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We present a theoretical framework to investigate quantum thermodynamic processes under non-
Markovian system-bath interactions on the basis of the hierarchical equations of motion (HEOM)
approach, which is convenient to carry out numerically “exact” calculations. This formalism is
valuable because it can be used to treat not only strong system-bath coupling but also system-
bath correlation or entanglement, which will be essential to characterize the heat transport between
the system and quantum heat baths. Using this formalism, we demonstrated an importance of the
thermodynamic effect from the tri-partite correlations (TPC) for a two-level heat transfer model and
a three-level autonomous heat engine model under the conditions that the conventional quantum
master equation approaches are failed. Our numerical calculations show that TPC contributions,
which distinguish the heat current from the energy current, have to be take into account to satisfy
the thermodynamic laws.

INTRODUCTION

Recent progress of manipulating small-scale systems provides the possibility of examining the founda-
tion of statistical mechanics in nano materials [1–3]. In particular, elucidating how such purely quantum
mechanical phenomena as quantum entanglement and coherence are manifested in thermodynamics is of
particular interest in quantum thermodynamics [4, 5]. Such problems have been studied with approaches
developed through application of open quantum dynamics theory.

Widely used approaches employ a quantum master equation (QME) that can be derived from the
quantum Liouville equation with a system plus bath Hamiltonian by tracing out the heat bath degrees of
freedom. To obtain evolution equations for the reduced density operator in a compact form, one usually
employs the Markovian assumption, in which the correlation time is very short in comparison to the
characteristic time of the system dynamics. The QME with the second-order treatment of the system-
bath interaction or the Redfield equation (RE) have been derived with the projection operator method,
for example [6, 7]. As we will show in Fig. 1, however, even if the dissipation process is Markovian,
the fluctuation process may not be, because it must satisfy the fluctuation-dissipation theorem (FDT).
For this reason, if we apply the QME under Markovian assumption to low temperature systems, then
the positivity of the probability distributions of the reduced system cannot be maintained. As a method
to preserve positivity, the rotating wave approximation (RWA), which modifies the interaction between
the system and the heat bath, has been applied in order to put the master equation in the Lindblad
form. However, this approximation may alter the thermal equilibrium state as well as the dynamics of
the original total Hamiltonian, because the FDT is also altered. For example, while the true thermal
equilibrium state of the system at inverse temperature β is given by Trbath[exp(−βĤtotal)]/Z, where Ĥtotal

and Z are the total system-plus-bath Hamiltonian and the partition function, respectively, the thermal
equilibrium state obtained from the second-order QME approach is exp(−βĤsys)/Trsys[exp(−βĤsys)]

where Ĥsys is the bare system Hamiltonian. This implies that the Markovian assumption is incompatible
with obtaining a quantum mechanical description of dissipative dynamics at low temperature.

Thus, for the study of quantum thermodynamics, there is a strong limitation on the basis of the
conventional QME approaches, despite their successes to predict the performance of heat machines and
propose systems as the candidate for the novel platform of the heat-to-work conversion. For example,
the inconsistency between the global and local QME, in which the bath couples to the eigenstates of
the system and the eigenstates of the sub-system, respectively, have to be reconciled even in a weak
system-bath coupling regime [8, 9]. While the global QME can predict the Gibbs distribution in the
equilibrium situations, some unphysical behaviors caused by employing the global QME in the non-
equilibrium situations are reported. On the other hand, the local QME may violate the second law
of thermodynamics. Recent studies try to recover the correct thermodynamic description of the global
QME by incorporating the non-additive dissipation [10], which is not treated in the traditional QME
approaches. Furthermore, the interplay between the quantum coherence and environmental noise is
indispensable to optimize the excitation energy and heat transport [11, 12], the role of which should be
fully clarified by using the non-perturbative non-Markovian quantum dynamical theory [13].
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To this time, the approaches used to study the strong coupling regime in the field of quantum ther-
modynamics include the QME employing a renormalized system-plus-bath Hamiltonian derived with the
polaron transformation [14] or the reaction-coordinate mapping, [15, 16] the functional integral approach,
[17] the non-equilibrium Green’s function method, [18–20] and the stochastic Liouville-von Neumann
equation approach [21]. In most cases, however, such attempts are limited to a nearly Markovian case, a
case with a slowly driving field, or the investigation of the short-time behavior.
Many of the above-mentioned limitations can be overcome with the hierarchical equations of motion

(HEOM), which are derived by differentiating the reduced density matrix elements defined by path
integrals.[22–27]. This approach allows us to treat systems subject to external driving fields in a numer-
ically rigorous manner under non-Markovian and non-perturbative system-bath coupling conditions and
have been applied for the studies of quantum information theory [28, 29] and quantum thermodynamics
[30, 31].
In the present study, we employ the HEOM approach to investigate heat transport and quantum heat

engine problems. The definition of the heat current in terms of the bath energy have to be distinguished
from the system energy change due to the coupling with the bath when the system is coupled to multiple
heat baths. The differences of these definitions are clarified through the numerical calculations using the
HEOM.

HIERARCHAL EQUATIONS OF MOTION APPROACH

We consider a system coupled to multiple heat baths at different temperatures. With K heat baths,
the total Hamiltonian is written

Ĥ(t) = Ĥsys(t) +
K
∑

k=1

(

Ĥ
(k)
int + Ĥ

(k)
bath

)

, (1)

where Ĥsys(t) is the system Hamiltonian, whose explicit time dependence originates from the coupling
with the external driving field. The Hamiltonian of the kth bath and the Hamiltonian representing the

interaction between the system and the kth bath are given by Ĥ
(k)
bath =

∑

j ~ωk,j b̂
†
k,j b̂k,j and Ĥ

(k)
int =

V̂k

∑

j gk,j(b̂
†
k,j + b̂k,j), respectively, where V̂k is the system operator that describes the coupling to the

kth bath. Here, ωk,j , gk,j , and b̂k,j and b̂†k,j ,are the frequency, coupling strength, and the annihilation
and creation operators for the jth mode of the kth bath, respectively.
Due to the Bosonic nature of the bath, all bath effects on the system are determined by the bath

correlation function, Ck(t) ≡ 〈X̂k(t)X̂k(0)〉B, where X̂k ≡ ∑

j gk,j(b̂
†
k,j + b̂k,j) is the collective coordinate

of the kth bath and 〈. . .〉B represents the average taken with respect to the canonical density operator of
the baths. The bath correlation function is expressed in terms of the bath spectral density, Jk(ω), as

Ck(t) =

∫ ∞

0

dω
Jk(ω)

π

[

coth

(

βk~ω

2

)

cos(ωt)− i sin(ωt)

]

, (2)

where Jk(ω) ≡ π
∑

j g
2
k,jδ(ω − ωk,j), and βk is the inverse temperature of the kth bath. The real part of

Eq.(2) is analogous to the classical correlation function of the bath and corresponds to the fluctuations,
while the imaginary part of it corresponds to the dissipation. The fluctuation term is related to the
dissipation term through the quantum version of the FDT.
Here, in order to illustrate the origin of the positivity problem in the Markovian master and RE [25, 27],

we present the profiles of fluctuation term, Re[C(t)], for the Drude spectrum, J(ω) = ζγ2ω/(ω2 + γ2)
with ζ and γ being the coupling strength and cutoff frequency, respectively, which will be employed
in the subsequent numerical calculations. As shown in Fig. 1, the fluctuation term becomes negative
at low temperature in the region of small t. This behavior is characteristic of quantum noise [25, 27].
Thus, the validity of the Markovian (or δ(t)-correlated) noise assumption is limited in the quantum
case to the high temperature regime. Approaches employing the Markovian master equation and the
RE, which are usually applied to systems possessing discretized energy states, ignore or simplify such
non-Markovian contributions of the fluctuation, and this is the reason that the positivity condition of
the population states is broken. As a method to resolve this problem, the RWA is often employed,
but a system treated under this approximation will not satisfy the FDT, and thus the use of such an
approximation may introduce significant error in the thermal equilibrium state and in the time evolution
of the system toward equilibrium. Because the origin of the positivity problem lies in the unphysical
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FIG. 1. The real part of Eq.(2), depicted as a function of the dimensionless time t for the intermediate and large
values of the inverse noise correlation time: (a) γ = 1 and (b) γ = 5 for the Drude spectrum, J(ω) = γ2ω/(ω2+γ2).
Note that γ → ∞ corresponds to the Markovian (Ohmic) limit. The inverse temperatures are, from top to bottom,
β~ = 0.5, 1.0, 3.0, and 5. The bath correlation function becomes negative in (a) and (b) at low temperature
[25, 27].

Markovian assumption for the fluctuation term, the situation is better in the non-Markovian case, even
within the framework of the RE without the RWA [27].

With the factorized initial condition, ρ̂tot(t) = ρ̂(0)
∏K

k=1 e
−βkĤ

(k)
bath/Tr(e−βkĤ

(k)
bath), where ρ̂ is the re-

duced density operator of the system, we can obtain the exact expression for ρ̂(t), for example, by using
the cumulant expansion technique. In the following, the interaction representation of any operator, Â,
with respect to the non-interacting Hamiltonian is expressed as Ã(t). Then, the reduced density operator

is written as ρ̃(t) = T+[UIF(t, 0)ρ̂(0)], where UIF(t, t0) =
∏K

k=1 exp[
∫ t

t0
dτWk(τ, t0)] is the Feynman-Vernon

influence functional in operator form, and T+[. . .] is the time-ordering operator, where the operators in
[. . .] are arranged in a chronological order. The operators of the influence phase are defined by

Wk(τ, t0) =

∫ τ

t0

dτ ′Φ̃k(τ)
{

Re [Ck(τ − τ ′)] Φ̃k(τ
′)− Im [Ck(τ − τ ′)] Ψ̃k(τ

′)
}

, (3)

where Φ̂kÂ = (i/~)[V̂k, Â] and Ψ̂kÂ = (1/~){V̂k, Â}. This expression for the reduced density operator,
however, does not lead to the closed time evolution equation.
Then, Tanimura and his collaborators developed the hierarchical equations of motion (HEOM) that

consist of the set of equations of motion for the auxiliary density operators (ADOs) as the closed evolution
equations [22–27]. Here, we consider the case that the bath correlation function, Eq. (2), is written as

a linear combination of exponential functions, Ck(t) =
∑Lk

l=0 ck,le
−γk,l|t|, which is realized for the Drude,

Lorentz [32, 33], and Brownian models [34] (and combinations thereof [35, 36]). Note that, using a
set of special functions instead of the exponential functions, we may treat a system with a sub-Ohmic
spectral distribution at the zero temperature, where the quantum phase transition occurs [37, 38]. The
correction term expressed in the delta function form that, for example, counteracts the overestimation
of the contribution of higher-order Matsubara frequencies approximated is often included in Ck(t) [24].
The ADOs introduced in the HEOM are defined by

ρ̂~n(t) ≡T+
{

exp

[

− i

~

∫ t

0

dsL(s)
]}

× T+
{

K
∏

k=1

Lk
∏

l=0

[

−
∫ t

0

dτ e−γk,l(t−τ)Θ̃k,l(τ)

]nk,l

UIF(t, 0)ρ̂(0)

}

. (4)

Here, we have Θ̂k,l ≡ Re(ck,l)Φ̂k − Im(ck,l)Ψ̂k and L(t)ρ̂ = [Ĥsys(t), ρ̂]. Each ADO is specified by the
index ~n = (n1,0, . . . , n1,L1 , n2,0, . . . , nK,LK

), where each element takes an integer value larger than zero.
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The ADO for which all elements are zero, n1,0 = n1,1 = · · · = nK,LK
= 0, corresponds to the actual

reduced density operator. Taking the time derivative of Eq.(4), the equations of motion for the ADOs
are obtained as

d

dt
ρ̂~n(t) = −

[

i

~
L(t) +

K
∑

k=1

Lk
∑

l=0

nk,lγk,l

]

ρ̂~n(t)

−
K
∑

k=1

Φ̂k

Lk
∑

l=0

ρ̂~n+~ek,l
(t)−

K
∑

k=1

Lk
∑

l=0

nk,lΘ̂k,lρ̂~n−~ek,l
(t), (5)

where ~ek,l is the unit vector along the k × (l + 1)th direction. The HEOM consist of an infinite number
of equations, but they can be truncated at finite order by ignoring all ADOs beyond the value at which
∑

k,l nk,l first exceeds some appropriately large value N . In principle, the HEOM provides an asymptotic
approach that allows us to calculate various physical quantities with any desired accuracy by adjusting
the number of hierarchal elements determined by N ; the error introduced by the truncation is negligibly
small when N is sufficiently large.

HEAT CURRENTS

For this system-bath Hamiltonian, the heat current (HC) is defined as the rate of decrease of the bath

energy, Q̇HC,k(t) ≡ −d〈Ĥ(k)
bath(t))〉/dt. Using the Heisenberg equations, the heat current can be rewritten

as[30]

Q̇HC,k(t) = Q̇SEC,k(t) +
d

dt

〈

Ĥ
(k)
int (t)

〉

+
∑

k′ 6=k

İk,k′ , (6)

where

Q̇SEC,k(t) =
i

~

〈[

Ĥ
(k)
int (t), Ĥsys(t)

]〉

(7)

and

İk,k′ (t) =
i

~

〈[

Ĥ
(k)
int (t), Ĥ

(k′)
int (t)

]〉

. (8)

The first term on the right hand side of Eq.(6), Q̇SEC,k, describes the change of the system energy
due to the coupling with the kth bath, and consequently is defined as the total kth heat current in
the conventional QME approaches, which we call it the system energy current (SEC). The second term
vanishes under steady-state conditions and in the limit of a weak system-bath coupling. The third
term contributes to the HC even under steady-state conditions, while it vanishes in the weak coupling
limit. The third term is the main difference with the SEC. This term plays a significant role in the
case that the kth and k′th system-bath interactions are non-commuting and each system-bath coupling
is strong. We also note that because this third term is of greater than fourth-order in the system-bath
interaction, it does not appear in the second-order QME approach. Therefore only non-perturbative
approaches including higher-order QME approaches may allow us to reveal the features. Here, we discuss
this contribution usinf the HEOM theory. Hereafter, we refer to this term as the ”tri-partite correlations”
(TPC) because the statistical correlation among the kth bath, system, and k′th bath is at least necessary
for Ik,k′ to be present. For a mesoscopic heat-transport system, including nanotubes and nanowires, each

system component is coupled to a different bath ( i.e., each V̂k acts on a different Hilbert space), and
for this reason, the TPC terms vanish. By contrast, for a microscopic system, including single-molecular
junctions and superconducting qubits, the TPC contribution plays a significant role.

The First and Second Laws of Thermodynamics

We can obtain the first law of thermodynamics by summing Eq.(6) over all k:[31]

K
∑

k=1

Q̇HC,k(t) =
d

dt

〈

Ĥsys(t) +

K
∑

k=1

Ĥ
(k)
int (t)

〉

− Ẇ (t), (9)
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where Ẇ (t) = 〈(∂Ĥsys(t)/∂t)〉 is the power. The quantity, Ĥsys(t) +
∑K

k=1 Ĥ
(k)
int (t), is identified as the

internal energy, because the contributions of İk,k′ cancel out.

In a steady state without external driving forces, the second law is expressed as [39, 40]

−
K
∑

k=1

βkQ̇HC,k ≥ 0, (10)

while with a periodic external driving force, it is given by

−
K
∑

k=1

βkQ
cyc
HC,k ≥ 0, (11)

where Qcyc
HC,k =

∮

cyc
dt Q̇HC,k(t) is the heat absorbed or released per cycle. When the system is coupled to

the hot (k = h) and the cold (k = c) baths and is driven by the periodic field, the heat to work conversion
efficiency is bounded by the Carnot efficiency, which is derived by the combination of the first and second
laws, as

η ≡ −W cyc

Qcyc
HC,k

≤ 1− βh

βc

. (12)

The second law without a driving force can be rewritten in terms of the SEC as

−
K
∑

k=1

βkQ̇SEC,k ≥
K
∑

k,k′=1

βk İk,k′ . (13)

When the right-hand side of Eq.(13) is negative, the left-hand side can also take negative values. However,
this contradicts the Clausius statement of the second law, i.e., that heat never flows spontaneously from
a cold body to a hot body. As we show in the following sections, it is necessary to include the TPC terms
to have a thermodynamically valid description.

REDUCED DESCRIPTION OF HEAT CURRENTS

For the bosonic bath Hamiltonians considered here, we can trace out the bath degrees of freedom in
an exact manner by using the second-order cumulant expansion and obtain the reduced expression of the
HC, Eq. (6). The derivation is based on the generalization of the generating functional approach (details
are given in [31]). The analytical reduced expression for the kth HC is given by

Q̇HC,k(t) =
2

~

∫ t

0

dτ Im
[

Ċk(t− τ)
〈

V̂k(t)V̂k(τ)
〉]

+
2

~
Im [Ck(0)]

〈

V̂ 2
k (t)

〉

. (14)

Note that the second term on the right hand side of Eq.(14) should vanish as can be seen from the
definition of the bath correlation function. However, for the Drude bath spectrum, the contribution of
second term is finite, and is found to be necessary to guarantee the first law at least numerically. The
first term of Eq.(14) consists of non-equilibrium two-time correlation functions of the system operator in
the interaction Hamiltonian, and the calculation of these terms seems to be formidable task especially
when the system is driven by the external fields. However, by employing the noise decomposition of the
HEOM approach for the bath correlation functions in Eq. (14), and comparing the resulting expressions
with the definition of the ADOs given in Eq.(4), we can evaluate the heat current in terms of the ADOs
as[30, 31]

Q̇HC,k(t) = −
Lk
∑

l=0

γk,lTr
[

V̂kρ̂1×~ek,l
(t)

]

+
2

~
Im [Ck(0)] Tr

[

V̂ 2
k ρ̂~0(t)

]

. (15)

We note that the ADOs here we employed are the same as that of the conventional HEOM: Using ADOs
obtained from the numerical integrating of the HEOM in Eq.(5), we can calculate the HC.
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(a) two-level heat transfer model (b) three-level autonomous Engine model

FIG. 2. Schematic depiction of (a) the two-level heat transfer model and (b) the three-level autonomous heat
engine model investigated in this study.
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FIG. 3. The heat current (HC) and system energy current (SEC) for the two-level heat transfer model as functions
of the system-bath coupling.

NUMERICAL ILLUSTRATION

To demonstrate a role of the TPC in the HC, we consider a two-level heat transfer model [41–44] and a
three-level autonomous heat engine model [15] (Figure 2). We investigate the steady-state HC and SEC
obtained from Eq.(5) with the condition (d/dt)ρ̂~n = 0 using the BiCGSafe method for linear equations
[45]. We assume that the spectral density of each bath takes the Drude form, Jk(ω) = ζkγ

2ω/(ω2 +
γ2), where ζk is the system-bath coupling strength, and γ is the cutoff frequency. A Padé spectral
decomposition scheme [46–48] is employed to obtain the expansion coefficients of the bath correlation
functions. The accuracy of numerical results is checked by increasing the values of L1, . . . , LK and N
until convergence is reached.

Two-level heat transfer model

The model studied here consists of a two-level system coupled to two Bosonic baths at different tem-
peratures. This model has been employed extensively as the simplest heat-transport model. The system
Hamiltonian is given by Ĥsys = (~ω0/2)σz. We consider the case in which the system is coupled to the

hot bath through V̂h = σx and to the cold bath through σx and σz in the form V̂c = (σx + σz)/
√
2.

In order to investigate the difference of the HC with the SEC that usually calculated from the QME
approaches, we consider the case [V̂h, V̂c] 6= 0, because otherwise the TPC term vanishes (This is the case
that most of previous investigations have considered). We chose βh = 0.5 ~ω0, βc = ~ω0, and γ = 2ω0.

Figure 3 depicts the HCs in the steady state, Q̇HC,h = −Q̇HC,c or Q̇SEC ≡ Q̇SEC,h = −Q̇SEC,c, as
functions of the system-bath coupling strength, ζ ≡ ζh = ζc. In the weak system-bath coupling regime,
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FIG. 4. (a) The heat current (HC, red line) and the system energy current (SEC, blue line) calculated from the
HEOM approach, and the HC from the RE approach (black circles) as functions of the temperature of the work
bath. The shaded area represents the region that the system acts as the heat engine. (b) The fidelity F [ρ, σ] as a
function of the temperature of the work bath, where ρ and σ are the reduced density matrix in the steady state
calculated from the HEOM and RE approaches, respectively.

both HC and SEC increase linearly with the coupling strength in similar manners. In this case, we found
that the TPC contribution is minor. As the strength of the system-bath coupling increases, the difference
between them becomes large: While Q̇SEC decreases after reaching a maximum value near ζ = 0.2ω0,
the TPC contribution, İh,c, dominates the HC, and as a result, it remains relatively large. Thus, in
this regime, the SEC becomes much smaller than the HC. In the very strong coupling regime, the SEC
eventually becomes negative, which indicates the violation of the second law. In order to eliminate such
non-physical behavior, we have to include the İh,c term in the definition of the SEC. Note that the

differences between the SEC and HC described above vanish when V̂c = V̂h = σx, and hence in this case,
there is no negative current problem. This is the case considered in most previous investigations.

Autonomous three-level engine

The autonomous three-level heat engine model considered here consists of three states, denoted by
|0〉, |h〉, and |c〉, coupled to three bosonic baths. The work is extracted by the work bath. The system
Hamiltonian is expressed as Ĥsys =

∑

i=0,h,c ~ωi|i〉〈i| with ωh > ωc > ω0. The system-bath interactions

are defined as V̂h =|0〉〈h|+|h〉〈0|, V̂c =|0〉〈c|+|c〉〈0|, and V̂w =|h〉〈c|+|c〉〈h|. We set ω0 = 0 without loss of
generality. A mechanism for the system acting as the heat engine is as follows: First, the heat is absorbed
from the hot bath. This heat is transferred from the system to the work bath in the form of the work,
while the remaining heat is damped into the cold bath. Therefore, the sign conditions for the HC have to
be Q̇HC,h > 0, Q̇HC,c < 0, and Q̇HC,w < 0. However, in order to identify the HC to the work bath with
the power, the entropy change of the work bath have to be negligibly small, which is realized when the
temperature of the work bath becomes infinitely high, βw → 0. When the temperature of the work bath
is finite, only the part of the energy extracted from the system can be used as work. However, we show
in the following calculation that the system does not act as the engine in the infinitely high temperature
limit of the work bath. We set ωc = 0.5ωh, ζh = ζc = ζw = 0.001ωh, γ = 10ωh, βh~ωh = 0.1, and
βc~ωh = 1.

In Fig. 4(a), we depict the HC calculated from Eq. (15), SEC, and the HC from the RE approach,
as functions of the temperature of the work bath. While the SEC and the HC from the RE approach
look identical and weakly dependent on the work-bath temperature with the negative sign, the actual HC
increases as the temperature of the work bath increases, and eventually its sign changes from negative
to positive around (βw~ωh)

−1 = 20 − 30. This indicates that the TPC determines the character of the
heat-engine system; the system no longer acts as the heat engine.

It should be noted that the TPC effect on the HC becomes important even in the weak system-
bath coupling case, as we chose ζ = 0.001ωh. To illustrate this point, we plot the fidelity, F [ρ, σ] =
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Tr[
√√

ρσ
√
ρ], where ρ and σ are the steady state distributions calculated from the HEOM and the RE

approaches, respectively, in Fig. 4(b). For all temperature region, the deviation of the fidelity from 1 is
negligibly small indicating the system-bath coupling strength is sufficiently weak to be the RE approach
valid. This means that both HEOM and RE give the identical steady state, while there is the large
discrepancy between HEOM and RE results for the calculation of HC in Fig. 4(a).

CONCLUDING REMARKS

In this paper, we introduced an explicit analytical expression for the heat current (HC) on the basis of
the energy change of the baths, which includes contributions from the tri-partite correlations (TPC) in
addition to that from the system energy current (SEC). Our definition of the HC can be applied to any
system with any bath spectral distribution and any strength of the system-bath coupling. Investigation on
the basis of the HEOM approach indicated that the HC is physically more appropriate thermodynamics
variable than the SEC; the TPC contribution in the heat-engine system is significantly large even in a
weak system-bath coupling regime.
In this study, we restricted our analysis to a system described by several energy states. Using the

HEOM approach it is possible to investigate a system described by coordinate and momentum (Wigner
space) to treat potentials of any form with time-dependent external forces [27, 49]. This feature is ideal for
studying quantum transport systems, including the self-current oscillation of a resonant tunneling diode
system [50] and the tunneling effect of a ratchet system[51]. Moreover, this treatment allows identification
of purely quantum mechanical effects through comparison of classical and quantum results in the Wigner
distribution [49, 51, 52].
Although our analysis so far are limited to the harmonic heat bath, now it becomes possible to study a

system with many degrees of freedom, a part of which can be considered as a spin bath, taking advantage
of the computational power provided by GPGPU,[53] for example. We leave such extensions to future
studies to be carried out in the context of quantum thermodynamics.
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