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We consider a two-dimensional rigid rotator system coupled to a two-dimensional heat bath. The
Caldeira-Leggett (Brownian) model for the rotator and the spin-Boson model have been used to
describe such systems, but they do not possess rotational symmetry, and they cannot describe the
discretized rotational bands in absorption and emission spectra that have been found experimentally.
Here, to address this problem, we introduce a rotationally invariant system-bath (RISB) model that is
described by two sets of harmonic-oscillator baths independently coupled to the rigid rotator as sine
and cosine functions of the rotator angle. Due to a difference in the energy discretization of the total
Hamiltonian, the dynamics described by the RISB model differ significantly from those described
by the rotational Caldeira-Legget model, while both models reduce to the Langevin equation for a
rotator in the classical limit. To demonstrate this point, we compute the rotational absorption spectrum
defined by the linear response function of a rotator dipole. For this purpose, we derive a quantum
master equation for the RISB model in the high-temperature Markovian case. We find that the spectral
profiles of the calculated signals exhibit a transition from quantized rotational bands to a single peak
after spectrum collapse. This is a significant finding because previous approaches cannot describe such
phenomena in a unified manner. Published by AIP Publishing. https://doi.org/10.1063/1.5044585

I. INTRODUCTION

In order to understand molecular dynamics, rotational
motion is as important as translational and vibrational motion.1

Recent theoretical and experimental studies have demon-
strated the importance of the interplay between the quantum
nature of a system and environmental noise. While the quan-
tum properties of translational and vibrational relaxation pro-
cesses have been thoroughly investigated using spin-Boson
and Brownian models,2–7 the study of rotational relaxation
has been limited due to the lack of a simple rotational system-
bath model that can be solved numerically. In infrared (IR),
far-IR, rotational-Raman, and dielectric absorption and dis-
persion spectroscopy studies, the quantum nature of rotational
relaxation is characterized by equally spaced peaks, called
rotational bands, that arise from energy transitions among the
quantized rotational states of molecules. From gas phase exper-
iments, it is known that these rotational peaks merge into a
single broadened peak at the center of the rotational bands
when the gas pressure or density becomes sufficiently high.
Then, the width of this merged peak progressively narrows as
the gas pressure or density increases.

Such phenomena have been described in terms of adia-
batic and nonadiabatic collisions between rotational molecules
and gas molecules by introducing semi-empirical relaxation
terms in the quantum Liouville equation on the basis of scatter-
ing theory.1,8 Various extensions of such approaches have been
used to derive relaxation terms in the investigation of rotational
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spectra.9–12 Examples involve a quantum J-diffusion model,
which describes quantum nature of IR spectra, while it pos-
sesses a correct classical limit in the underdamped and over-
damped cases.13,14 However, in such systems, the mechanism
of the relaxation process is not clear, due to its phenomenolog-
ical nature. In addition, the effect resulting from the quantum
nature of heat bath, in particular, in the non-Markovian case,
is not clear.

In this paper, we describe these phenomenon on the basis
of a system-bath model approach developed in the context
of open quantum dynamics theories. In such a treatment, a
rotationally invariant system-bath (RISB) Hamiltonian, satis-
fying H(θ) = H(θ + 2π), where θ is the rotator angle, must
be employed to study dynamics in order to avoid unphys-
ical behavior.15 While the classical description of a Brow-
nian rotator, whose dynamics are equivalent to Langevin
dynamics, is appropriate for describing classical rotational
relaxation, the quantum description, which has been studied
using the Caldeira-Leggett model,16 does not exhibit rotational
bands.17,18 This is because in the rotational Caldeira-Leggett
(RCL) model, the total system does not possess rotational sym-
metry. It should be noted, however, that in this model, the
rotational invariance of the rotator itself is recovered after trac-
ing over the bath degrees of freedom, and analytically exact
expressions for the linear and nonlinear response functions has
been obtained.18,19

As an extension of the standard Brownian model, a peri-
odic system-bath (PSB) model has been used in studies of
inelastic nuclear scattering (NIS) and nuclear magnetic reso-
nance (NMR).20–27 This approach assumes that the system-
bath interaction H I = V (θ)X(t) satisfies V (θ) = V (θ + 2π/N)

0021-9606/2018/149(8)/084110/8/$30.00 149, 084110-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5044585
https://doi.org/10.1063/1.5044585
https://doi.org/10.1063/1.5044585
mailto:iwamoto.y@kuchem.kyoto-u.ac.jp
mailto:tanimura.yoshitaka.5w@kyoto-u.jp
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5044585&domain=pdf&date_stamp=2018-08-28


084110-2 Y. Iwamoto and Y. Tanimura J. Chem. Phys. 149, 084110 (2018)

for a CN symmetric rotator, where V (θ) is the system side of
the system-bath interaction and X(t) is the collective coor-
dinate of the bath, which corresponds to noise. While the
quantum master equation (QME) derived from the PSB model
can describe rotational bands, the overdamped peak predicted
by this model is different from that which arises from the
spectral collapse peak predicted by the classical Langevin
approach.

In order to overcome this limitation, here we introduce a
rotationally invariant system-bath (RISB) model described by
a rotationally invariant system-bath Hamiltonian. This Hamil-
tonian consists of a two-dimensional rigid rotator indepen-
dently coupled to the x and y elements of a two-dimensional
harmonic oscillator bath with sine and cosine functions of the
rotator angle θ as H I = cos(θ)X(t) + sin(θ)Y (t), where X(t) and
Y (t) are the collective coordinates of the baths in the x and y
directions, respectively. This Hamiltonian was introduced by
Gefen, Ben-Jacob, and Caldeira in order to study a dissipative
driven system, specifically, a current-biased tunnel junction.28

We found that this model is also suitable for the description of
rotational spectra because the model is rotationally invariant
and because the equation of motion described by this Hamil-
tonian reduces to the Langevin equation in the overdamped
limit. Moreover, it is possible to extend this model so that it
can describe the effects of anisotropic environments, such as
anisotropic 2D crystals.

In order to demonstrate some of the above-mentioned fea-
tures, we derive a Markovian master equation without impos-
ing the rotating wave approximation (RWA) for the RISB
model that is realized when we assume an Ohmic spectral
distribution for a high temperature bath. In the overdamped
case, this equation reduces to the Fokker-Planck (or Kramers)
equation, which is equivalent to the Langevin equation. With
this model, we can describe the rotational spectrum from
the quantum regime to the classical overdamped regime uni-
formly as a function of the system-bath coupling and bath
temperature.

This paper is organized as follows. In Sec. II, we describe
the model and discuss its theoretical foundation. In Sec. III,
we introduce the linear response function for the absorption
spectrum of the rotator. In Sec. IV, we present numerical
results and discussion. Section V is devoted to concluding
remarks.

II. THE MODEL AND ITS THEORETICAL FOUNDATION
A. A rotationally invariant system-bath model

We consider a two-dimensional rigid rotator system
described by

ĤS =
L̂2

2I
+ U(θ̂), (1)

where L̂, θ̂, and I are the angular momentum, angular coordi-
nate, and moment of inertia of the rigid rotator and U(θ̂) is a
periodic potential that satisfies U(θ̂) = U(θ̂+2π). Examples of
two-dimensional rotator systems include the rotational motion
of benzene about the C6 axis and the methyl group rotation of
toluene.

The rotator system is independently coupled to two heat
baths in the x and y directions (a two-dimensional heat bath)
through sine and cosine functions of θ. The total Hamiltonian
is then given by

Ĥtot = ĤS + Ĥx
I+B + Ĥy

I+B, (2)

where

Ĥα
I+B =

∑
k




(p̂αk )2

2mα
k

+
1
2

mα
k (ωαk )2*

,
q̂αk −

cαk V̂α

mα
k (ωαk )2

+
-

2


, (3)

and mα
k , p̂αk , q̂αk , and ωαk are the mass, momentum, position,

and frequency variables of the kth bath oscillator mode in the α
= x or y direction. Here, we set V̂ x = cos θ̂ and V̂ y = sin θ̂, and
cαk is the system-bath coupling constant. From Eqs. (1)–(3), it
is seen that the two terms in the interaction part of the Hamil-
tonian are assumed to take the forms Ĥx

I = − cos(θ̂)X̂ and
Ĥy

I = − sin(θ̂)Ŷ , where X̂ ≡
∑

k cx
k q̂x

k and Ŷ ≡
∑

k cy
k q̂y

k are the
interaction coordinates in the x and y directions. Note that, we
have introduced the counter terms

∑
k(cx

k)2 cos2(θ̂)/2mx
k(ωx

k)2

and
∑

k(cy
k)2 sin2(θ̂)/2my

k(ωy
k)2 to maintain the translational

symmetry of the Hamiltonian in the x and y directions. We
can regard these baths to arise from, for example, the x and y
components of the local electric field due to the surrounding
molecules. In the case of an electric molecular dipole, the inter-
action between the rotator and the environments is described
by Ĥx

I ∝ cos(θ̂)X(t) and Ĥy
I ∝ sin(θ̂)Y (t), where X(t) and

Y (t) are the components of the local electric field arising from
the fluctuations of the surroundings molecules. The harmonic
baths are characterized by spectral density functions defined
as

Jα(ω) =
π

2

∑
k

(cαk )2

mα
k ω

α
k

δ(ω − ωαk ), (4)

where α represents x or y. It should be noted that Jx(ω) and
Jy(ω) need not be the same. In particular, they will differ when
the surrounding environment is anisotropic.

With the above Hamiltonian, the system dynamics can be
derived numerically rigorously in the case of non-Markovian
noise using the hierarchal equations of motion (HEOM)
approach.7,29–33 However, in the case of the multiple heat
baths, the HEOM approach is extremely computationally
demanding. For this reason, here we restrict our analysis to
the simple Markovian case.

B. Quantum master equation for the RISB model

In the case of a weak system-bath coupling, the general-
ized master equation approach is appropriate for the study of
quantum dissipative dynamics,4–6 while this equation exhibits
pathological behavior in the strong coupling case.32,33 Without
employing the RWA, the generalized master equation for the
reduced density matrix of the system, ρ̂(t), in the Schrödinger
representation derived from Eqs. (1)–(3) is expressed as5

∂

∂t
ρ̂(t) = −

i
~

[Ĥ ′S , ρ̂(t)] −
1

~2

∫ t

0
dτ

(
Γ̂

x(τ) ρ̂(t − τ)

+ Γ̂y(τ) ρ̂(t − τ)
)
, (5)
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where Ĥ ′S is the system Hamiltonian with the counter terms,
and

Γ̂
α(τ) ρ̂(t − τ) ≡ Cα(τ)[V̂α, ĜS(τ)V̂α ρ̂(t − τ)Ĝ†S(τ)]

− Cα(−τ)[V̂α, ĜS(τ) ρ̂(t − τ)V̂αĜ†S(τ)] (6)

is the damping operator, in which

Cα(τ) = ~
∫ ∞

0

dω
π

Jα(ω)

[
coth

(
β~ω

2

)
cos(ωτ) − i sin(ωτ)

]

(7)

is the bath correlation function for the α = x and y baths.
Here, β = 1/kBT is the inverse temperature of the environ-
ments divided by the Boltzmann constant, kB, and ĜS(τ) is the
time evolution operator of the system. We assume the Marko-
vian case described by an Ohmic spectral distribution Jα(ω)
= ηαω, where ηα is the friction coefficient, in the high tem-
perature case, in which we have coth(β~ω/2) ≈ 2/(β~ω). The
bath correlation function is then expressed as

Cα(τ) = ηα
(

2
β

+ i~
d

dτ

)
δ(τ), (8)

and we have ∫
t

0 dτΓ̂α(τ) ρ̂(t − τ) = ˆ̄Γα ρ̂(t) + i~ηαδ(0)
[(V̂α)2, ρ̂(t)]. The imaginary term on the right-hand side (RHS)
is canceled by the counter terms. Thus we have

∂

∂t
ρ̂(t) = −

i
~

[ĤS , ρ̂(t)] −
1

~2
ˆ̄Γx(τ) ρ̂(t) −

1

~2
ˆ̄Γy ρ̂(t), (9)

where

ˆ̄Γα ρ̂(t) =
ηα

β

(
[V̂α, V̂α ρ̂(t)] − [V̂α, ρ̂(t)V̂α]

)
+

i~ηα

2

[
(V̂α)2,

d ρ̂(t − τ)
dτ

|τ=0

]

−
ηα

2

(
[V̂α, ĤSV̂α ρ̂(t)] + [V̂α, ĤS ρ̂(t)V̂α]

− [V̂α, V̂α ρ̂(t)ĤS] − [V̂α, ρ̂(t)V̂αĤS]
)
. (10)

For an isotropic environment, with η = ηx = ηy, the second
term on the RHS of Eq. (10) vanishes because we have the
relation (V̂ x)2 + (V̂ y)2 = const. Thus, as the quantum master
equation (QME) for the RISB model in the isotropic case, we
obtain

∂

∂t
ρ̂(t) = −

i
~

[ĤS , ρ̂(t)] −
η

β~2

(
[V̂ x, V̂ x ρ̂(t)] − [V̂ x, ρ̂(t)V̂ x]

)
−

η

β~2

(
[V̂ y, V̂ y ρ̂(t)] − [V̂ y, ρ̂(t)V̂ y]

)
+

η

2~2

(
[V̂ x, ĤSV̂ x ρ̂(t)] + [V̂ x, ĤS ρ̂(t)V̂ x] − [V̂ x, V̂ x ρ̂(t)ĤS] − [V̂ x, ρ̂(t)V̂ xĤS]

)
+

η

2~2

(
[V̂ y, ĤSV̂ y ρ̂(t)] + [V̂ y, ĤS ρ̂(t)V̂ y] − [V̂ y, V̂ y ρ̂(t)ĤS] − [V̂ y, ρ̂(t)V̂ yĤS]

)
. (11)

Note that, in this isotropic case, Eq. (11) holds either with
or without the counter terms because the second term on the
RHS of Eq. (10) is canceled in either case, due to the relation
(V̂ x)2 + (V̂ y)2 = const. Moreover, this equation is invariant
under rotational motion, θ̂ → θ̂ + α, because the relaxation
operators of this equation possess rotational invariance.

For numerical calculations, an eigenstate representation
of the QME is more useful than the angular coordinate repre-
sentation. In the case of a free rotator, i.e., when U(θ) = 0, the
above equation can be expressed as

∂

∂t
ρa,b(t)

= −iω0(a2 − b2)ρa,b −
η

β~2

(
2ρa,b − ρa+1,b+1 − ρa−1,b−1

)
+
ηω0

2~
(
(a + b + 1)ρa+1,b+1 − (a + b− 1)ρa−1,b−1 + 2ρa,b

)
,

(12)

where ρa,b ≡ 〈a| ρ̂|b〉 for the eigenstates |a〉 and |b〉 with
eigenvalue a and b (satisfying −∞ < a, b < ∞) and ω0

≡ ~/2I.

C. Fokker-Planck equation for the RISB model

In the case of a strong system-bath coupling, the rotational
motion relaxes quickly due to the large viscosity of the envi-
ronment. Thus, in this case, the periodic nature of the rotator

can be ignored, and for this reason, the domain of θ can be
extended from −π ≤ θ < π to −∞ < θ < ∞. Then, Eq. (11) in
the case U(θ) = 0 becomes

∂

∂t
ρ(θ, θ ′, t)

=

(
i~
2I

∂2

∂θ2
−

i~
2I

∂2

∂θ ′2

−
η

β~2

{
[sin(θ) − sin(θ ′)]2 + [cos(θ) − cos(θ ′)]2

}

−
η

2I
sin(θ − θ ′)

(
∂

∂θ
−

∂

∂θ ′

)
+
η

2I

{
[sin(θ) − sin(θ ′)]2

+ [cos(θ) − cos(θ ′)]2
})
ρ(θ, θ ′, t). (13)

In the Wigner representation,34 the above equation further
reduces to the quantum Fokker-Planck equation (QFPE),
expressed as7,35(see the Appendix)

∂

∂t
W (p, θ, t) = −

p
I
∂

∂θ
W (p, θ, t) +

η

I
∂

∂p

(
p +

I
β

∂

∂p

)
W (p, θ, t).

(14)

Note that in the QFPE approach, it is possible to include the
contribution of the potential term by introducing the Wigner
representation of U(θ).36–39 In the present case, the QFPE
and the classical Fokker-Planck equation (CFPE) are identical
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because we do not have a potential term. As we show below,
while the CFPE can be applied in the weak coupling case at
low temperature, the QFPE can be applied only in the over-
damped case at high temperature, because we employed the
high temperature assumption in deriving Eq. (14), in addition
to extending the domain of θ to −∞ < θ < ∞.

D. Classical Langevin equation

In the classical case, we can derive the classical Langevin
equation (CLE) form the Hamiltonian given in Eqs. (1)–(3).

From the Hamilton canonical equations, we obtain the follow-
ing set of differential equations:

I θ̈ + U(θ) = −ηx sin θ
∑

k

ckxk + ηy cos θ
∑

k

ckyk , (15)

and
mk ẍk = −mkω

2
k xk + ck cos θ,

mk ÿk = −mkω
2
k yk + ck sin θ.

(16)

Then, after eliminating xk and yk , we obtain the generalized
Langevin equation as

I θ̈ +
∫ t

0
dt ′

[
γx(t − t ′) sin θ(t) sin θ(t ′) + γy(t − t ′) cos θ(t) cos θ(t ′) )

]
θ̇(t ′) = − sin θ(t)ζ x(t) + cos θ(t)ζ y(t), (17)

where γα(t) and ζα(t) represent the frictional and random
forces in the α direction, defined as

γα(t − t ′) ≡
2
π

∫ ∞
0

dω
Jα(ω)
ω

cos(ω(t − t ′)), (18)

and

ζα(t) ≡ −
∑

k

cαk

{
pαk (0)

mα
k ω

α
k

sin(ωαk t)

+
(
xαk (0) −

cαk
mα

k (ωαk )2
cos(θ(0))

)
cos(ωαk t)




. (19)

For the isotropic case, with 〈ζ(t)ζ(t ′)〉 = 〈ζ x(t)ζ x(t ′)〉
= 〈ζ y(t)ζ y(t ′)〉, we have〈

ζ(t)ζ(t ′)
〉
=

1
β

∑
k

c2
k

mkω
2
k

cosωk(t − t ′) cos(θ(t) − θ(t ′))

=
1
β

cos(θ(t) − θ(t ′))γ(t − t ′), (20)

where we have set the mean value of ζα(t) to 0, i.e., 〈ζα(t)〉
= 0. In the Ohmic case, with J(ω) = ηω, the friction kernel
is given by γ(t − t ′) = 2ηδ(t − t ′). Then, the CLE is derived
as

I θ̈ + ηθ̇ + U(θ) = ζ(t), (21)

with

〈ζ(t)ζ(t ′)〉 =
2η
β
δ(t − t ′). (22)

In the case U(θ) = 0, the dynamics described by the CLE are
equivalent to those described by the CFPE, which are iden-
tical to those described by Eq. (14). However, although the
QFPE presented in Eq. (14) is valid only in the overdamped
case at high temperature, there is no such limitation on the
CFPE.

III. LINEAR ABSORPTION SPECTRUM
A. Response function

The linear absorption spectrum of a molecular dipole
moment µ̂ = µ0 cos θ is expressed as40

σ[ω] = Im

[
µ2

0

∫ ∞
0

dteiωtR(t)

]
, (23)

where R(t) is the response function defined as

R(t) ≡
i
~
〈[cos(θ(t)), cos(θ(0))]〉. (24)

In order to calculate R(t) using an equation of motion approach,
we express the response function as R(t) = i

~Tr
{
µ̂G(t)µ̂× ρ̂eq},

where the hyperoperator × is defined as Â×B̂ ≡ [Â, B̂], and G(t)
is the Green function of the system Hamiltonian without a laser
interaction.7 In the reduced equation of motion approach, the
density matrix is replaced by a reduced one, and the Liouvil-
lian in G(t) is replaced using the QME. Then we evaluate the
absorption spectrum in the following steps. (i) The system is
initially in the equilibrium state: ρ̂eq = e−βĤS . (ii) The sys-
tem is excited by the first interaction µ̂× at t = 0. (iii) The
time evolution of the perturbed elements is then computed
by integrating Eq. (12) using the fourth-order Runge-Kutta
method. (vi) R(t) is calculated from the expectation value
of µ̂. Finally, performing a fast Fourier transform, we obtain
σ(ω).

B. Kubo oscillator

In the classical case, we calculate the correlation function
defined as

C(t) ≡ 〈cos(θ(0)) cos(θ(t))〉cl, (25)

where 〈〉cl represents the thermal average over the classi-
cal distribution. We can obtain the response function from
C(t) using the fluctuation-dissipation theorem in the classical
case, expressed as R[ω] = iωC[ω]/β, where R[ω] and C[ω]
are the Fourier transforms of R(t) and C(t), respectively.41

Then, the rotational spectrum in the classical case is expressed
as

σ[ω] =
iωµ2

0

β
C[ω]. (26)

This function is analytically calculated from the CLE given in
Eqs. (21) and (22) as follows.42 First, we consider the rotational
matrix

R(t) =

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)
. (27)
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The time derivative of R(t) is given by

dR(t)
dt
=

(
0 1
−1 0

)
R(t)ω(t), (28)

where ω = θ̇ is the angular frequency. In the Kubo oscilla-
tor model, this angular frequency is regarded as a stochas-
tic variable.43,44 Here, we consider the case in which ω is
governed by the CLE, Eqs. (21) and (22). For this reason,
its correlation function is given by 〈ω(0)ω(t)〉 = e−

η
I t/I β.

Furthermore, because ω is governed by the Langevin equa-
tion, it is a Gaussian stochastic variable, and hence we have
〈R(t)〉 = exp

[
−γ(ηI t − 1 + e−

η
I t)

]
I for the initial condition

θ(0) = 0, where γ = I/βη2 and I is the two-dimensional unit
matrix.42 The unit vector in the direction of the rigid rotator
is denoted by n(t). The correlation function of n(t) is given
by 〈n(0)·n(t)〉 = 〈R(t)〉. Thus we have 〈n(0)·n(t)〉 = 〈cos(θ(t))〉
= 〈cos(θ(0)) cos(θ(t))〉 for θ(0) = 0 so that

C(t) = exp
[
−γ

(
η

I
t − 1 + e−

η
I t
)]

. (29)

Thus, in the weak damping regime, the response function
becomes a Gaussian-like profile, and we have

σ[ω] =
µ2

0η

I
√

2πγ
ω exp

(
−
η2ω2

2γI2

)
, (30)

while in the strong damping regime, it becomes a Lorentzian-
like profile, and we have

σ[ω] =
µ2

0eδ

π

γ2ω

ω2 + γ2
, (31)

where δ is a small real constant from the phase. This change in
profile from a Gaussian to a Lorentzian is known as a motional
narrowing in the context of NMR.41 This is regarded as a
classical phenomenon, as this derivation suggests.

IV. RESULTS AND DISCUSSION

In what follows, we study absorption spectra for the RISB
and RCL models. We consider (a) the moderate-temperature
case (with β~ω0 = 0.2) and (b) the high-temperature case (with
β~ω0 = 0.02). Although we assumed the high temperature
limit to derive the QME in the RISB case, this condition is
easily satisfied for measurements in molecular rotational spec-
troscopy experiments. For example, for the rotational motion
of a methyl group, the moment of inertia is 2.1 × 10−47 kg m2,
and we have β~ω0 = 0.05 � 1 at room temperature. In the
following, we set µ0 = 1. In the RCL case, we employed an
analytically exact solution for the absorption spectrum that is
obtained using the path integral approach.17–19

In Fig. 1, we plot rotational absorption spectra calculated
from the RISB model, the RCL model, and the CLE given in
Eqs. (21) and (22), which corresponds to the classical limit of
the RISB and RCL models for various values of the coupling
strength, η̄ = η/~, in (a) the moderate case and (b) the high
temperature case. The spectra in the CL case were calculated
from the analytical expression presented in Refs. 18 and 19.

Figures 1(a-i)–1(a-iv) illustrate the rotational absorption
spectra for the moderate temperature case. First, it should
be noted that, although the quantum RCL results are slightly

FIG. 1. Rotational absorption spectra,σ[ω], in (a) the moderate-temperature
case (β~ω0 = 0.2) and (b) the high-temperature case (β~ω0 = 0.02) for four
values of the coupling strength, η̄ = η/~: (i) 0.01, (ii) 0.05, (iii), 0.5, (iv) 5.
The blue, black, and red curves represent the quantum RISB result, quantum
RCL result, and classical Langevin equation (CLE) result, which corresponds
to the classical limit of the RISB and RCL results, respectively. The quantum
RCL result is calculated from the analytical expression presented in Refs. 17
and 18.

lower than the Langevin results, the overall profiles are very
similar because the quantum effects are minor in the RCL
model in this temperature regime. In the very weak coupling
case, depicted in Fig. 1(a-i), the quantum RISB results exhibit
discretized rotational bands arising from quantum transitions
J → J ± 1 with energy differences EJ +1 − EJ = ω0(2J + 1),
while the quantum RCL results are similar to the classical
results. The existence of these rotational bands is due to the
fact that the total Hamiltonian of the RISB model possesses
rotational symmetry. Contrastingly, the RCL model possesses
rotational symmetry only for the system part. In the quantum
RISB case, the profiles of the absorption peaks are deter-
mined from the differential equation for ∂ρJ ,J +1(t)/∂t given
in Eq. (12): In the weak coupling case, we can ignore the
contribution from the RHS terms with ρJ +1,J +2 and ρJ−1,J ,
and as a result, we have ρJ ,J +1(t) = e−η (1−2/β )t+i(2J +1)t . Thus,
the peak profile in the RISB case is expressed as a sum of
Lorentzian functions, σ(ω) ∝

∑
Jη(1 − 2/β)/[(ω − 2J − 1)2 +

η2(1 − 2/β)2], and the width of each peak is given by η(1 −
2/β). Contrastingly, we observe a broadened peak only in the
quantum CL cases, as in the classical case, because the quan-
tum CL model does not possess rotational symmetry and the
transition energy of rotational motion becomes continuous.

When the system-bath coupling becomes slightly larger,
as in the case of Fig. 1(a-ii), the contribution from the other
terms with ρJ +1,J +2 and ρJ−1,J plays a significant role. As
a result, in this case, the spectral profiles deviate from the
Lorentzian form. In the strong coupling case depicted in
Fig. 1(a-iii), all of the rotational peaks broaden and merge
into a single peak. In such a case, because the rotational
energy levels are mixed, we can adopt the angular coordinate



084110-6 Y. Iwamoto and Y. Tanimura J. Chem. Phys. 149, 084110 (2018)

representation to describe the rotational dynamics. Under the
high-temperature approximation without a rotational poten-
tial, the QFPE in (14) coincides with the CFPE. For this reason,
our quantum results exhibit absorption profiles that are similar
to those in the classical case. This does not mean, however, that
the quantum results approach the classical results in the strong
damping case because we always have low temperature quan-
tum correction terms in Eqs. (11), (12), (13), and (14) in the
low temperature case, where quantum effects play a significant
role, as illustrated in Refs. 32, 33, 38, and 39.

In the very strong coupling (overdamped) case depicted in
Fig. 1(a-iv), the difference between the quantum RISB results
and the other results becomes large again because our pertur-
bative treatment of the quantum RISB calculation based on
the eigenstate representation of the system becomes inappro-
priate: In such a case, the energy states of the system become
continuous because the states of the system and bath are entan-
gled due to the strong system-bath interaction. The coordinate
representation of the equation of motion Eq. (14), however,
can be used even in the overdamped case, due to the fact that
the system energy described in coordinate space is continuous,
although we have to include low temperature quantum correc-
tion terms in order to obtain an accurate spectrum.33 Then,
from the similarity of the quantum and classical RCL results
described by Eq. (14), we infer that the quantum RISB results
should be similar to the quantum RCL results appearing in
Fig. 1(a-iv) in the strong coupling regime if we can accurately
solve the RISB model quantum mechanically. However, this
must be confirmed by computing spectra using both models
at low temperature, where quantum effects play a significant
role.

In the high temperature case depicted in Figs. 1(b-i), the
RCL results are qualitatively similar to the CLE results at any
coupling strength, while we observe rotational bands in the
weak coupling case in the RISB result. This is because the
high temperature limit (β → 0) is effectively the same as the
classical limit (~ → 0) for a harmonic heat bath, as can be
seen in the QME approach, in which the temperature appears
as β~. While the spectrum exhibits a Gaussian-like profile in
Fig. 1(b-ii), as described by Eq. (30), it becomes a Lorentzian-
like profile in Fig. 1(b-iv), as described by Eq. (31). Because
the Kubo oscillator theory is a classical theory, this narrow-
ing behavior of the spectrum is regarded as having a classical
origin.

We are able to simulate these phenomena from the quan-
tum regime to the classical regime uniformly because our RISB
model has a proper classical limit, although there is a discrep-
ancy in Fig. 1(a-iv) due to the perturbative treatment of the
QME approach. We should note that if we use the rotating
wave approximation to derive the QME, we cannot account
for the transition from the Gaussian-like to Lorentzian-like
spectral profile due to the improper treatment of the thermal
activation processes, while the positivity of the reduced density
matrix is maintained.33

V. CONCLUSION

In this work, we introduced the RISB model in order to
describe the dynamics of a two-dimensional rigid rotator in a

dissipative environment. As we demonstrated, the RISB model
allows us to explain the characteristic feature of the rotational
spectrum as a function of the system-bath coupling and bath
temperature in a unified manner. This characteristic feature
is a transition of the peak profiles from discretized rotational
bands to a Lorentzian-like peak through a Gaussian-like peak.
Here, we calculated absorption spectrum that is described by
the correlation function of the cosine function. However, this
approach can be extended straightforwardly to calculate rota-
tional Raman spectrum that is described by the correlation
function of the Legendre polynomial.

In this paper, we limited our analysis, using the pertur-
bative and Markovian QMB approach for the relatively high
temperature cases. As a result, we were not able to obtain
an accurate prediction of the motional narrowing peak in the
strong coupling case at moderate temperatures. Although it
is computationally demanding, we can study the effect of
a non-Markovian environment at low temperature using the
hierarchical equations of motion (HEOM) approach.7,29–33

Because understanding the noise correlation in both isotropic
and anisotropic environments is very important for many areas
of physics, chemistry, and biology, such an extension is neces-
sary. This formalism in the Wigner representation is ideal for
studying rotator systems because it allows for the treatment
of rotationally invariant systems with any potential profiles, in
addition to the inclusion of an arbitrary time-dependent exter-
nal field, utilizing periodic boundary conditions.37,38 More-
over, because we can compare quantum results with classical
results obtained in the classical limit of the equation of motion
for the Wigner distribution, this approach is effective for identi-
fying purely quantum effects.37–39 Superconducting quantum
interference devices (SQUIDs) can also be investigated using
the same framework.28,45

The extension of the RISB model from two dimensions
to three dimensions is also necessary because the dynamics of
2D rotators and 3D rotators are different even in the classical
case.49,50 In addition, the effect of rotational potential is impor-
tant in most chemical systems, for example, to analyze the
hindered rotation of a molecular system. In the present formal-
ism, rotational potential is easily included in Eq. (11) without
increasing computational costs. As a future investigation, we
plan to extend the present study in such directions.
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APPENDIX: WIGNER REPRESENTATION
OF THE QME FOR THE RISB MODEL

For a system described by an angular coordinate, a dis-
crete Wigner distribution is often employed.46,47 In the over-
damped case, we can employ a regular Wigner distribution
even in this periodic case because the rotational motion relaxes
quickly, due to the large viscosity, and hence we can extend
the domain of θ from −π ≤ θ < π to −∞ < θ < ∞. In
the Wigner representation, an arbitrary operator Â is defined
as7,33,34,36–39
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AW (p, q) =
∫ ∞
−∞

dre−
ipr
~ 〈θ |Â|θ ′〉, (A1)

where q = θ+θ′
2 and r = θ − θ ′. Then, for the density operator

ρ̂, we have

W (p, q) =
∫ ∞
−∞

dre−
ipr
~ 〈θ | ρ̂|θ ′〉, (A2)

where W (p, q) is the Wigner distribution function. The
kinetic term of the Liouvillian in the Wigner representation
is expressed as(

i~
2I

∂2

∂θ2
−

i~
2I

∂2

∂θ ′2

)
ρ̂(θ, θ ′)→ −

p
I
∂

∂q
. (A3)

If we assume limr→±∞ ρ(q + r
2 , q − r

2 ) = 0, the system side of
the system-bath interactions is given by

∫ ∞
−∞

dre−
ipr
~ cos(r)〈θ | ρ̂|θ ′〉 =

1
2

∫ ∞
−∞

dr(e−i( p
~+k)r + e−i( p

~−k)r)〈θ | ρ̂|θ ′〉

=
W (p + ~, q, t) + W (p − ~, q, t)

2
,∫ ∞

−∞

dre−
ipr
~ sin r

∂

∂r
〈θ |Â|θ ′〉 = −

∫ ∞
−∞

dr

(
−

ip
~

)
e−

ipr
~ sin r〈θ |Â|θ ′〉 −

∫ ∞
−∞

dre−
ipr
~ cos r〈θ |Â|θ ′〉

=
p

2~
(
W (p − ~, q, t) −W (p + ~, q, t)

)
−

1
2

(W (p − ~, q, t) + W (p + ~, q, t)).

As a result, the QME in the Wigner representation becomes

∂

∂t
W (p, θ, t) = −

p
I
∂

∂θ
W (p, θ, t) + ηkBT

W (p + ~, θ, t) − 2W (p, θ, t) + W (p − ~, θ, t)

~2

+
η

I

{
p

2~
(W (p + ~, θ, t) −W (p − ~, θ, t)) +

1
2

(W (p − ~, θ, t) + W (p + ~, θ, t))

}
−
η

2I
(W (p + ~, θ, t) − 2W (p, θ, t) + W (p − ~, θ, t)). (A4)

The distribution as a function of the momentum is slowly
changed in the high temperature case, and we can approximate
the dissipation terms as follows:

W (p + ~, θ, t) − 2W (p, θ, t) + W (p − ~, θ, t)

~2
≈
∂2W (p, θ, t)

∂p2
,

W (p + ~, θ, t) −W (p − ~, θ, t)
2~

≈
∂W (p, θ, t)

∂p
,

W (p + ~, θ, t) + W (p − ~, θ, t) ≈ 2W (p, θ, t).

(A5)

Thus we have

∂

∂t
W (p, θ, t) = −

p
I
∂

∂θ
W (p, θ, t) +

η

I
∂

∂p

(
p +

I
β

∂

∂p

)
W (p, θ, t).

(A6)

This is the quantum Fokker-Planck equation,7,35 which is
identical to the Kramers equation in the classical limit.48
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