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A set of multiple impulses is introduced as a substitute of many-cycle harmonic waves
which represent the long-duration earthquake ground motion. A closed-form expres-
sion is derived of the elastic–plastic response of a single-degree-of-freedom structure
with bilinear hysteresis under the “critical multiple impulse input.” As in the case of
elastic–perfectly plastic models, an advantageous feature can be used such that only
the free-vibration exists under the multiple ground motion impulse and the energy
balance approach plays a key role in the derivation of the closed-form expression
of a complicated elastic–plastic response. It is demonstrated that the critical inelastic
maximum deformation and the corresponding critical impulse timing can be obtained
depending on the input level. The validity and accuracy of the proposed theory are
confirmed through the comparison with the response analysis to the corresponding sine
wave as a representative of the long-duration earthquake ground motion.

Keywords: earthquake response, critical excitation, critical response, elastic–plastic response, bilinear hysteresis,
long-duration ground motion, resonance, multiple impulse

INTRODUCTION

The classification of earthquake ground motions has often been conducted (Abrahamson et al.,
1998). One is a near-fault ground motion and another one is a long-duration (mostly far-fault)
ground motion. The soil types (soil, rock) of recording sites and types of fault mechanisms are
other factors for classification. In addition to these two representative ground motions, long-
period ground motions were observed rather recently (Takewaki et al., 2011). The effects of near-
fault ground motions on structural responses have been investigated from various viewpoints (for
example, Bertero et al., 1978; Kalkan and Kunnath, 2006). The terminologies of fling-step and
forward-directivity are widely used for characterizing such near-fault ground motions. Northridge
earthquake in 1994, Hyogoken-Nanbu (Kobe) earthquake in 1995, Chi-Chi (Taiwan) earthquake
in1999, and Kumamoto earthquake in 2016 drew special attention to many earthquake structural
engineers.

The fault-parallel fling-step and fault-normal forward-directivity inputs have been analyzed as
two or three wavelets. Most of the past works on the near-fault ground motions treat mainly the
elastic response. This may result from the fact that the number of parameters (e.g., duration, period
and amplitude of pulse, ratio of pulse frequency to structure natural frequency, change of equivalent
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natural frequency for the increased input level) to be considered
is large and the numerical analysis itself of elastic–plastic response
is quite complicated.

To overcome such complex problem, a smart approach based
on an innovative tool, i.e., the double impulse, was introduced
by Kojima and Takewaki (2015a). The double impulse repre-
sents approximately the fling-step near-fault ground motion and
a closed-form maximum elastic–plastic response of a structure
under the “critical double impulse” was derived. It was shown that,
since only the free-vibration exists under such double impulse,
the energy balance approach plays a key role in the derivation
of such closed-form expression. It was also demonstrated that
the maximum elastic–plastic deformation can occur either after
the first or second impulse depending on the input level. The
reliability of the proposed theorywas confirmed through the com-
parison with the results of time-history response analysis to the
corresponding one-cycle sine wave which is a representative of the
fling-step near-fault ground motion. The intensity of the double
impulse was controlled so that its maximum Fourier amplitude
becomes equivalent to that of the corresponding one-cycle sine
wave. The theory for the fling-step input was extended to the
forward-directivity input by Kojima and Takewaki (2015b).

The closed-form expressions of the elastic–plastic earthquake
response have been derived so far only for the steady-state and
transient responses to a sine wave (Caughey, 1960a,b; Roberts and
Spanos, 1990; Liu, 2000). It should be noted that the forced input
by the sine wave brought a complexity for a simple solution of res-
onant and non-resonant responses. It may be a natural inspiration
that, if a long-duration ground motion can be simplified into a
multiple impulse, the elastic–plastic response (expressed as con-
tinuation of free-vibrations) can be derived by an energy balance
approach without solving directly the differential equation.

In the long history of earthquake-resistant design since the 20th
century, the resonance played a key role in the phase of damage

analysis of structures and it has been investigated extensively.
Generally, the resonant equivalent frequency has to be analyzed
for a specified input level by changing the input frequency in a
parametric manner in dealing with the response to a sine wave
(Caughey, 1960a,b; Iwan, 1961, 1965a,b; Roberts and Spanos,
1990; Liu, 2000). It is therefore preferable that no iteration is
required, and this can be performed by introducing the multi
impulse input. In the multi impulse input, the analysis can be
done without the specification of input frequency (timing of
impulses) before the second impulse is input. The resonance can
be analyzed by using an energy balance approach and the timing
of the impulses can be obtained as the time with zero restoring
force. The maximum elastic–plastic response after impulse can
be obtained by equating the initial kinetic energy given by the
initial velocity to the sum of hysteretic and elastic strain energies.
It should be pointed out that only critical response is focused by
the proposed method, and the critical resonant frequency can be
derived automatically for the increasing input level of the multi
impulse.

In the previous paper (Kojima and Takewaki, 2015c), a closed-
form expression of the critical response of an elastic–perfectly
plastic single-degree-of-freedom (SDOF) model under multiple
impulse input was derived. However, the elastic–plastic model
with bilinear hysteresis has a stable response characteristic and
the steady-state response of such model is of great importance
from the viewpoint of the comparison with the result by the
previous works (Caughey, 1960a,b; Iwan, 1961). Furthermore, the
elastic–plasticmodel with bilinear hysteresis possesses other types
of complexity and its investigation is highly desired.

Figure 1 shows an actual example of the resonant response
recorded in a high-rise building in Osaka, Japan, during the 2011
off the Pacific coast of Tohoku earthquake. Although damage was
observed in only non-structural components in this building, the
development of damage in structural components should be taken

FIGURE 1 | Resonant response of a super high-rise building in Osaka, Japan, during the 2011 off the Pacific coast of Tohoku earthquake under long-duration,
long-period ground motion (Takewaki et al., 2011).
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into account from the viewpoint of resilience. This actual incident
clearly implies the warning to consider carefully the response
under long-duration ground motion.

In this paper, the multi impulse input is introduced as a sub-
stitute of the multi-cycle sinusoidal wave which represents the
long-duration ground motion and a closed-form expression is
derived of the elastic–plastic steady-state response of an SDOF
structure with bilinear hysteresis under the “critical multi impulse
input”. An undamped bilinear hysteretic SDOF system used in
this paper is explained in Section “Bilinear Hysteretic SDOF
System.” The closed-form expressions are derived of the elas-
tic–plastic steady-state responses under the critical multi impulse
and the critical time intervals of two cases in Section “Closed-
Form Expression of Elastic–Plastic Steady-state Response under
Critical Multi Impulse.” CASE 1 is the case where each impulse
acts at the zero restoring-force timing in the unloading process
and the other case, CASE 2, is the case where each impulse
acts at the zero restoring-force timing in the loading process.
It is investigated whether the response under the multi impulse
with the critical time interval obtained in Section “Closed-Form
Expression of Elastic–Plastic Steady-state Response under Critical
Multi Impulse” converges to the steady state inwhich each impulse
acts at the zero restoring-force point in Section “Convergence
of Impulse Timing.” The accuracy of using the multi impulse
as a substitute of the long-duration ground motion is checked
through the comparison with the response under the correspond-
ing multi-cycle sinusoidal wave in Section “Accuracy Check by
Time-History Response Analysis under the CorrespondingMulti-
Cycle Sinusoidal Wave.” The validity of the critical time interval
obtained in Section “Closed-Form Expression of Elastic–Plastic
Steady-state Response under Critical Multi Impulse” is confirmed
by time-history response analysis of the SDOF bilinear hysteresis
system under multi impulse with various impulse time intervals
in Section “Proof of Critical Timing.” The applicability of the
critical impulse timing obtained in Section “Closed-Form Expres-
sion of Elastic–Plastic Steady-state Response under Critical Multi
Impulse” to the corresponding sinusoidal wave is investigated
in Section “Applicability of Critical Multi Impulse Timing to
Corresponding Sinusoidal Wave.” The accuracy of the proposed
closed-form steady-state response under the criticalmulti impulse
is also investigated in Section “Accuracy Check by Exact Solution
Subjected to the Corresponding Multi-Cycle Sinusoidal Wave”
through the comparison with the resonance curve under the
sinusoidal wave provided by Iwan (1961). The conclusions are
summarized in Section “Conclusion.”

BILINEAR HYSTERETIC SDOF SYSTEM

Consider an undamped bilinear hysteretic SDOF system of mass
m and stiffness k subjected to the multi impulse with the equal
time interval as shown in Figure 2A,B. V is the given ini-
tial velocity (the input velocity level of each impulse) and t0 is
the equal time interval between two consecutive impulses. The
ratio of the post-yield stiffness to the initial elastic stiffness is
expressed by α. In this paper, α > 0. The yield deformation and
the yield force are denoted by dy and fy. Let ω1 =

√
k/m,

u and f denote the undamped natural circular frequency, the

displacement of the mass relative to the ground (deformation
of the system), and the restoring force of the model, respec-
tively. The time derivative is denoted by an overdot. In Section
“Closed-FormExpression of Elastic–Plastic Steady-state Response
under Critical Multi Impulse,” these parameters will be treated
as normalized ones to capture the intrinsic relation between
the input parameters and the elastic–plastic response. However,
numerical investigations will be made in Sections “Convergence
of Impulse Timing,” “Accuracy Check by Time-History Response
Analysis under the Corresponding Multi-Cycle Sinusoidal Wave,”
“Proof of Critical Timing,” “Applicability of Critical Multi Impulse
Timing to Corresponding Sinusoidal Wave,” and “Accuracy
Check by Exact Solution Subjected to the Corresponding Multi-
Cycle Sinusoidal Wave” to demonstrate an example of actual
parameters.

CLOSED-FORM EXPRESSION OF
ELASTIC–PLASTIC STEADY-STATE
RESPONSE UNDER CRITICAL MULTI
IMPULSE

In the previous works (Kojima and Takewaki, 2015a,b,c), some
closed-form expressions of the critical elastic–plastic response of
an SDOF elastic–perfectly plastic system under the double, triple,
and multi impulse have been derived. A closed-form expression
of the maximum deformation of an SDOF bilinear hysteretic
system under the double impulse has also been derived (Kojima
and Takewaki, 2016). In this paper, a closed-form expression
of the steady-state elastic–plastic response of an SDOF bilinear
hysteretic system under the critical multi impulse is derived.

The response after each impulse input can be expressed by the
instantaneous change of velocity of the structural mass by V and
only free vibration appears after each impulse input. Since the
elastic–plastic response of the SDOF bilinear hysteretic system
under the multi impulse can be expressed by the continuation of
free vibrations, the plastic deformation amplitude and the max-
imum deformation can be derived by an energy approach with-
out solving directly the equation of motion. The kinetic energy
introduced at the input time of each impulse is transformed into
the combination of the hysteretic energy and the strain energy.
It should be remarked that each impulse’s critical timing corre-
sponds to the phase with the zero restoring force and a kinetic
energy alone appears in this phase as mechanical energies. By
using this rule, the maximum deformation can be obtained in
a simple manner. In the previous paper (Kojima and Takewaki,
2015c), the closed-form expression of plastic deformation ampli-
tude and the critical timing of the elastic–perfectly plastic SDOF
system under the critical multi impulse have been derived. In
order to derive the closed-form plastic deformation amplitude
and critical timing, a modified multi impulse, in which the first
and second impulses are modified so that the second impulse
is given at the zero restoring force, was introduced in the study
by Kojima and Takewaki (2015c). However, the elastic–plastic
response of the present SDOFbilinear hysteretic systemwithα> 0
cannot become stable under the first few impulses even in the
condition that each impulse acts at the zero restoring force and the
response converges to a steady state as shown in Figure 2C after
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A

C

B

FIGURE 2 | Impulse input and bilinear hysteretic restoring-force deformation characteristic: (A) multi impulse with equal time interval t0, (B) bilinear hysteretic
restoring-force characteristic, (C) steady-state loop under critical multi impulse.

a sufficiently large number of repetitive impulses. In this section,
the steady state in which each impulse acts at the zero restoring-
force point is assumed and the closed-form expressions of the
elastic–plastic response and the critical timing are derived by
using the assumption of the steady state and the energy approach.
The convergence of the response under the multi impulse with
the equal time interval obtained in Section “Derivation of Crit-
ical Impulse Timing” into the steady state will be verified in
Section “Convergence of Impulse Timing.” The convergence of the
response under a harmonic wave into the steady state was also
confirmed in the previous paper (Iwan, 1961).

The steady state under the critical multi impulse can be clas-
sified into two cases depending on the plastic deformation level
as shown in Figures 3A,B. Figures 3A,B show the case (CASE 1)
that each impulse acts at the zero restoring-force timing in the
unloading process and the case (CASE 2) that each impulse acts
at the zero restoring-force timing in the loading process, respec-
tively. The boundary between CASE 1 and CASE 2 is given by

up/dy = 2/α and this conditionwill be derived in Section “Case 1:
Impulse in Unloading Process.”

CASE 1: Impulse in Unloading Process
Consider CASE 1. The steady-state elastic–plastic response (plas-
tic deformation amplitude andmaximum deformation) is derived
of the SDOF bilinear hysteretic system under the critical multi
impulse by using the energy balance law. Figure 4A shows the
derivation of themaximum steady-state response in CASE 1 based
on the energy approach. Figures 4B,C present the time histories
of the deformation and the restoring force in the steady state
with the time interval tc0 between two consecutive impulses. tAB,
tBC, tCD denote the time intervals between point A, B, point B,
C, and point C, D, respectively, in Figure 4A. The closed-form
expressions of the time-history responses of the deformation and
the restoring force in the steady state with the critical time inter-
val tc0(= tAB + tBC + tCD) between two consecutive impulses
can be obtained by solving the differential equations (equations
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A B

FIGURE 3 | Restoring-force deformation relation under critical multi impulse: (A) CASE 1 (up/dy ≤ 2/α): impulse in unloading process; (B) CASE 2 (up/dy > 2/α):
impulse in loading process.

of motion) and substituting the continuation conditions at the
transition points (pointA, B, andC). The closed-form expressions
of the time-history responses and the critical time interval are
derived in Sections “Derivation of Critical Impulse Timing” and
Appendix 1.

The velocity vc at the zero restoring-force point in the unloading
process (point A in Figure 4) can be derived by using the energy
balance law. The energy balance law between the starting point of
unloading (point F in Figure 4) and the zero restoring-force point
(point A in Figure 4) is expressed by

k(dy + 0.5αup)2/2 = mv2c/2 (1)

The left-hand side of Eq. 1 expresses the elastic strain energy
shown by the red shaded area in Figure 4A. On the other hand,
the right-hand side of Eq. 1 indicates the kinetic energy at the zero
restoring-force point.

From Eq. 1, vc is expressed with up by

vc/Vy = 1 + 0.5α(up/dy) (2)

where Vy =ω1dy. Vy denotes the input level of the single impulse
at which the SDOF system just attains the yield deformation
after the single impulse. This parameter also presents a strength
parameter with velocity dimension.

The plastic deformation up after each impulse can be obtained
from the energy balance law. The energy balance law between
the zero restoring-force point (point A in Figure 4) and the point
attaining the maximum deformation (point C in Figure 4) can be
described by

m(vc + V)2/2 = k(dy − 0.5αup)2/2 + αku2p/2
+ (fy − 0.5αkup)up (3)

The left-hand side of Eq. 3 expresses the kinetic energy com-
puted in terms of the velocity (vc +V) of mass just after each
impulse. On the other hand, the right-hand side of Eq. 3 indicates
the hysteretic and elastic strain energy shown by the blue shaded
area in Figure 4A.

Substitution of Eq. 2 into Eq. 3 and rearrangement of the
resulting equation provide

up/dy = {(V/Vy)2 + 2(V/Vy)}/{2 − 2α − α(V/Vy)} (4)

From Eq. 4 and Figure 4A, umax can be obtained as follows:

umax/dy = 1 + 0.5(up/dy) = 1 + 0.5
[
{(V/Vy)2

+ 2(V/Vy)}/{2 − 2α − α(V/Vy)}
]

(5)

Consider the boundary between CASE 1 and CASE 2. In this
boundary, the zero restoring-force point (point A in Figure 4) is
equal to the point of the yielding initiation (point B in Figure 4)
and each impulse acts at this point (point A in Figure 5A).
Figures 5A,B show the derivation of the maximum steady-state
response in this boundary case based on the energy approach. The
plastic deformation in this boundary case can be obtained from
Figure 5A.

fy + 0.5αkup = 2fy (6)

From Eq. 6, up in this boundary case can be obtained as follows:

up/dy = 2/α (7)

The boundary input velocity level of the multi impulse is
derived next. From Eq. 7 and Figure 5B, the velocity vc at the zero
restoring-force point (point A in Figure 5A) can be derived by
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A

B C

FIGURE 4 | Derivation of maximum deformation under critical multi impulse based on energy approach: (A) restoring-force deformation relation; (B) displacement
time history; (C) restoring-force time history (CASE 1: V/Vy < −2 + 2

√
1/α).

using the energy balance law. The energy balance law between the
starting point of unloading (point F in Figure 5B) and the zero
restoring-force point (point A in Figure 5B) can be expressed by

k(2dy)2/2 = mv2c/2 (8)

The left-hand side of Eq. 8 indicates the elastic strain energy at
the starting point of unloading. On the other hand, the right-hand
side of Eq. 8 expresses the kinetic energy at the zero restoring-force
point.

From Eq. 8, vc can be obtained as follows:

vc/Vy = 2 (9)

The energy balance law between the zero restoring-force point
(point A in Figure 5B) and the point attaining the maximum
deformation (point C in Figure 5B) is also expressed by

m(vc + V)2/2 = αku2p/2 (10)

The left-hand side of Eq. 10 indicates the kinetic energy
computed in terms of the velocity (vc +V) of mass just after

each impulse. On the other hand, the right-hand side of Eq. 10
expresses the hysteretic and elastic strain energy shown by the blue
shaded area in Figure 5B.

Substitution of Eqs 7 and 9 into Eq. 10 and rearrangement of
the resulting equation provide the boundary input velocity level
as follows:

V/Vy = −2 + 2
√

1/α (11)

CASE 2: Impulse in Loading Process
(Second Stiffness Range)
Consider next CASE 2 (V/Vy > −2 +

√
1/α). The steady-state

elastic–plastic response is derived of the SDOF bilinear hysteretic
system under the critical multi impulse by using the energy bal-
ance law. Figure 6A shows the maximum steady-state response
in CASE 2 based on the energy approach. Figures 6B,C present
the one-cycle time histories of the deformation and the restoring
force between two consecutive impulses in the steady state. tAB,
tBC, tCD denote the time intervals between point A, B, point B,
C, and point C, D, respectively, in Figure 6A. The closed-form
expressions of the time-history responses of the deformation and
the restoring force in the steady state with the critical time interval
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A B

FIGURE 5 | Restoring-force deformation relation in the boundary case between CASE 1 and CASE 2: (A) acting points of each impulse; (B) sum of hysteretic and
elastic strain energy after each impulse.

A

B C

FIGURE 6 | Derivation of maximum deformation under critical multi impulse based on energy approach: (A) restoring-force deformation relation; (B) displacement
time history; (C) restoring-force time history (CASE 2: V/Vy ≥ −2 + 2

√
1/α).
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tc0(= tAB + tBC + tCD) between two consecutive impulses can
be obtained by solving the differential equations and substituting
the continuation conditions at the transition points (point A, B,
andC). The closed-form expressions of the time-history responses
and the critical time interval are derived in Section “Derivation of
Critical Impulse Timing” and Appendix 1.

The velocity vc at the zero restoring-force point in the loading
process (point A in Figure 6) can be derived by using the energy
balance law. The energy balance law between the starting point of
unloading (point E in Figure 6) and the zero restoring-force point
(point A in Figure 6) can be expressed by

k(2dy)2/2 + (−fy + 0.5αkup)(2dy)

+ (αk){(−fy + 0.5αkup)/(αk)}2/2 = mv2c/2 (12)

The left-hand side of Eq. 12 indicates the elastic strain energy
shown by the red shaded area in Figure 6A. On the other hand,
the right-hand side of Eq. 12 expresses the kinetic energy at the
zero restoring-force point.

From Eq. 12, vc can be expressed with up by

vc/Vy =
√

(α/4)(up/dy)2 + (2α − 1)(up/dy) + (1/α) (13)

The plastic deformation up after each impulse can be obtained
from the energy balance law. The energy balance law between
the zero restoring-force point (point A in Figure 6) and the point
attaining the maximum deformation (point B in Figure 6) can be
expressed by

m(vc + V)2/2 = αk{(fy + 0.5αkup)/(αk)}2/2 (14)

The left-hand side of Eq. 14 indicates the kinetic energy com-
puted by the velocity (vc +V) of mass just after each impulse.
On the other hand, the right-hand side of Eq. 14 expresses the
hysteretic and elastic strain energy shown by the blue shaded area
in Figure 6A.

Substitution of Eq. 13 into Eq. 14 and rearrangement of the
resulting equation provide

up/dy = {(V/Vy)2 − 2(V/Vy)/
√

α}/{2α − 2 +
√

α(V/Vy)}
(15)

From Eq. 15 and Figure 6A, umax can be obtained as follows:

umax/dy = 1 + 0.5(up/dy) = 1 + 0.5
[
{(V/Vy)2

− 2(V/Vy)/
√

α}/{2α − 2 +
√

α(V/Vy)}
]

(16)

From Eq. 15 or 16, the elastic–plastic response diverges to
infinity under the condition that 2α − 2 +

√
α(V/Vy) = 0. In

CASE 2, the impulse input velocity level at which the response
diverges can be obtained by 2α − 2 +

√
α(V/Vy) = 0 as follows:

V/Vy = (−2α + 2)/
√

α (17)

The response divergence phenomenon can occur under the
condition V/Vy ≥ (−2α + 2)/

√
α because the increment of the

input energy due to the repetitive impulses cannot be consumed
by plastic deformation. The same phenomenon can be observed
under a sinusoidal wave input (Iwan, 1961).

A B

FIGURE 7 | Plastic deformation amplitude up/dy under critical multi impulse:
(A) up/dy with respect to input level V/Vy for various post-yield stiffness ratio
α, (B) up/dy with respect to post-yield stiffness ratio α for various input levels
V/Vy.

From Eqs 11 and 17, the input velocity level in CASE 2 has to
satisfy the following inequality.

− 2 + 2
√
1/α < V/Vy < (−2α + 2)/

√
α (18)

Results in Numerical Example
The plastic deformation amplitudes up/dy obtained in Sections
“Case 1: Impulse in Unloading Process” and “Case 2: Impulse
in Loading Process (Second Stiffness Range)” are shown in
Figures 7A,B. Figure 7A shows the plastic deformation amplitude
up/dy with respect to the input velocity levelV/Vy for various post-
yield stiffness ratios α= 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.
On the other hand, Figure 7B presents the plastic deformation
amplitude up/dy with respect to the post-yield stiffness ratio α for
various input velocity levels V/Vy = 0.1, 0.5, 1.0, 1.5. The model
with α= 0 is equivalent to the elastic–perfectly plastic model
and up/dy for this model has been derived in the previous paper
(Kojima and Takewaki, 2015c).

Derivation of Critical Impulse Timing
The time intervals between two consecutive impulses in CASE 1
and CASE 2 are derived in this section. In CASE 1 and CASE 2,
each impulse acts at the zero restoring-force point. The time
interval tc0 between two consecutive impulses can be obtained
by solving the differential equations (equations of motion) and
substituting the continuation conditions at the transition points.
The time interval tc0, shown inFigures 4B and 6B, can be expressed
as follows:

tc0
T1

=
1
2π

[
arcsin

{
1 − 0.5α(up/dy)

(vc + V)/Vy

}
+

1√
α

arctan
{

1√
α

vB/Vy

(1/α) − 0.5(up/dy)

}]
+

1
4

for V/Vy ≤ −2 + 2
√

1/α (19a)

tc0
T1

=
1
4

(
1 +

1√
α

)
+

1
2π

[
− arcsin

{
0.5α(up/dy) − 1
0.5α(up/dy) + 1

}
+

1√
α

arctan

{
0.5(up/dy) − (1/α)√

2(up/dy)

}]
for V/Vy > −2 + 2

√
1/α (19b)
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FIGURE 8 | Critical impulse timing t0
c/T1 with respect to input level V/Vy for

various post-yield stiffness ratios α.

The quantities up/dy and vc/Vy in Eq. 19a are obtained fromEqs
4 and 2 and up/dy in Eq. 19b is obtained from Eq. 15. In addition,
the velocity vB/Vy at point B in Eq. 19a is obtained by

vB/Vy =
√

{(vc + V)/Vy}2 − {1 − 0.5α(up/dy)}2

for V/Vy ≤ −2 + 2
√
1/α (20)

The detailed derivation of Eqs 19a, 19b, and 20 is shown in
Appendix 1.

Figure 8 shows the normalized quantity of the time interval
tc0 with respect to the input velocity level for various post-yield
stiffness ratios α= 0, 0.1, 0.2, 0.3. The model with α= 0 is equiva-
lent to the elastic–perfectly plastic model and tc0 in this model was
derived in the previous paper (Kojima and Takewaki, 2015c).

A B

C D

displacement velocity

restoring force restoring force-deformation

FIGURE 9 | Response under multi impulse with time interval t0
c for V/Vy = 0.5 and α= tan(π/8)= 0.414 (impulse timing is the critical one obtained by steady-state

assumption): (A) displacement, (B) velocity, (C) restoring force, and (D) restoring-force deformation relation.
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CONVERGENCE OF IMPULSE TIMING

In this section, it is investigated whether the response under the
multi impulse with the equal time interval tc0 obtained in Section
“Derivation of Critical Impulse Timing” converges to the steady
state inwhich each impulse acts at the zero restoring-force point as
shown inFigure 3. The closed-formexpression of the time-history
response in the steady state can be derived (see Appendix 1). How-
ever, the transient response is complicated because the number of
impulses for convergence depends on the input velocity level and
the post-yield stiffness ratio. The time-history response analysis is
used to calculate the response under the multi impulse with the
time interval tc0. T1 = 1.0 (s), dy = 0.04 (m), ∆t= 1.0× 10−4T1
are used in the analysis. ∆t denotes the time increment used
in the time-history response analysis. The response under the

multi impulse is calculated by adding ±V to the velocity of the
mass at the impulse timing. Figures 9–11 show the time his-
tories of relative displacement, relative velocity, restoring force,
and restoring-force deformation relation under the multi impulse
with the time interval tc0 in the model with α= tan(π/8)= 0.414
for V/Vy = 0.5, 1.0, 1.5. This post-yield stiffness ratio was taken
from the previous work (Iwan, 1961). It should be noted that
the time interval used in this section is obtained by using the
assumption of the steady state. The circles in Figures 9–11 indi-
cate the acting points of impulses. It can be observed that the
response converges to a state in which each impulse acts at the
zero restoring force irrespective of the input velocity level and
the maximum deformation and the plastic deformation ampli-
tude after convergence correspond to the closed-form expressions
obtained in Sections “Case 1: Impulse in Unloading Process” and

displacement velocity

restoring force restoring force-deformation

A B

C D

FIGURE 10 | Response under multi impulse with time interval t0
c for V/Vy = 1.0 and α= tan(π/8)=0.414 (impulse timing is the critical one obtained by steady-state

assumption): (A) displacement, (B) velocity, (C) restoring force, and (D) restoring-force deformation relation.
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displacement velocity

restoring force   restoring force-deformation

A B

C D

FIGURE 11 | Response under multi impulse with time interval t0
c for V/Vy = 1.5 and α= tan(π/8)=0.414 (impulse timing is the critical one obtained by steady-state

assumption): (A) displacement, (B) velocity, (C) restoring force, and (D) restoring-force deformation relation.

“Case 2: Impulse in Loading Process (Second Stiffness Range).”
In the model with α= tan(π/8)= 0.414, the input velocity levels
V/Vy = 0.5, 1.0 correspond to CASE 1 in Section “Case 1: Impulse
in Unloading Process” and the acting points of impulses converge
to the zero restoring-force timing in the unloading process in
Figures 9 and 10. From Figures 9 and 10, the required number
of impulses is about 25. On the other hand, the input velocity level
V/Vy = 1.5 corresponds to CASE 2 in Section “Case 2: Impulse in
Loading Process (Second Stiffness Range)” and the acting points
of impulses converge to the zero restoring-force timing in the
loading process in Figure 11. From Figure 11, CASE 2 requires
over 100 impulses for convergence.

ACCURACY CHECK BY TIME-HISTORY
RESPONSE ANALYSIS UNDER THE
CORRESPONDING MULTI-CYCLE
SINUSOIDAL WAVE

In order to check the accuracy of using the multi impulse with the
equal time interval as a substitute of the correspondingmulti-cycle
sinusoidal wave representing long-duration ground motions, the
time-history response analysis of the SDOF bilinear hysteresis

system under the corresponding multi-cycle sinusoidal wave is
conducted.

In the evaluation procedure, it is important to adjust the input
level of the multi impulse and the corresponding multi-cycle
sinusoidal wave based on the equivalence of themaximumFourier
amplitude. The period, the circular frequency, the acceleration
amplitude, and the velocity amplitude of the corresponding sinu-
soidal wave are denoted by Tl, ωl = 2π/Tl, Al, and Vl =Al/ωl,
respectively, and Tl = 2tc0 is used in this section. The number
of cycles of the multi-cycle sinusoidal wave is half of the number
of impulses. In the derivation of the response under the multi
impulse, the steady state after a sufficient number of impulses
is assumed as shown in Figures 9–11. The relation between the
input velocity level of themulti impulsewith the sufficient number
of impulses (for example over 20 impulses) and the acceleration
amplitude of the corresponding multi-cycle sinusoidal wave with
the sufficient number of cycles is expressed as follows:

Vl = Al/ωl = (2/π)V (21)

The derivation of Eq. 21 is shown in Appendix 2.
Figure 12 presents the comparison of the plastic deformation

amplitude and the maximum deformation normalized by the
yield deformation of the SDOF bilinear hysteretic system under
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FIGURE 12 | Comparison of plastic deformation and maximum deformation between critical multi impulse and corresponding multi-cycle sinusoidal wave: (A,B)
α=0.9, (C,D) α= tan(π/8)= 0.414, (E,F,G,H) α= tan(2π/180)=0.0349 [(G,H) are magnified ones of (E,F)].

the multi impulse and the corresponding multi-cycle sinusoidal
wave with respect to input velocity level. The response under
the multi impulse is obtained from the closed-form expressions
derived in Sections “Case 1: Impulse in Unloading Process” and
“Case 2: Impulse in Loading Process (Second Stiffness Range)”
and the response under the corresponding multi-cycle sinusoidal

wave is calculated by using the time-history response analy-
sis. T1 = 1.0 (s), dy = 0.04 (m), ∆t= 1.0× 10−4T1 are used in
the time-history response analysis and the numbers of cycles
used in the time-history response analysis are 100 cycles for
α= tan(2π/180)= 0.035, 500 cycles forα= tan(π/8)= 0.414, and
1,000 cycles for α= 0.9. These post-yield stiffness ratios were
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taken from the previous work (Iwan, 1961). It can be seen that
the multi impulse provides a fairly good substitute of the multi-
cycle sinusoidal wave in the evaluation of the maximum defor-
mation and the plastic deformation amplitude if the maximum
Fourier amplitude is adjusted. In order to relate the elastic–plastic
responses under the multi-cycle sinusoidal wave to that under the
multi impulse, it is necessary to amplify the acceleration amplitude
of the corresponding multi-cycle sinusoidal wave by 1.15 after
both Fourier amplitudes of the sinusoidal wave and the multi
impulse are adjusted in the model with the elastic–perfectly plas-
tic restoring-force characteristics (α= 0) (Kojima and Takewaki,
2015c). The maximum deformation under the multi impulse is
larger than that under the corresponding multi-cycle sinusoidal
wave in V/Vy < −2 +

√
1/α in CASE 1. On the other hand,

the maximum deformation under the corresponding multi-cycle
sinusoidal wave is larger than that under the multi impulse in
V/Vy > −2 +

√
1/α in CASE 2.

PROOF OF CRITICAL TIMING

In order to investigate the validity of the critical timing evalu-
ated by Eq. 19a,b, the time-history response analysis has been
conducted of the SDOF bilinear hysteresis system under the
multi impulse with the varied impulse timing t0 for various input
velocity levels and various post-yield stiffness ratios. The critical
timing of each impulse can be characterized as the time with
zero restoring force as assumed in Section “Closed-Form Expres-
sion of Elastic–Plastic Steady-state Response under Critical Multi
Impulse.” T1 = 1.0 (s), dy = 0.04 (m), ∆t= 1.0× 10−4T1 are used
in the time-history response analysis and the numbers of impulses
used in the time-history response analysis for the convergence of
the response are 1,000.

Figure 13 shows the normalized maximum deformation
umax/dy and the normalized plastic deformation amplitude up/dy
with respect to the impulse timing t0/tc0 normalized by the critical
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FIGURE 13 | Maximum deformation and plastic deformation amplitude with respect to timing of multi impulse for various input levels: (A,B) α= 0.9, (C,D)
α= tan(π/8)=0.414, (E,F) α= tan(2π/180)=0.0349.
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FIGURE 14 | Maximum deformation and plastic deformation amplitude with respect to period of corresponding sinusoidal wave for various input levels: (A,B)
α=0.9, (C,D) α= tan(π/8)= 0.414, (E,F) α= tan(2π/180)= 0.0349.

timing for various input velocity levels V/Vy and various post-
yield stiffness ratios α= 0.035, 0.414, 0.9. It can be confirmed that
the critical timing tc0 derived in Section “Derivation of Critical
Impulse Timing” actually provides the critical case under themulti
impulse and gives the upper bound of umax/dy and up/dy. The
closed-form expressions of umax/dy and up/dy derived in Sections
“Case 1: Impulse in Unloading Process” and “Case 2: Impulse in
Loading Process (Second Stiffness Range)” are equal to the upper
bound of umax/dy and up/dy in Figure 13.

APPLICABILITY OF CRITICAL MULTI
IMPULSE TIMING TO CORRESPONDING
SINUSOIDAL WAVE

In Section “Accuracy Check by Time-History Response Analysis
under the Corresponding Multi-Cycle Sinusoidal Wave,” it has

been demonstrated that, if the maximum value of the Fourier
amplitude is selected as a key parameter, the response under the
multi impulse with the time interval obtained by Eq. 19a,b and
that under the corresponding multi-cycle sinusoidal wave exhibit
a fairly good correspondence. In this section, it is investigated
whether the critical timing of themulti impulse derived in Section
“Derivation of Critical Impulse Timing” is also an approximate
critical period of the multi-cycle sinusoidal wave.

The resonant equivalent frequency of the harmonic wave for
a specific acceleration amplitude has to be obtained by the reso-
nance curve computed by using the exact solution (Iwan, 1961).
In this procedure, it is necessary to solve the transcendental
equation by changing the excitation frequency in a paramet-
ric manner. On the other hand, Caughey (1960a,b) has pro-
posed the method to derive the equivalent resonance frequency
directly by using the equivalent linearization method with the
least squares approximation. However, this equivalent resonant

Frontiers in Built Environment | www.frontiersin.org July 2017 | Volume 3 | Article 4114

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Kojima and Takewaki Critical Response of Bilinear System

frequency differs from the exact equivalent resonant frequency in
the larger acceleration amplitude range. In these previous papers,
the resonant equivalent frequency of the harmonic wave for a
specific acceleration amplitude has been derived. However, the
resonant equivalent frequency for a specific velocity amplitude has
not been derived.

In order to calculate the maximum deformation and the plas-
tic deformation amplitude under the corresponding multi-cycle
sinusoidal wave with the varied period Tl for various input veloc-
ity levels and various post-yield stiffness ratios, the time-history
response analysis has been conducted of the SDOF bilinear hys-
teresis system under the corresponding multi-cycle sinusoidal
wave. Tl, ωl = 2π/Tl, Al, and Vl =Al/ωl denote the period, the
circular frequency, the acceleration amplitude, and the velocity
amplitude of the sinusoidal wave corresponding to the multi
impulse with the equal time interval t0 and the input velocity level
V. In addition, Tl = 2t0 is used in this section. The input period Tl
is changed for the specific velocity amplitude calculated by Eq. 21
with the input velocity level V. Tl

c = 2tc0 denotes the approximate

critical period of the multi-cycle sinusoidal wave for a specific
velocity amplitude Vl.

Figure 14 shows the normalized maximum deformation
umax/dy and the normalized plastic deformation amplitude up/dy
with respect to the input period Tl/Tl

c(= t0/tc0) normalized by
the approximate critical period for various input velocity levels
V/Vy (corresponding to the velocity amplitude Vl) and various
post-yield stiffness ratios α= 0.035, 0.414, 0.9. It can be observed
that Tl

c = 2tc0 is a fairly good approximate of the critical period of
the multi-cycle sinusoidal wave for a specific velocity amplitude.

ACCURACY CHECK BY EXACT SOLUTION
SUBJECTED TO THE CORRESPONDING
MULTI-CYCLE SINUSOIDAL WAVE

The accuracy of the proposed closed-from steady-state response
under the critical multi impulse is investigated through the
comparison with the resonance curve under the corresponding
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TABLE 1 | Comparison of maximum deformations between sinusoidal wave and multi impulse.

Resonant response subjected to sinusoidal
wave (exact solution by Iwan, 1961)

Closed-form solution subjected to critical multi impulse
(corresponding to resonant point of exact solution)

α r=Al/Ay ω∗ =ωl/ω1 umax/dy V/Vy: Eq. 23 t0
c/T1: Eq. 19a ω∗ =T1/(2t0) umax/dy: Eq. 5

0.9 0.100 0.9570 4.645 0.1641 0.5223 0.9573 4.603

tan(π/8)= 0.414 0.478 0.7800 2.756 0.9626 0.6191 0.8077 2.845
0.300 0.8830 1.676 0.5337 0.5590 0.8945 1.711

tan(2°)= 0.035 0.955 0.4870 3.972 3.0803 0.9115 0.5486 5.293
0.600 0.7350 1.952 1.2823 0.6500 0.7693 2.116

sinusoidal wave computed by using the exact solution (Iwan,
1961). It is necessary for the resonance curve to solve the tran-
scendental equation by changing the excitation frequency in a
parametric manner and the resonant equivalent frequency of the
harmonic wave for a specific acceleration amplitude has to be
obtained by the resonance curve (Iwan, 1961). On the other hand,
the proposed method provides directly the critical steady-state
response for the specific input level by the closed-form expres-
sion. The input level of the multi impulse and the corresponding
sinusoidal wave has been adjusted by using the equivalence of the
maximum Fourier amplitude as explained in Sections “Accuracy
Check byTime-HistoryResponseAnalysis under theCorrespond-
ing Multi-Cycle Sinusoidal Wave” and “Applicability of Critical
Multi Impulse Timing to Corresponding Sinusoidal Wave.”

Figure 15 shows the comparison of the proposed closed-form
expression of the critical maximum deformation with respect
to ω∗ with the resonance curve by Iwan (1961) [corresponding
to Figures 11–13 in the study by Iwan (1961)]. ω∗ and r in
Figure 15 denote the ratio of the excitation frequency ωl = 2π/Tl
of the corresponding sinusoidal wave to the elastic natural circular
frequencyω1 and the ratio of the excitation acceleration amplitude
Al =ωlVl of the corresponding sinusoidal wave to the parameter
Ay = ω2

1dy. r is also equal to the product of the mass m and the
acceleration amplitude Al normalized by the yield force fy. The
red line in Figure 15 shows the maximum deformation under
the critical multi impulse. The normalized critical timing tc0/T1
is converted to ω∗ = T1/(2tc0) by using Tl = 2tc0 in the critical
case. The black line shows the resonance curve with r= 0.1 in
Figure 15A, r= 0.3, 0.478, 0.746 in Figure 15B, r= 0.6, 0.955,
1.228 in Figure 15C. The black solid circles in Figure 15 present
the resonance points for the specific acceleration amplitude. In
addition, the blue dotted line in Figure 15 presents the resonance
curve for constant velocity amplitude. It can be observed that
the proposed closed-form expression of the critical maximum
deformation under the multi impulse corresponds to the blue
dotted line (constant velocity amplitude) better than the black line
(constant acceleration amplitude).

The red solid circles present the maximum deformation under
the critical multi impulse for the input levels corresponding to the
resonance points of the resonance curve (the black solid circles in
Figure 15). The method to calculate the input velocity level cor-
responding to the resonant point (black solid circle) is explained
next. From given parameters r, ω∗ (at the resonance point), and
Eq. 21, the following relation can be obtained.

Vl = Al/ωl = (rω1Vy)/(ω∗
ω1) = (2/π)V (22)

From Eq. 22, the normalized input velocity level can be
obtained as follows:

V/Vy = (π/2)(r/ω
∗) (23)

The maximum deformation umax/dy and the critical timing
tc0/T1 can be obtained by Eq. 5 or 16 and Eq. 19a or 19b depending
on the input velocity level, respectively.

The results of the correspondence between the critical multi
impulse and the critical sinusoidal wave are listed in Table 1. The
responses and the resonant frequencies between the critical multi
impulse and the critical sinusoidal wave exhibit fairly good cor-
respondence except the case with α= tan(2π/180) and r= 0.600
(the small post-yield stiffness with the large input level).

CONCLUSION

Themulti impulse has been introduced as a substitute of the long-
duration groundmotion and the closed-form expression has been
derived of the steady-state elastic–plastic response of the SDOF
bilinear hysteretic system under the critical multi impulse. While
the resonant equivalent frequency of the elastic–plastic system
for a specific input level has to be computed by changing the
excitation frequency in a parametric manner in the conventional
method dealing directly with the sinusoidal wave (Iwan, 1961),
the steady-state elastic–plastic response under the critical multi
impulse can be obtained in closed form (without repetition) and
the critical time interval of the multi impulse (the resonant fre-
quency) can also be obtained in closed form for the increasing
input level in this proposed method. The following conclusions
have been derived.

(1) The steady state in which the each impulse acts at the zero
restoring-force point has been assumed and the closed-form
expressions of the elastic–plastic response under the criti-
cal multi impulse have been derived by using the energy
approach. The steady state under the critical multi impulse
can be classified into two cases depending on the plastic
deformation and the input velocity level. CASE 1 is the case
where each impulse acts at the zero restoring-force timing
in the unloading process and CASE 2 is the case where
each impulse acts at the zero restoring-force timing in the
loading process. The closed-form expressions of the critical
time interval of the multi impulse in both CASE 1 and CASE
2 have been derived by solving the equations of motion
and substituting the continuation conditions at the transition
points.
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(2) The response under the multi impulse with the equal time
interval obtained in Section “Derivation of Critical Impulse
Timing” converges into the steady state in which each impulse
acts at the zero restoring force as shown in Figure 3. The
maximum deformation and the plastic deformation ampli-
tude after convergence into the steady state correspond to
the closed-form expressions obtained in Section “Case 1:
Impulse in Unloading Process” and Section “Case 2: Impulse
in Loading Process (Second Stiffness Range).”

(3) The validity and accuracy of the proposed closed-form
expressions have been investigated through the compari-
son with the steady-state response under the corresponding
multi-cycle sinusoidal wave as a representative of the long-
duration ground motion by using the time-history response
analysis. It has been confirmed that the multi impulse pro-
vides a fairly good substitute of the multi-cycle sinusoidal
wave in the evaluation of the maximum deformation and
the plastic deformation amplitude if the maximum Fourier
amplitude is adjusted.

(4) The validity of the critical time interval derived in Section
“Derivation of Critical Impulse Timing” has been confirmed
by using the time-history response analysis of the SDOF
bilinear hysteresis system under the multi impulse with the
varied impulse timing. The critical timing of each impulse can
be characterized as the time with zero restoring force in the
steady state.

(5) Twice the critical time interval is a good approximate of the
critical period of the multi-cycle sinusoidal wave with the
corresponding input amplitude.

In this paper, the closed-form expression of the critical elas-
tic–plastic response has been derived for a specific input velocity
level V of the multi impulse. The input velocity level V corre-
sponds to the velocity amplitude of the long-duration ground
motion. The earthquake ground motions have been recorded for

70–80 years all over the world and the most rational method in
determining V is to predict the velocity amplitude and the period
of the ground motion at a specific site from the magnitude and/or
other parameters of the possible fault rupture. However, it seems
quite difficult to predict a possible ground motion at a specific
site even by the most advanced method. In such a situation, the
most reliable method may be to determine the input velocity level
V from the occurrence return period of ground motions and the
level of importance of the object building structure. In this case, an
allowable level of damage to the structure should be set depending
on the level of importance of the structure. From an alternative
view point, the following treatment may be possible. The relation
between V/Vy and the ductility factor umax/dy has been obtained
as a result of this paper. If two of V, Vy, umax/dy are given,
the remaining one can be obtained. Vy represents the strength
and stiffness parameter of the structure in velocity dimension.
Therefore, if two among the structural parameterVy (the strength
and stiffness parameter of the structure), the input level V of
the ground motion, the allowable damage level umax/dy of the
structure are given, the remaining parameter can be determined.
The final decision is entrusted to structural designers. It may be
said that the present paper has offered a tool for such decision.
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APPENDIX 1

Time-History Response under Critical Multi
Impulse and Derivation of Critical Time
Interval
The closed-form expressions of the time-history response under
the critical multi impulse and the critical time interval in the
steady state are derived by solving the equation of motion directly.

First of all, the time-history response for CASE 1 is derived.
Figures 4B,C show the time histories of the deformation and the
restoring force in CASE 1. By solving the equation of motion in
the path between point F and B in Figure 4A and substituting the
displacement and velocity conditions at point A, the time-history
response after the impulse acting point (pointA in Figure 4A) can
be expressed as follows:

u(t) = {(vc + V)/Vy}dysin(ω1t) − 0.5(1 − α)up (A1a)
u̇(t) = (vc + V)cos(ω1t) (A1b)

In Eqs A1a and A1b, t= 0 is set at point A and vc, up can be
obtained from Eqs 2 and 4. The time interval between pointA and
B in Figure 4 is denoted by tAB as shown in Figures 4B,C. tAB can
then be obtained as follows from u(t= tAB)= dy − 0.5up and Eq.
A1a.

tAB/T1 = {1/(2π)} arcsin[{1 − 0.5α(up/dy)}/{(vc + V)/Vy}]
(A2)

The time-history response after the yielding point (point B in
Figure 4) can be expressed as follows:

u(t) =
(
1
α

− 0.5
up
dy

)
dycos(

√
αω1t)

+
1√
α

vB
Vy

dysin(
√

αω1t) −
(
1
α

− 1
)
dy (A3a)

u̇(t) = −

√
α

(
1
α

− 0.5
up
dy

)2
+

(
vB
Vy

)2
Vy

× sin
[√

αω1t − arctan
vB/Vy√

α{(1/α) − 0.5(up/dy)}

]
(A3b)

In Eqs A3a and A3b, t= 0 at point B and the velocity vB at point
B can be obtained as shown in Eq. 20 by the following energy
balance law between point A and point B.

m(vc + V)2/2 = (mv2B/2) + {(fy − 0.5αkup)2/2k} (A4)

The time interval between point B and C in Figure 4 is denoted
by tBC as shown in Figures 4B,C. tBC can then be obtained as
follows from u̇(t = tBC) = 0 and Eq. A3b.

tBC/T1 = {1/(2π
√

α)} arctan
[

vB/Vy√
α{(1/α) − 0.5(up/dy)}

]
(A5)

The time-history response after the unloading initiation point
(point C in Figure 4) can be expressed as follows:

u(t) = {1 + 0.5α(up/dy)}dycos(ω1t) + 0.5(1 − α)up (A6a)
u̇(t) = −{1 + 0.5α(up/dy)}Vysin(ω1t) (A6b)

In Eqs A6a and A6b, t= 0 is set at point C. The time inter-
val between point C and D in Figure 4 is denoted by tCD as
shown in Figures 4B,C. tCD can be then obtained as follows from
u(t= tCD)= 0.5(1− α)up and Eq. A6a.

tCD/T1 = 0.25 (A7)

From Eqs. A2, A5, and A7 and Figures 4B,C, the time interval
tc0 between two consecutive impulses acting at the zero restoring-
force points (points A and D) in CASE 1 can be obtained as
follows:

tc0/T1 = (tAB/T1) + (tBC/T1) + (tCD/T1)

=
1
2π

[
arcsin

{
1 − 0.5α(up/dy)

(vc + V)/Vy

}
+

1√
α

arctan
{

1√
α

vB/Vy

(1/α) − 0.5(up/dy)

}]
+

1
4

for V/Vy ≤ −2 + 2
√

1/α (A8)

Second, the time-history response for CASE 2 is derived.
Figures 6B,C show the time histories of the deformation and the
restoring force in CASE 2. The time-history response after the
impulse acting point (point A in Figure 6) can be expressed as
follows:

u(t) = {(vc + V)/(
√

αVy)}dysin(
√

αω1t) − {(1/α) − 1}dy
(A9a)

u̇(t) = (vc + V)cos(
√

αω1t) (A9b)

In Eqs A9a and A9b, t= 0 is set at point A and vc, up can be
obtained from Eqs 13 and 15. The time interval between point A
and B in Figure 6 is denoted by tAB as shown in Figures 6B,C. tAB
can be then obtained as follows from u̇(t = tAB) = 0 and Eq. A9b.

tAB/T1 = {1/(2π)}{π/(2
√

α)} = 1/(4
√

α) (A10)

The time-history response after the unloading initiation point
(point B in Figure 6) can be expressed as follows:

u(t) = {1 + 0.5α(up/dy)}dycos(ω1t) + (1 − α)0.5up (A11a)
u̇(t) = −{1 + 0.5α(up/dy)}Vysin(ω1t) (A11b)

In Eqs A11a and A11b, t= 0 is set at point B. The time inter-
val between point B and C in Figure 6 is denoted by tBC as
shown in Figures 6B,C. tBC can then be obtained as follows from
u(t= tBC)=− dy + 0.5up and Eq. A11a.

tBC/T1 = (1/4) − {1/(2π)} arcsin
[
0.5α(up/dy) − 1
0.5α(up/dy) + 1

]
(A12)

The time-history response after the yielding initiation point
(point C in Figure 6) can be expressed as follows:

u(t) = −

√(
− 1

α
+ 0.5

up
dy

)2
+

(
2
up
dy

)
dy

× sin

{
√

αω1t − arctan
0.5(up/dy) − (1/α)√

2up/dy

}
+

(
1
α

− 1
)
dy

(A13a)
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u̇(t) = −

√√√√α

{(
− 1

α
+ 0.5

up
dy

)2
+

(
2
up
dy

)}
Vy

× cos

{
√

αω1t − arctan
0.5(up/dy) − (1/α)√

2up/dy

}
(A13b)

In Eqs A13a and A13b, t= 0 is set at point C. The time inter-
val between point C and D in Figure 6 is denoted by tCD as
shown in Figures 6B,C. tCD can then be obtained as follows from
u(t= tCD)= {(1/α)− 1}dy and Eq. A13a.

tCD/T1 =
1√
α

1
2π

arctan

{
0.5(up/dy) − (1/α)√

2(up/dy)

}
(A14)

From Eqs A10, A12, and A14 and Figures 6B,C, the time
interval tc0 between two consecutive impulses acting at the zero
restoring-force points (points A and D) in CASE 2 can then be
obtained as follows:

tc0/T1 = (tAB/T1) + (tBC/T1) + (tCD/T1)

=
1
4

(
1 +

1√
α

)
+

1
2π

[
− arcsin

{
0.5α(up/dy) − 1
0.5α(up/dy) + 1

}

+
1√
α

arctan

{
0.5(up/dy) − (1/α)√

2(up/dy)

}]

for V/Vy > −2 + 2
√
1/α (A15)

APPENDIX 2

Adjustment of Input Level of Multi
Impulse and Corresponding Sinusoidal
Wave
The adjustment method of input level of the multi impulse and
the corresponding sinusoidal wave is explained based on the
equivalence of the maximum Fourier amplitude.

Consider the multi impulse as a representative of a long-
duration ground acceleration as shown in Figure 2A, expressed by

üg(t) = Vδ(t) − Vδ(t − t0) + Vδ(t − 2t0)

− Vδ(t − 3t0) + · · · + (−1)N−1Vδ{t − (N − 1)t0}
(A16)

where N is the number of impulses. The corresponding multi-
cycle sinusoidal wave üSWg (t) is expressed as follows:

üSWg (t) = Alsin(ωlt)(0 ≤ t ≤ 0.5NTl = Nt0) (A17)

where Al is the acceleration amplitude, Tl = 2t0 is the excita-
tion period, ωl = 2π/Tl is the excitation circular frequency and
Vl =Al/ωl is the velocity amplitude. The number of cycles is half
of the number of impulses.

The maximum Fourier amplitude of the multi impulse üg(t)
and that of the corresponding multi-cycle sinusoidal wave üSWg (t)
can be derived as follows:

max|Üg(ω)| = V
{
max

∣∣∣∑N−1

n=0
(−1)ne−iωnt0

∣∣∣} = NV

(A18)

max|ÜSW
g (ω)| = Al

{
max

∣∣∣∣ 2πt0
π2 − (ωt0)2

sin(0.5Nωt0)
∣∣∣∣} (A19)

The function f(ωt0) = 2πt0|sin(0.5Nωt0)/{π2 − (ωt0)2}|
can be defined from Eq. A19. If N is a sufficiently large number
of impulses (e.g., over 20 impulses), the function f (x=ωt0) is
maximized at ωt0 =π and the maximum value of f(x=ωt0) can
be obtained as follows by using l’Hospital’s theorem.

lim
ωt0→π

∣∣∣∣ sin(0.5Nωt0)
π2 − (ωt0)2

∣∣∣∣ = lim
ωt0→π

∣∣∣∣0.5Ncos(0.5Nωt0)
−2(ωt0)

∣∣∣∣ =
N
4π
(A20)

N is assumed here to be an even number. From Eqs A18,
A19, and A20, the following relation can be obtained by using
the equivalence max|Üg(ω)| = max|ÜSW

g (ω)| of the maximum
Fourier amplitude.

Vl = Al/ωl = (2/π)V (A21)
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