utilizing
contour integration. With this formalism, we can reduce the
size of the density matrices from N2 to N for N -state systems,
and for this reason the HSEOM is computationally much
more efficient than the conventional HEOM, in particular for
larger systems such as a system described in a single [24–27]
and multidimensional coordinate space [45]. In addition, the
HSEOM approach enables us to simulate the zero-temperature
case or sub-Ohmic spectral density case. At this stage, however,
it is necessary to employ a large set of Bessel functions, in
particular, to study long-time behavior, due to the time profiles
of Bessel functions, with which longer time behavior can be
described only by a longer series of functions. To fully take
advantage of the scalability of HSEOM in comparison to the
HEOM, an efficient truncation scheme and the introduction of
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more appropriate special functions to describe the longer time
behavior are necessary. We leave these tasks to future studies.
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APPENDIX: PATH-INTEGRAL REPRESENTATION FOR A
HALF-SPIN SYSTEM

We consider a half-spin system described by the operators
ĤS,V̂ ,Â, and B̂ as the functions of Pauli matrices. The two-
body correlation function �AB(t ; t ′) is evaluated in a path-

integral form with the aid of a coherent spin state |μ〉, given
by [46]

|μ〉 = 1√
1 + |μ|2

(|1〉 + μ |0〉), (A1)

whereμ is a complex number, and σ̂ z = |1〉 〈1| − |0〉 〈0| ,σ̂ x =
|1〉 〈0| + |0〉 〈1| and σ̂ y = −i(|1〉 〈0| − |0〉 〈1|) are the Pauli
matrices. The inner product and the completeness relation are
expressed as

〈λ|μ〉 = 1 + λ∗μ√
(1 + |λ|2)(1 + |μ|2)

, (A2)∫
d2μ

2

π (1 + |μ|2)2
|μ〉 〈μ| = 1̂. (A3)

Then the matrix elements in terms of the coherent states are
evaluated as

〈λ|σ̂ z|μ〉 = 〈λ|μ〉 1 − λ∗μ
1 + λ∗μ

, 〈λ|σ̂ x |μ〉 = 〈λ|μ〉 λ∗ + μ

1 + λ∗μ
, 〈λ|σ̂ y |μ〉 = i 〈λ|μ〉 λ∗ − μ

1 + λ∗μ
.

The system Hamiltonian ĤS is then expressed as 〈λ|ĤS |μ〉 = 〈λ|μ〉 HS(λ∗,μ). The functional integrals and the initial state are
expressed as ∫

dqi

∫
dq ′

i →
∫

d2μi

2

π (1 + |μi |2)2

∫
d2μ′

i

2

π (1 + |μ′
i |2)2

,

∫
D[q̃(·)] →

∫
D2[μ̃(·)] =

∫
d2μ

2

π (1 + |μ|2)2
lim

N→∞

N−1∏
j=1

[∫
d2μj

2

π (1 + |μj |2)2

∫
d2μ′

j

2

π (1 + |μ′
j |2)2

]
,

〈qi |ρ̂S(0)|q ′
i〉 → 〈μi |ρ̂S(0)|μ′

i〉 .

The Lagrangian of the system is defined by the following equation:∫
C

dτLS(μ̃∗,μ̃,τ ) =
∫ t

0
dτLS(μ∗,μ,τ ) −

∫ t

0
dτL

†
S(μ′∗,μ′,τ )

= lim
N→∞

⎧⎨
⎩�t

N∑
j=1

(
−ih̄

ln 〈μj |μj−1〉
�t

− HS(μ∗
j ,μj−1)

)
− �t

N∑
j=1

(
ih̄

ln 〈μ′∗
j−1|μ′

j 〉
�t

− HS(μ′∗
j−1,μ

′
j )

)⎫⎬
⎭,

where �t = t/N, μ0 = μi,μ
′
0 = μ′

i , and μN = μ′
N = μ.

The coherent-state representations of Â,B̂, and V̂ are defined in the same way as the system Hamiltonian.
The HSEOM for half-spin systems are derived in the same form as Eq. (7) with the aid of the discrete path-integral form by

differentiating RWF and AWFs in the same way as in the HEOM of the boson coherent form [8].
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