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Abstract 

 
This paper presents a novel sparse-regularized minimum constitutive relation error (min- 

CRE) approach for structural damage identification with modal data. In this approach, the 

inverse identification problem is treated as a nonlinear optimization problem whose objective 

function is just the constitutive relation error (CRE). To circumvent the ill-posedness of the 

inverse problem which is caused by use of the possibly insufficient modal data and enhance the 

robustness of the identification process, a sparse regularization is introduced where a sparse 

(or ℓ1-norm) regularization term is added to the original CRE function. In regard to the 

minimum solution of the sparse-regularized CRE objective function, a two-step substitution 

algorithm is established. The attractive feature of the present damage identification approach 

is that no sensitivity analysis is involved herein and the additional introduction of the sparse 

regularization term introduces little computational complexity.  The approach is applied  

to damage identification of one or two-dimensional beam structures with experimental or 

simulated modal data. Results show that the sparse regularization indeed improves the 

effectiveness and robustness of the min-CRE approach under measurement noises and initial 

model errors, even in the case of large damages. 
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1 Introduction 

One of the main issues to be confronted with in structural engineering, is identification of the 

damages. Due to the convenience in modal data, e.g., through ambient tests, a great deal of 

modal-based methods have been developed to detect the structural damages[1]. These 

methods are all based on the fact that damages, often embodied as degradation of structural 

stiffness, would introduce changes into the dynamic characteristics such as frequencies and modal 

displacements. 

In fact, the modal-based damage identification methods are mainly categorized into two 

classes. In the first class, damages are directly identified from the change in the modal strain en- 

ergy [2–4].  However, this kind of methods is often noise sensitive [5].  Sensitivity-based approaches 

are fallen into the second class [6–8].  They treat the damage identification problem as a nonlinear 

optimization problem, for which the objective function is posed to be the weighted least-squares 

of the errors between the measured modal data and the derived data, and sensitivity analysis is 

invoked in order to solve the nonlinear optimization problem. The sensitivity-based approaches 

are now widely used in structural damage identification. 

Recently, the idea of using an error in constitutive relation for structural damage identifi- 

cation has caught the attention of researchers; it leads to the minimum constitutive relation 

error (min-CRE) approach. The approach treats the damage identification problem as a non- 

linear optimization problem and its objective function is selected as the constitutive relation 

error (CRE), that is, energy inner product of the residual of the constitutive equations con- 

necting between the admissible stresses and the kinematically admissible displacements. One 

attractive feature of the min-CRE approach is that the objective function is (separately) con- 

vex, for which only first-order conditions are sufficient conditions for optimality and the global 

minimum is always reached. Moreover, the sensitivity analysis which constitutes the main part 

of the computational cost for the sensitivity-based approaches is no longer needed, rather, a 

simple two-step substitution algorithm is often called to solve this minimization problem [9–11]. 

Actually, this min-CRE approach was first proposed for model updating analysis, using full-field 

static displacement data in linear elasticity[12]. Then the approach was extended to tackle 

many other damage parameter identification problems: in linear statics beam structure[13], 

transient dynamics[14], elastoplastics[15] and so on[16;17]. 

The main difficulty in applying the min-CRE approach resides at the admissible stress field 

for 2D or 3D problems which has to be built a priori before the min-CRE process. Fortunately, 

for conventional beam structures, the force method can be utilized to get the admissible stress 
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field. A noteworthy thing for the damage identification problem is that compared to the infinite 

number of modes for a continuous structure, incomplete measured modal data is always available 

in experimental testing due to limitations of sensor number, excitation imperfection, etc. The 

insufficient amount of the measured data could make the damage identification problem ill- 

posed and very sensitive to the measurement noise. To circumvent this drawback, regularization 

techniques such as the Tikhonov regularization and the sparse (or ℓ1-norm) regularization need 

to be introduced[18;19].  The idea that all the damages or changes of parameters are as small      

as possible is implicated in the Tikhonov regularization. Such an idea is reasonable for finite 

element updating, but may not be appropriate for damage identification since large damages may 

occur[20;21]. For practical structures, the amount of the (small or large) damages is often scarce 

and this, in principle, shall be well implicated in the sparse regularization[22]. As a consequence, 

the sparse regularization is often preferred for the structural damage identification. Part of the 

earliest contributions to the damage identification based on the sparse regularization have been 

extensively studied in Refs.[23;24] where sparse representation classification using mode shapes 

was proposed. The physical interpretation of sparse regularization with A1-norm as the sparse 

location of sensors in structures was also addressed in Refs.[25;26]. 

Above all, this paper is focused on the structural damage identification with (incomplete 

displacement) modal data by the min-CRE approach and the sparse regularization. In the 

proposed method, several attractive features are expected to be reached; they are 

1. The objective function is separately convex and therefore, large damages may become 

identifiable. 

2. The sparse regularization is enforced such that insufficient or incomplete modal data can 

also lead to good identification. 

3. The regularization parameter is automatically selected with a computationally simple and 

effective strategy. 

4. Though the sparse regularization has already been incorporated into the sensitivity-based 

approaches[20;27;28], the incorporation is not straightforward at all, because minimization  

of the linearized objective function along with the sparse regularization term at every 

sensitivity-based iteration should again resort to an iterative procedure. In contrast, min- 

imization of the CRE objective function along with the sparse regularization over the 

damage parameters can be directly solved at once with closed-form solutions. Moreover, 

no sensitivity analysis needs to be called in the present sparse-regularized min-CRE ap- 
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Figure 1 Model of Euler-Bernoulli beam 
 
 

proach and the exact order, e.g., 1st/2nd of the mode shape which must be known in the 

sensitivity-based approaches, is not required in the min-CRE approach. 

The remainder of this paper is organized as follows. The basic inverse identification problem 

with the min-CRE objective function is briefly introduced in Section 2. In Section 3, the sparse 

regularization is applied to enhance the CRE objective function and then, a two-step substitution 

algorithm is presented to get the solution. Numerical tests and experimental verification are 

performed in Sections 4 and 5 and final conclusions are drawn in Section 6. For the convenience 

of presentation, one and two-dimensional problems are discussed in this research. The extension 

of the basic methodology to multi-dimension problem would be straightforward. 

 

2 Problem statement 

 
2.1 The baseline model 

Consider an Euler-Bernoulli beam occupying the physical domain x ∈ X. Let (ui(x), θi(x)) 

denote the deflection and rotation of the ith mode shape and Mi(x), Qi(x) the corresponding 

bending moment and shear force. The flexural stiffness and mass per unit length are denoted 

by EI and ρA as shown in Figure 1. The support displacements satisfy the homogeneous 

Dirichlet boundary conditions,  or mathematically ui(x) ∈ 𝒰0, 𝒰0 = {ui  ∈ H2(X) : ui  satisfy    

the homogeneous Dirichlet boundary conditions} and (Mi(x), Qi(x)) satisfy the homogeneous 

Neumann boundary conditions, or mathematically Mi(x) ∈ ℑ0, ℑ0 = {𝑀𝑖
′′∈ L2(X) : Mi 

satisfy the homogeneous Neumann boundary conditions}. As is noteworthy, H2 is the Sobolev 

space defined with the derivatives up to the second order being square-integrable and it is 

usually known as containing the C1-continuous functions and L2 is the Lebesgue space of square- 

integrable functions.  With these notations, the free vibration of the Euler-Bernoulli beam is 

divided into three parts. 

M 

u 

x fb 

Q 
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• Kinematic constraints 

 
• Equilibrium equations 

 
ui(x) ∈ 𝒰0 (1) 

 
fbi(x) + 𝑀𝑖

′′(x) = 0 (2) 
 

where fbi(x) is the transversal inertial force per unit length and Mi(x) ∈ ℑ0. Moreover,  

the equilibrium equations as well as the boundary conditions (by principle of virtual work) 

could also be expressed as 

∫𝑥𝑓𝑏𝑖(𝑥)𝛿𝑢𝑖 𝑑𝑥 + ∫𝑥𝑀𝑖(𝑥)𝛿𝑢𝑖
′′ 𝑑𝑥 = 0, ∀𝛿𝑢𝑖 ∈ 𝒰0 (3) 

• Constitutive relations 
 

Mi(x) = EI𝑢𝑖
′′ (x)—Hooke’s law, (4a) 

fbi(x) = ρAüi(x)—Newton’s law. (4b) 

 
By the use of the relations üi(x) = −ω𝑖

2𝑢𝑖(𝑥) in free vibration analysis, where ωi is the ith 

natural frequency, equation (4b) could be simplified as fbi(x) = −ω𝑖
2𝜌𝐴𝑢𝑖(𝑥). 

 

2.2 CRE function for a given mode 

To define the constitutive relation error for the ith mode shape, consider an admissible displace- 

ment solution 𝒲𝑖 = ui(x) ∈ 𝒰0, an admissible force solution ℱ𝑖 = Mi(x) ∈ ℑ0 which satisfies 

equilibrium equations (2) and the admissible structural parameters 𝒦  ∈ 𝒞  which may 

include some model’s parameters such as Young’s modulus, mass density and cross-section 

information of the beam. It is easily known that, if the constitutive relation (4) is additionally 

satisfied, the above solution would be the exact eigenmodes of this structure. 

As a result, to measure the distance of the admissible solutions to the exact solutions in the 

energy product, the constitutive relation error for the ith mode of the beam is defined by 

𝑒𝐶𝑅𝐸(𝒲𝑖, ℱ𝑖, 𝒦) =
𝑟

2
∫
𝑋

(𝑀𝑖−𝐸𝐼𝑢𝑖")
2

𝐸𝐼
𝑑𝑥 +

1−𝑟

2
∫
𝑋

(𝑓𝑏𝑖+ω𝑖
2𝜌𝐴𝑢𝑖)

2

ω𝑖
2𝜌𝐴

𝑑𝑥              (5)

where r ∈ [0, 1] is the corresponding weight which depends on the relative reliability between 

the constitutive relation (4) based on the Hooke’s law and based on the Newton’s law and is 

fixed to be r = 0.5 in this paper. 

For this free vibration problem, further considering the equilibrium equations (2), the CRE 

in (5) could be simplified into: 

𝑒𝐶𝑅𝐸(𝒲𝑖, ℱ𝑖, 𝒦) =
𝑟

2
∫
𝑋

(𝑀𝑖−𝐸𝐼𝑢𝑖")
2

𝐸𝐼
𝑑𝑥 +

1−𝑟

2
∫
𝑋

(𝑀𝑖"−ω𝑖
2𝜌𝐴𝑢𝑖)

2

ω𝑖
2𝜌𝐴

𝑑𝑥              (6)
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Then the parameter identification formulation based on the given complete mode data ui is 

established as: 
𝐹𝑖(𝒲𝑖, ℱ𝑖,𝒦):= 𝑒𝐶𝑅𝐸(𝒲𝑖, ℱ𝑖,𝒦) 

(ℱ𝑖,𝒦) = arg min
ℱ𝑖∈ℑ0,𝒦∈𝒞

𝐹𝑖 (𝒲𝑖, ℱ𝑖,𝒦)                                          (7)

which is known as the min-CRE principle for inverse identification problems[12] 

and𝐹𝑖(𝒲𝑖,ℱ𝑖,𝒦) is known as the objective function. 

In many situations, the complete or full-field mode data ui is often hardly available, rather, 

the incomplete modal displacement data measured by finite sensors is obtained. Herein, an 

additional penalty term is incorporated into the constitutive relation error function (7) in order 

to simply enforce the conditions of the measured data. Such a penalty term can also account 

for the different level of reliability or measurement noise of the experimental measurement data. 

More specially, the objective function for damage identification using the ith mode data is 

modified as follows 

𝐹𝑖̂(𝒲𝑖,ℱ𝑖,𝒦):= 𝑒𝐶𝑅𝐸(𝒲𝑖, ℱ𝑖,𝒦) + ∑
𝐴𝑘

2𝑘∈℘ |𝑢𝑘𝑖 − 𝑢𝑘𝑖|
2                   (8)

  

where {ûki, k ∈ ℘} is the measured displacement modal data on the set of points {k ∈ ℘} and uki 

is the admissible modal displacement at kth position for the ith mode. Values of {Ak > 0, k ∈ ℘} 

could be tuned according to the confidence of the corresponding displacement data: {Ak → +∞} 

means completely trust of this data, while {Ak → 0} means completely untrust. 

2.3 CRE function for multiple modes 

In order to identify the damage parameters, multiple modal data {(uki, ωi), i ∈ S k ∈ ℘} are often 

measured, where S denotes the set of all modal data. The objective function (CRE function) 

for multiple modes is defined as follows 

𝐹(𝒲,ℱ,𝒦) = ∑ 𝑡𝑖𝐹𝑖̂(𝒲𝑖, ℱ𝑖,𝒦)𝑖∈𝑆 = ∑ 𝑡𝑖 (𝑒𝐶𝑅𝐸(𝒲𝑖, ℱ𝑖,𝒦) + ∑
𝐴𝑘

2𝑘∈℘ |𝑢𝑘𝑖 − 𝑢𝑘𝑖|
2)𝑖∈𝑆     (9) 

where ti is the corresponding weight coefficient and 𝒲 = {𝒲𝑖 , 𝑖 ∈ 𝑆}, ℱ = {ℱ𝑖 , 𝑖 ∈ 𝑆}. 

Herein, the weight coefficient ti should be chosen based on the reliability of each mode. 

 

3 Damage identification by min-CRE and sparse regularization 

 
Section 2 presents the basic background of the min-CRE principle for beam structures. In prac- 

tice, the amount of the measured modal data is always limited and this may make the damage 
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identification problem ill-posed. To properly circumvent the ill-posedness, the sparse regular- 

ization technique is reasonably introduced and a two-step substitution algorithm is proposed to 

practically solve the nonlinear optimization problem in this section. Particular attention is paid 

to estimation of the regularization parameters for the sparse regularization. 

 
3.1 Solution by two-step substitution algorithm 

 

• step 1 (UMF Step): Update the Mechanical Field (𝒲𝑖, ℱ𝑖) for the ith mode with the 

given material parameters 𝒦𝑛
 

(𝒲𝑖
𝑛+1, ℱ𝑖

𝑛+1) = arg min
𝒲∈𝒰0,ℱ∈ℑ0

𝐹(𝒲𝑖, ℱ𝑖,𝒦
𝑛
), 𝑖 ∈ 𝑆                               (10) 

 

• step 2 (UMP Step):  Update the Material Parameters 𝒦 by  the mechanical  fields (𝒲𝑖
𝑛+1, ℱ𝑖

𝑛+1) 

 obtained in step 1. 

𝒦𝑛+1 = argmin𝐹 (𝒲𝑛+1, ℱ𝑛+1,𝒦) = argmin
𝒦 ∈ 𝒞

∑ 𝑡𝑖𝐹̂ (𝒲𝑖
𝑛+1, ℱ𝑖

𝑛+1,𝒦)𝑖∈𝑆       (11) 

 

 

3.2 The UMF Step 

 

 

The mechanical field (𝒲𝑖, ℱ𝑖) is recovered from the measured data and the given material 

parameters 𝒦 individually for every mode. The sparse regularization term is not involved in 

this step. Specifically, the minimization over ℱ𝑖 yields the equation: 

∫𝑥 {𝑟
𝛿𝑀𝑖𝑀𝑖

𝐸𝐼
+ (1 − 𝑟)

𝛿𝑀𝑖"𝑀𝑖"

ω𝑖
2𝜌𝐴

− 𝛿𝑀𝑖"𝑢𝑖} 𝑑𝑥 = 0, ∀𝛿𝑀𝑖 ∈  ℑ0                           (12) 

and the minimization over 𝒲𝑖 yields 

∫𝑥{𝑟𝐸𝐼𝛿𝑢𝑖"𝑢𝑖" + (1 − 𝑟)ω𝑖
2𝜌𝐴𝛿𝑢𝑖𝑢𝑖 − 𝛿𝑢𝑖𝑀𝑖"} 𝑑𝑥 + ∑ 𝐴𝑖𝛿𝑢𝑘𝑖|𝑢𝑘𝑖 − 𝑢̂𝑘𝑖| = 0, ∀𝛿𝑢𝑖 ∈ 𝒰0𝑘∈℘ (13) 

 

From equations (12) and (13), the mechanical field (𝒲𝑖, ℱ𝑖) can be updated simultaneously. 

Practically, equations (12) and (13) are dealt with in the finite element setting and the detailed 

procedure is given in Appendix. 
 
 

3.3 The UMP Step 

The damage parameters for the Euler-Bernoulli beam structure in this paper is set to be 𝒦 = 

EI(x) and, the sparse regularization term is involved and needs to be properly tackled. The 

sparsity assumption that the number of damage locations of a structure is as few as possible 

is sensible for the practical damage identification problem. Properly enforcing the sparsity 
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assumption could improve the robustness of the identification results[21] and this shall be 

easily reached by the sparsity regularization technique. 

Assume that the stiffness EI is piecewise constant, that is to say  EI(x) = {EIp, x ∈ Xp , 

p = 1, 2, ..., N }, where {Xp, p = 1, 2, ..., N } is the non-overlapping decomposition of the whole 

domain X. Then, with the sparse regularization, the objective function is reformulated as 

∑ ∫𝑋𝑝𝑡𝑖 {
𝑟

2

(𝑀𝑖−𝐸𝐼𝑝𝑢𝑖")
2

𝐸𝐼𝑝
+
1−𝑟

2

(𝑀𝑖"−ω𝑖
2𝜌𝐴𝑢𝑖)

2

ω𝑖
2𝜌𝐴

}𝑖∈𝑆 𝑑𝑥+ 𝜆𝑙𝑝‖𝐸𝐼𝑝−𝐸𝐼0𝑝‖1
1
, 𝑝 = 1,2,… ,𝑁         (14) 

where {lp, p = 1, 2, ..., N } is the length of EIp and EI0p  is set to be the stiffness of the structure 

before  damaged. ‖𝐸𝐼𝑝 − 𝐸𝐼0𝑝‖1
1
 is  the  sparse  regularization  term  with ‖𝑥‖1 = |𝑥| being 

the ℓ1-norm. λ > 0 is the regularization parameter which controls the trade-off between the 

sparsity and the residual norm. It has been proved that minimization of ℓ1-norm could satisfy 

the desired sparsity requirement[22]. Moreover, ǁxǁ1 is still convex and the linear 

programming techniques[22] can be easily called to solve the optimization problem in the 

conventional linear least squares setting. Thus, in this paper, the choice ℓ1-norm is fixed. 

Furthermore, the partial differential equation of equation (14) for {EIp, x ∈ Xp, p = 1, 2, ..., 

N } takes the form 

𝜕𝐿1

𝜕𝐸𝐼
= ∑ ∫𝑋𝑝𝑡𝑖𝑟 {

𝑀𝑖
2

𝐸𝐼𝑝
2 − (𝑢𝑖")

2}𝑖∈𝑆 𝑑𝑥− 𝜆𝑙𝑝{sign(𝐸𝐼𝑝 −𝐸𝐼0𝑝)}𝑑𝑥 = 0        

(15) 

Finally, one has 

E𝐼𝑝 =

{
 
 

 
 √

𝑏𝑝

𝑎𝑝+𝜆𝑙𝑝
, if 𝜆 < Λ𝑝

√
𝑏𝑝

𝑎𝑝−𝜆𝑙𝑝
, if 𝜆 < −Λ𝑝

E𝐼0𝑝, if 𝜆 ≥ |Λ𝑝| 

, 𝑝 = 1,2, … ,𝑁                                (16) 

where 

𝛬𝑝 =
1

𝑙𝑝
∑ ∫𝑋𝑝𝑡𝑖𝑟 {

𝑀𝑖
2

𝐸𝐼0𝑝
2 − (𝑢𝑖")

2}𝑑𝑥 =𝑖
1

𝑙𝑝
(
𝑏𝑝

𝐸𝐼0𝑝
2 − 𝑎𝑝)                                     (17) 

and 

𝑎𝑝 = ∑ ∫𝑋𝑝
𝑡𝑖𝑟(𝑢𝑖")

2 𝑑𝑥𝑖 , 𝑏𝑝 = ∑ ∫𝑋𝑝
𝑡𝑖𝑟𝑀𝑖

2 𝑑𝑥𝑖                                 (18) 

Datailed explanations of Λp are discussed in the next section. From equations (15) and (16), 

the sparse regularization term would introduce little computational complexity and the 

minimization over the damage parameters along with the sparse regularization term is solved 

immediately by the closed-form solution in equation (16) for the sparse-regularized min-CRE 
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approach. However, in the sensitivity-based approaches[21], the sparse regularization term in 

each sensitivity step must be dealt with in a costly manner by iterative algorithms, e.g., the 
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Figure 2 Sparsity with different values of λ 

 
 

linear programming method or the interior point method. Moreover, no sensitivity analysis is 

involved in the proposed approach. All these have constituted the advantages of the proposed 

min-CRE approach over the conventional sensitivity-based approaches. 

To  get a better perspective of equation (16) and the sparsity-promoting nature of ℓ1-norm 

regularization,  ÊIp  (dotted  line  in  Figure  2)  is  introduced  for  the  situation  when  no  sparsity 

is considered (λ = 0) 

Ê𝐼𝑝 = √
∑ ∫𝑋𝑝

𝑡𝑖𝑀𝑖
2 𝑑𝑥𝑖

∑ ∫𝑋𝑝
𝑡𝑖(𝑢𝑖")

2 𝑑𝑥𝑖
= √

𝑏𝑝

𝑎𝑝
, 𝑝 = 1,2, … ,𝑁                                    (19) 

Based on equations (16) and (19), Figure 2 illustrates the relationship between EIp and 

ÊIp with different values of λ.  Figure 2 shows that the value of EIp is prone to be unchanged 

from the initial value EI0p  when λ ≥ |Λp| while EIp  begins to deviate from EI0p  to ÊIp  when  

λ < |Λp|. That is to say, the regularization parameter λ determines whether damage occurs: as 

long as λ < |Λp|, the pth element would admit stiffness change or damage; otherwise if λ ≥ |Λp|, 

the damage would be found to not occur in the pth element. 

 

3.4 Regularization Parameter Estimation 

As shown in many Refs.[29;30], the regularization parameter λ plays an important role in the 

quality of the damage identification results, especially in cases where high levels of noise are 

present in the data. In this section, a novel and simple strategy, named ”threshold setting 

method”, for estimating the optimal regularization parameter λest, is devised. 

For each iterative step, {|Λp| , p = 1, 2, ..., N } could be obtained for each element by equation 

(17). From Figure 2, one could see a close relationship between λ and {|Λp| , p = 1, 2, ..., N }. 

EIp 

0=λ1< λ2<λ3 
EI p 

EI0

p 
λ2<-Λp λ2<Λp 

λ3<-Λp λ3>|Λp| λ3<Λp 

|Λp| λ2> 
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In fact, λ is used to distinguish the damaged elements from the undamaged elements and |Λp| 

reflects the difference between the stiffness obtained directly from the CRE objective function 

without sparsity (ÊI p) and the undamaged stiffness (EI0p) for each element.  It is easily known 

that if this difference is large enough (|Λp| > λ), damage is reasonably assumed to occur. In other 

words, elements with higher values of |Λp| are likely to be damaged with stronger possibility 

while lower values indicate undamage and perturbation errors. Thus, setting one of the values 

in {|Λp| , p = 1, 2, ..., N } as threshold could separate the damaged and undamaged elements. 

As a result, a simple procedure to estimate the optimal regularization parameter λest is 

proposed for each iterative step as follows: 

1. Get {|Λp| , p = 1, 2, ..., N } from equation (17) and sort the absolute values in descending 

order, leading to {Λ̂1  ≥ Λ̂2  ≥ ...}; 

2. Fix the maximum threshold setting rank lmax and the discriminating ratio α; 

 

3. Obtain the optimal regularization parameter λest: for each 𝑙 = 1,… , 𝑙max − 1 ,

𝜆est = {
Λ̂𝑙+1, if  Λ̂𝑙 ≥ 𝛼Λ̂𝑙+1
Λ̂𝑙max , else                

                                                  (20) 

The maximum threshold setting rank lmax limits the maximum number of possible damages 

and principally one tends to choose a relatively small value  of lmax to guarantee the sparsity    

of the identification results.   On the other hand, it is conceivable that the general undamaged 

elements have relatively small values of |Λp| corresponding to the noise level and would be quite 

away from |Λp| of the damaged elements. As a result, the discrimination ratio α measures the 

distance between the minimum error caused by possible damages and the maximum error purely 

invoked by the measurement noise level.  If Λ̂l  is much greater than Λ̂l+1  (Λ̂l  ≥ α · Λ̂l+1), element 

l is identified as damaged. The maximum threshold setting rank lmax gives possible maximum 

number (initial guess) of damages while the discrimination ratio α narrow it down. The choice 

of α should be very careful in the multiple damage case because it directly affects the identified 

number of damages. Nevertheless, the identification process tends to be reasonably robust with 

a broad selection of α, which will be illustrated in detail in the later numerical example. In this 

paper, lmax = 5 and an empirical value α = 4 is used. 

 
4 Numerical simulation 

 
In the following, several numerical simulations are used to test the proposed sparse-regularized 



12 

 

min-CRE approach. The performance of the threshold setting method to give the regularization 
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parameter and the effectiveness and superior identifiability for structures with different damage 

severities by the sparse-regularized min-CRE approach are demonstrated in sections 4.1 and 4.2. 

Section 4.3 shows that the sparse regularization can significantly improve the robustness of the 

identification results from Monte Carlo simulations. 

 
4.1 A two-span continuous beam with single and multiple damage cases 

 
A numerical equi-spaced two-span continuous beam was studied to test the proposed threshold 

setting method at first. The first three modal responses of this beam were generated using finite 

element software. For detailed information on the geometry and boundary of the structure as 

well as the specific enumeration of the 17 equidistant measurement points, refer to Figure 3. 

64 Euler-Bernoulli beam elements were used both for the modal evaluation model and the 

identification model. Damages were enforced by reducing the stiffness of the corresponding 

elements. Two damage cases are taken into account, including: 

• Single damage case D1: stiffness reduced to 50% in element 21; and 

• Multiple damage case D2: stiffness reduced to 90%, 80% and 85% in elements 16, 22 and 

46 respectively. 

Figure 4 shows the identification results in cases D1 and D2, using the proposed sparse- 

regularized min-CRE approach with threshold setting method to select the optimal regulariza- 

tion parameter λest. Noise is not considered herein. Good identification performance for this 

two-span continuous beam structure is achieved. The optimal regularization parameter λest 

from the threshold setting method in Section3.4 is 6.57 × 10−06 for D1 and 1.84 × 10−04 for D2 

for the convergence step. 

Next, to have an impression on how the regularization parameter λ affects the identification 

results in the min-CRE approach and testify the efficiency of the threshold setting method, 

changes in EI with different regularization parameters λ are additionally plotted in Figure 5 

for both single damage case D1 and multiple damage case D2. As is observed, smaller value of 

λ or say, weaker enforcement of sparsity renders the identified results more sensitive to the error 

and uncertainty in modeling and simulation while very large value of λ or stronger enforcement 

of sparsity may fail in identifying damages or produce biased damage extents. Figure 5 shows 

that λ ∈ [10−6
, 10−3] in D1 and λ ∈ [10−4

, 10−3] in D2 could result in satisfactory identified 

results, coinciding well with the good identification results from the threshold setting method as 

in Figure 4 and again verifying the effectiveness of the threshold setting method. In addition, 
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Figure 5 exhibits a broader selection of λ in the single damage case D1 than in the multiple 

damage case D2. The choose of the regularization parameter λ must be paid more attention for 

multiple damage cases consequently. 

To testify the robustness of the threshold setting method, a normal distribution noise is 

added to the simulated modal response as 

noise(x) = randn · a · φ(x) (21) 

where randn is the normal distribution with zero mean and unit deviation, a is the applied 

noise level and φ(x) is the measured modal displacements at a certain point x. Noises of level 

3% (Signal-to-Noise-Ratio, SNR=15dB) as well as 5% (SNR=13dB) for both of the cases D1 

and D2 are considered in this example. As the natural frequencies can be often measured with 

negligible error compared with the mode shapes, noise for natural frequencies is not considered 

herein. 

As shown in Figure 6, damages are identified successfully when the measurement noise is 

not greater than 5% in single damage case D1 with a value of λest = 0.1644. In contrast, multiple 

damage case D2 seems to be more sensitive to the noise: under 3% noise level, actual damages 

in elements 16, 22 and 46 were properly identified but unwanted yet acceptable stiffness change 

at element 55 was also observed (Figure 6(c)); while under 5% noise level, the actual damage 

in element 46 was missed but false positions near element 60 were observed (Figure 6(d)). This 

phenomenon is attributable to the different effectiveness of the sparse regularization. Single 

damage is apparently more in conformity with the sparsity assumption while multiple damages 

reduce sparsity in intensity and rely more on the data fidelity. Consequently, damages occur- 

ring at less locations achieve better identification results by the sparse-regularized min-CRE 

approach. 

Figure 7 compares the evolution of CRE for each of the iterative step with different levels 

of noise. The error decreases with the number of iterations increases and most of the damages 

are identified after 30 steps, verifying the convergence of the present method. 

To get a better picture on how the discriminating ratio α in the threshold setting method 

works when determining λest, further simulations are performed. Noise of level 3% for both of 

the cases D1 and D2 are considered herein. Figure 8 shows the obtained optimal regularization 

parameter λest (in purple) with various values of the parameter α. As is expected, the choice 

of higher value of α may result in improper damage identification in the single damage case D1 

while lower value of α leads to incomplete damage identification in the multiple damage case 

D2. The main reason for this observation lies in Eq. (20): larger value of α makes the condition 
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ρA =1 kg/m, k0 =EI=1×10 3 Nm2
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Figure 3 Model and measurement points of two-span continuous beam 
 
 

 

Figure 4 (a) actual damage for D1; (b) damage identification result for D1 using min-CRE 

approach with threshold setting method; (c) actual damage for D2; (d) damage identification 

result for D2 using min-CRE approach with threshold setting method 

 

Λ̂l   ≥ α · Λ̂l+1   more  difficult  to  be  satisfied,  implying  that  greater  l  is  gained  and  less  spare 

identification results are achieved. The appropriate ranges are α ∈ [1, 18] in D1 and α ∈ [3, 20] 

in D2. As is seen, the identification process is fairly robust for the choice of α ∈ [3, 18] and 

therefore, α = 4 is used for the following examples in this paper. 

 

4.2 Single cracked simply supported beams with different damage severity 

Simply supported post-tensioned beams with different damage extents are to be identified in 

this example (see the Ref.[31] for details of the structure). Parameters of the simply 

supported beam are: length L = 3.6m, rectangular cross-section t × H = 0.1m × 0.125m, 

stiffness of the beam before damaged k0 = EI = 2.44 × 105Nm2 and mass per unit length ρA = 

29.44 kg/m. As shown in Figure 9, damage was simulated by a designed crack-depth (a/H = 

0.09, 0.27, 0.45) for each damage case (CL1,CL2,CL3) and located at 0.89m(x/L=0.248) from 

the left edge. The first two modal responses of these structures were obtained by the 3D finite 

elements models from the Ref.[32]. The 3D finite element model, with totally 28,512 block 

elements (288 elements 
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Figure 5 Change in EI with different values of regularization parameter λ: (a)D1 (b)D2 
 
 
 
 
 
 
 
 
 
 

 

Figure 6 (a) damage identification result for D1 with 3% noise; (b) damage identification 

result for D1 with 5% noise; (c) damage identification result for D2 with 3% noise; (d) damage 

identification result for D2 with 5% noise 
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Figure 7 CRE vs iterations: (a)D1;(b)D2 
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Figure 9 3D finite element model with different damage severities for modal responses 
 

Table 1 Measured frequencies and modal displacements of cracked simply supported beam 

 

Case-order Frequency(Hz) x/L=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

CL1-1 11.162 0.632 1.182 1.585 1.843 1.927 1.836 1.576 1.169 0.614 

CL1-2 43.857 1.168 1.839 1.766 1.035 0.055 -1.118 -1.808 -1.847 -1.154 

CL2-1 11.019 0.635 1.208 1.598 1.842 1.912 1.820 1.557 1.159 0.612 

CL2-2 42.701 1.170 1.839 1.766 0.959 -0.122 -1.146 -1.805 -1.821 -1.139 

CL3-1 10.746 0.664 1.254 1.640 1.85 1.901 1.791 1.531 1.134 0.604 

CL3-2 40.825 1.170 1.909 1.737 0.879 -0.209 -1.220 -1.813 -1.777 -1.094 

 

along the length of the beam) used for the modal analysis, was generated using the commercial 

software ANSYS and damage was inflicted by reducing the stiffness of the appropriate elements. 

The vibration amplitude was measured at nine equally spaced positions, each of which was 36cm 

between two adjacent locations. 

For the sake of convenience, Damage Index is introduced to represent the scaled damage in 

the beam, i.e. 

Damage Index𝑝 = 𝑘𝑝
damage

/𝑘0𝑝 (22) 
 

where 𝑘𝑝
damage

 is the damaged stiffness and 𝑘0𝑝 is the stiffness before damaged in element p. 

In Ref.[32], a mode-shape-based damage detection method based on the sensitivity approach, 

using the Euler-Bernoulli beam model with 288 elements of equal size, was used to identify the 

damage, while the model for damage detection in the min-CRE approach consists of 50 elements. 

Damage identification results for each damage case obtained by the min-CRE approach as 

well as the sensitivity approach in Ref.[32] are summarized in Table 2.  It is shown that the 

min-CRE approach could give nearly the same results for damage localization as well as damage 

extent assessment in CL2 (middle damage case) and even superior results in CL3 (large damage 
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Table 2 Damage identification of simply supported beam compared to the results[32] 

 

Damage case 

-method 

Damage Index 

(FE model) 

Predicted Damage Range 

Elements(Location) 

Most Probable 

Element(Location) 

Damage Index 

(Identified) 

λest 

CL1-CRE 0.76 6-10(0.1-0.2) 10(0.20) 0.973 0.230 

CL1-

reference
[32]

 

0.76 55-81(0.191-0.280) 67(0.233) 0.926 \ 

CL2-CRE 0.41 11-15(0.2-0.3) 13(0.26) 0.62 0.300 

CL2-

reference
[32]

 

0.41 55-80(0.191-0.277) 67(0.233) 0.636 \ 

CL3-CRE 0.22 11-15(0.2-0.3) 11(0.22) 0.29 0.466 

CL3-

reference
[32]

 

0.22 55-81(0.191-0.277) 67(0.233) 0.491 \ 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Convergence of Damage Index for simply supported beam in CL3 

 

case) when compared with the results in Ref.[32]. The accuracy of the damage localization by 

the present approach was evaluated by measuring the localization error, ranged from 5% to 19% 

and the accuracy of damage severity is from 21% to 33%. For CL1 (small damage case), the 

identified results obtained by the present min-CRE approach are reasonable and slightly less 

satisfactory than the results by the sensitivity approach. This is mostly caused by the fact that 

under small damage, the difference/error between the displacement finite element model and the 

force finite element modal may be in the same level with the discrepancy of the derived modal 

data between the damaged and undamaged structures. 

To visualize the convergence of the min-CRE approach for the large damage case, detailed 

results on the damage index of the most probable damaged element 11 and its nearest elements 

8-10 at each iteration step, are given in Figure 10. Obviously, all the quantities converge within 

Element 8,9,10,11 
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27 iterations verifying the convergence of the proposed two-step substitution algorithm even for 

the large damage case. 
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4.3 A plane frame structure 

A plane frame structure[19] as shown in Figure 11 is to be studied to demonstrate the robustness 

of the proposed sparse regularization technique. The axial displacement ux, tension force N and 

the corresponding longitudinal inertial force ft are additionally considered in this case. The 

damage parameter is set to be 𝒦= E(x) instead of EI(x). The height and width of the frame 

are H  = L × 2 = 8m and L = 4m, respectively, with the inertial moment for planar bending    

I = 5 × 10−9m4 and cross-sectional area A  =  1 × 10−7m4.  For  the  undamaged  frame,  the 

mass density of the material is ρ = 107kg/m3 and the Young’s modulus is E = 2 × 108N/m2.  

The plane frame consists of 24 Euler-Bernoulli beam elements with 24 nodes, each with three 

degree of freedom. The vibration amplitude measurement locations and corresponding direction 

are also illustrated in Figure 11 and the measured modal displacements are normalized with 

respect to the maximum vibration amplitude. Herein, the Young’s modulus of each element  

is identified and no damage pattern is needed to be assumed before the identification process, 

which is different from Ref.[19]. 

Two damage cases are considered: damages were enforced by reducing the Young’s modulus 

E  to 25% in element 1 and 75% in element 9 in case D1 and to 85% in element 1 and 85%      

in element 9 in case D2. According to Ref.[19], damage case D1 with large stiffness differences 

for close elements was selected based on the experience due to its hard identifiability. The first 

three modes and their frequencies are used herein and all modes are equally weighted. The 

normal distribution noise described in Equation (21) is used and noises of level 2%, 5% and 

10% (SNR=17dB, 13dB and 10dB) are considered in this example. Again, noise for natural 

frequencies are not considered herein. 

As shown in Figure 12(a) and Figure 13(a), good identification performance is achieved 

when there is no noise. The optimal regularization parameter λest is 3.4 × 10−4 and 1.1 × 10−4. 

To get a better picture for the cases with noise, statistical analysis was performed. Mean values 

and standard deviations of damage index over 100 Monte Carlo trials with different levels of 

noise are presented in Figure 12(b)(c)(d) and Figure 13(b)(c)(d). The mean of the optimal 

regularization parameters is 1.7×10−3, 2.3×10−3 and 6.0×10−3 for D1 and 1.3×10−3, 2.7×10−3 

and 5.5 × 10−3 for D2. Satisfactory identification results are observed even under the noise level 

10%. 

Figure 14 compares the results obtained by the min-CRE approach in D1 with the iden- 

tification results in Ref.[19], where a sensitivity-based approach with Tikhonov regularization 

was used. Obviously, the sparse-regularized min-CRE approach gives the best estimation of the 
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Figure 11 Model and measurement points of plane frame structure 
 
 

damage parameters in terms of the mean values and standard deviations of the damage indices. 

The reason for different levels of standard deviation is possibly because some elements are more 

sensitive to perturbation errors than others. Moreover, it is clear that the sparse regularization 

greatly improves the identifiability and robustness of the min-CRE approach by comparing the 

results between Figure 14(b)(min-CRE approach without regularization) and (d)(min-CRE 

approach with regularization). 

To visualize how the sparse-regularized min-CRE approach proceeds, the iterative procedure 

for the case of 5% noise is shown in Figure 15. Although it seems to take a little more steps 

to get the convergence, this approach would still be an efficient tool for structural damage 

identification. 

 

5 Experimental verification 

 
5.1 Crack identification in a cantilever beam 

 
A single cracked cantilever beam as shown in Figure 16 is adopted as the first experimental 

verification example. The crack is assumed to remain a continuum and the mechanical properties 

(stiffness EI in beam model or Young’s modulus E in plane stress model) are modified to account 

for the effect of cracking, that is, the following models do not account for discontinuities in the 

topology of the FE mesh for this kind of general damage identification problem. 

The length of the beam is L = 300mm with square cross-section h × d = 20mm × 20mm. 

The stiffness of beam is k0 = EI = 2.75 × 103Nm2 and the mass per unit length is taken 
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Figure 12 Mean values and standard deviations of Damage Index for: (a) no noise; (b) 2% 

noise; (c) 5% noise; (d) 10% noise in D1 
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Figure 13 Mean values and standard deviations of Damage Index for: (a) no noise; (b) 2% 

noise; (c) 5% noise; (d) 10% noise in D2 
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Figure 14 Identification results with 5% noise by: (a) reference[19] without regularization; 

(b) min-CRE without regularization;(c) reference[19] with regularization; (d) min-CRE with 

regularization 

 
 
 
 
 
 

 

Figure 15 Damage identification procedure of plane frame structure 
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l =145.51mm  
a =9.71mm 

 

 
h =20mm 

L=300mm 

 

Figure 16 The cracked cantilever beam specimen 
 

Table 3 Measured frequencies and modal displacements of cracked cantilever beam 

 

Order Frequency(Hz) x/L=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1.0 

1 171 0.027 0.063 0.109 0.156 0.236 0.354 0.487 0.778 0.940 

2 987 0.069 0.149 0.276 0.444 0.516 0.400 0.200 -0.455 -0.899 

3 3034 0.033 0.103 0.221 0.288 0.011 -0.387 -0.498 -0.203 0.435 

 

to be ρA = 3.12 kg/m.  The crack is located at l  =  145.51mm from the clamped end with  

depth a = 9.71mm. The crack was initiated with a thin saw-cut and propagated to the desired 

depth by fatigue loading. The crack depth was measured directly and verified with an ultrasonic 

detector for uniformity and actual depth. The measured natural frequencies and modal responses 

were obtained experimentally[33]. Electromagnetic vibrator, amplifier and accelerometer were 

utilized in the experiment. Harmonic excitation was  applied and only one mode at a time  

was investigated. The signal generator could be tuned to the natural frequency of interest 

automatically by using a frequency hunting circuit. 

The vibration amplitude was measured at the positions 30mm, 60mm, 90mm, 120mm, 

150mm, 180mm, 210mm, 270mm and 300mm. The amplitude of motion at 240mm was not 

measured. The vibration signal was transferred to a vibration analyzer and a recorder to give 

plots of vibration amplitude versus frequency. The first three mode shapes were measured by 

using two calibrated accelerometers mounted on the beam. One accelerometer was kept at the 

clamped end of the beam to measure the mode amplitude. The data used in this case is sum- 

marized in Table 3. It should be noted that the modal displacements herein contain not only 

the measurement errors but also digitized process errors when extracted from the published 

paper[33] (see also the Ref.[34]). 

By performing the two-step substitution algorithm in Section 3, the min-CRE approach 

for damage identification can be used. The optimal regularization parameter obtained by the 

threshold setting method is λest  = 197.97.  Well  identification performance for the structure   

is achieved by the proposed sparse-regularized approach with comparision to the identification 

results in the Ref.[34] and detailed results are shown in Figure 17. In the Ref.[34], the same 
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frequencies and modal displacements data in Table 3 were used and an algorithm was proposed 

considering changes in estimated constitutive properties of the finite element model with an 

output-error parameter estimation algorithm to localize the damage. Two models were used for 

damage detection in the Ref.[34] 

• model A: structure modelled by 50 Bernoulli-Euler beam elements; 

• model B: structure modelled by 60 two-dimensional plane stress square four-node elements 

without geometric defects (30 elements on the top row and 30 elements on the bottom row). 

 
Accordingly, structure with 50 Bernoulli-Euler beam elements, compared with Model A in the 

reference and structure with 30 Bernoulli-Euler beam elements, compared with Model B are 

established for damage identification in the sparse-regularized min-CRE approach. 

For the beam model case, although the crack was identified by model A in the Ref.[34], 

elements at other locations such as element 31 and 46 were also detected as damaged. The crack 

actually lied between element 22 and 24 and the results from the min-CRE approach clearly 

identify a range of elements 21-25. Model B in Ref.[34] offered a much better result than model 

A: elements 12-15 on the top row and 13-15 on the bottom row were detected as damages, while 

the beam model of the min-CRE approach again exhibits a very good identification performance: 

the crack lies between element 13 and 15, which are the exact damage locations. Obviously, the 

distributive stiffness is well identified with limited and incomplete experimental modal data by 

the sparse-regularized min-CRE approach. 

 
5.2 Crack identification in a beam with two fixed ends 

The proposed damage identification algorithm was also applied to an aluminum beam with two 

fixed ends[35] as shown in Figure 18. The parameters are set as follows: E = 70GPa, υ = 0.3 

and ρ = 2.7 × 103kg/m3. A saw-cut damage was applied by cutting two cracks on the top and 

bottom surface of the intact beam with a depth of quarter of the total thickness of the beam 

for each crack. Experimental modal data were obtained by the impact excitation and only one 

accelerometer was employed at the center of the beam to measure the deflection response. Modal 

responses were attained through one line in the transfer function matrix. More details of this 

experiment could be found in Ref.[35]. The first three-order frequencies and mode shapes of the 

damaged beam are used herein (Figure 18). Based on the FEM computation from Ref.[35], 

the saw-cut damage could be simulated using 87.5% reduction of the bending stiffness in the 

ninth element. 
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Figure 17 Identification results using sparse-regularized min-CRE approach compared to the 

results in Ref.[34] (model A and model B) 
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Two identification methods which are similar in concept to the best achievable eigenvector 

technique were proposed in Ref.[35]. The first (DDNKM) does not employ the analytical global 

stiffness and mass matrices completely; the second one (DDNK) uses the analytical global mass 

matrix only. These approaches first locate the damages using a special subspace rotation algo- 

rithm, and then identify the magnitude of damage using the quadratic programming technique. 

By employing the first two orders of measured modal data, the identification results using 

DDNKM, DDNK and min-CRE approach are shown in Figure 19(a), (b) and (c) respectively. 

It can be found that the damaged element 9 can be detected very clearly from the min-CRE 

approach. The damage extent of the min-CRE approach is reasonable, although not as accurate 

as DDNK. The reason that the proposed algorithm exhibits such strong capability in damage 

location is that the sparsity could extract the most important features from the measured in- 

formation (the damage) while suppress the less important ones which seems to be introduced 

by the noise. The optimal regularization parameter obtained by the threshold setting method 

is λest = 738.76, suggesting a strong enforcement of sparsity and hence the identified damage 

extent is slightly biased. The same phenomenon could be seen from the case employing the first 

three orders of measured modal data (Figure 20). In this case, the sparse-regularized min-CRE 

approach offers a much better identification results than the other two methods in Ref.[35], no 

matter in regard to the assessment of the damage localization or the damage extent. However, 

compared with the results from the min-CRE approach based on the first two orders of measured 

modal data, no obvious improvement seems to be attained for this case. The reason is that the 

first two modes are already enough to detect the damage and higher level measured error may 

be invoked in the third mode. A relatively small weight coefficient is suggested to be chosen for 

the third mode in this situation as mentioned in Section 2.3. 

For further comparison, the recently developed damage identification approach via sparse 

representation (SR) classification in Ref.[23] is also called to identify the damage in the beam. 

Note from the above analysis that using the first two modes have led to better identification 

results than using the first three modes and therefore, only the first two modes are adopted for 

damage identification by the SR approach herein. In doing so, two stages are involved: 

 

◦ Stage 1. Identification of damage location 

1. Predefine damage classes of the beam (see Figure 18) with all possible damage 

locations and then, details are presented Table 4. For each damage class, get the 

first two incomplete mode shapes that correspond to the measured first two mode 

shapes. Then, collect the first two incomplete mode shapes of all damage classes to 
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form the reference matrix. 

2. For each of the two measured mode shapes, use A1 minimization to obtain the sparse 

solution. Then, calculate the recovery error of each damage class by referring to  

the definition in Ref.[23] and detailed results on the recovery error are displayed in 

Figure 21(a). Clearly, damage location at element 9 is well identified because the 

damage class with the smallest recovery error is in principle the desired one for the 

beam. 
 

◦ Stage 2. Identification of damage extent 

1. Predefine damage classes of the beam with predefined damage location at element 9 

and all possible damage extents for which the details are listed in Table 5. 

2. Repeat Stage 1 except that the predefined damage classes in Table 5 is used and 

then, results on the recovery error under different damage extents are obtainable as 

depicted in Figure 21(b). Obviously, the damage extent of 70% is identified. 

To conclude, damage location at element 9 of extent 70% has been well identified in the beam 

by the two-step SR approach in Ref.[23]. Comparing the identification results in Figure 19(c) 

by the proposed sparse-regularized min-CRE approach with the identification results by the 

two- step SR approach, both approaches have given rise to satisfactory identification of the 

damage: damage location at element 9 is perfectly detected with almost no fictious damage 

locations while damage extent around 0.7 is also reasonably identified. The good 

performance of both approaches shall be benefit from the sparsity assumption—sparsity of 

damage locations for the proposed sparse-regularized min-CRE approach and sparsity of 

damage classes for the two- step SR approach. Correspondingly, the importance of the 

sparsity in damage identification is recognized. It should be noticed that the SR approach is 

efficient and robust for both single and multiple damage cases, but it is found that this 

approach is incapable of identifying small damage with very limited sensors[23]. However, as 

is shown in the numerical example, the proposed sparse-regularized min-CRE approach can 

well identify small damages if the damage locations are scarce enough. In other words, in case 

when small damages occur at a single or scarce location, the proposed approach is 

recommended. 

 
 

6 Conclusions 

 
A modal-based damage identification approach by the minimum constitutive relation error (min- 

CRE) principle and the sparse regularization was proposed in this paper. To this end, a (sep- 
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Figure 18 A beam with two fixed ends and its first three order measured modes (damaged) 
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Figure 19 Identification results by employing the first two orders of measured modal data: 

(a)DDNKM (b)DDNK (c)sparse-regularized min-CRE 
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Figure 20 Identification results by employing the first three orders of measured modal data: 

(a)DDNKM (b)DDNK (c)sparse-regularized min-CRE 
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Figure 21 Identification results by SR of (a) damage location and (b) damage extent 

 
 
 
 
 

Table 4 Predefined damage classes of the beam for Stage 1 
 

 
 
 

Obtained incomplete mode shapes    Φ1 ∈ R19×2    Φ2 ∈ R19×2    Φ3 ∈ R19×2  · · · Φ19 ∈ R19×2 Φ20 ∈ R19×2 

Reference matrix Ψ1 = [Φ1, Φ2, · · · , Φ19, Φ20] ∈ R19×40 

 

 

 

 

Table 5 Predefined damage classes of the beam for Stage 2 
 

 
 
 

Obtained incomplete mode shapes    Φ1 ∈ R19×2    Φ2 ∈ R19×2    Φ3 ∈ R19×2  · · · Φ9 ∈ R19×2 Φ10 ∈ R19×2 

Reference matrix Ψ2 = [Φ1, Φ2, · · · , Φ9, Φ10] ∈ R19×20 
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arately) convex objective function, also known as the CRE, to measure the residual of the 

constitutive equations connecting between the admissible stress field and the admissible dis- 

placement field has been established and the sparse regularization has been enforced to enhance 

the robustness of the damage identification with insufficient modal data. A two-step substitution 

algorithm was then applied to practically get the solution and a simple strategy for automatically 

selecting the regularization parameter was presented. Results show that: 

1. The present threshold setting method to get the regularization parameter is effective. 

 
2. The present sparse-regularized min-CRE approach can give good identification results of 

the damage locations and severities for damage with relatively few damage locations, while 

for damage with multiple damage locations, identification of the damage location is still 

satisfactory. 

3. The sparse regularization indeed enhances the robustness of the damage identification 

procedure with insufficient modal data and measurement noise. 

4. The present damage identification approach performs well in both numerical and experi- 

mental tests. 

Thus, it is believed that the proposed approach can serve as an effective tool for practical struc- 

tural damage identification using incomplete modal data. Also note that the present approach 

is based on a clear physics model of the structure. In practice, both Neumann and Dirichlet 

boundary conditions could be less reliable. Hence, an identification strategy enabling to take 

into account all the available information and capable to deal with different reliability levels of 

information should be considered in the future research. 

 

Appendix: Finite element formulation for the UMF step 
 

A finite dimensional space ℑ0
ℎ ⊂ ℑ0 and 𝒰0

ℎ ⊂ 𝒰0 are constructed at first with h denoting the 

characteristic mesh size. For each mode, the nodal forces (Qi, Mi) and displacements (θi, ui)  at 

an arbitrary node i are naturally selected as the basic DOFs to solve the admissible force 

solution and displacement solution, respectively. Then, for an arbitrary element e with two 

nodes i, j whose coordinates are xi < xj, the following approximation (Qh, Mh) and (θh, uh) are 

adopted for the force and displacement finite element computation, 

𝑀ℎ
𝑒 = (𝐻1 𝐻2 𝐻3 𝐻4) 𝑭

𝑒 ,  𝑭𝑒 = [𝑄𝑖, 𝑀𝑖, 𝑄𝑗 , 𝑀𝑗] 

𝑢ℎ
𝑒 = (𝐻1 𝐻2 𝐻3 𝐻4) 𝑾

𝑒 ,  𝑾𝑒 = [𝜃𝑖, 𝑢𝑖, 𝜃𝑗 , 𝑢𝑗]
                                     (1) 

where the superscript e denotes the restriction into element e and the polynomial interpolation 
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functions H1, H2, H3, H4 are of the following forms, 

{
𝐻1(𝜉) =

1

2
(𝜉 + 2)(𝜉 − 1)2, 𝐻2(𝜉) =

1

4
(𝜉 + 1)(𝜉 − 1)2

ℎ𝑒

2
,

𝐻3(𝜉) =
1

2
(2 − 𝜉)(𝜉 + 1)2, 𝐻4(𝜉) =

1

4
(𝜉 − 1)(𝜉 + 1)2

ℎ𝑒

2
,

ℎ𝑒 = 𝑥𝑗 − 𝑥𝑖 , 𝜉 =
2(𝑥−𝑥𝑖)

ℎ𝑒
− 1.                                                  

                                    (2) 

 
For brevity, the total finite element approximation is designated as 

 

Mh = Φ̂ F , uh = ΦW (3) 

where F and W collect all the DOFs with a priori satisfaction of the Neumann boundary 

condition and Dirichelet boundary condition. Using the finite element approximation (3), the 

discrete formulation of equations (12) and (13) is obtained 

(
𝑨0 −𝑪0
−𝑪0

𝑇 𝑩0
)(
𝑭
𝑾
) = (

𝑎
𝑏
)                                         

𝑨 = ∫𝑋 {𝑟
𝚽̂𝑇𝚽̂

𝐸𝐼
+ (1 − 𝑟)

𝚽̂𝑇"𝚽"̂

𝜔2𝜌𝐴
} 𝑑𝑥                           

𝑩 = ∫𝑋{𝑟𝚽
𝑇"𝐸𝐼𝚽" + (1 − 𝑟)𝚽𝑇𝜔2𝜌𝐴𝚽}𝑑𝑥 + 𝑷

𝑷 a digonal matrix with 𝑷(𝑘, 𝑘) = {
𝐴𝑘 , 𝑘 ∈ ℘
0, 𝑘 ∉ ℘

      

𝑪 = ∫𝑋𝚽̂
𝑇"𝚽𝑑𝑥                                                            

𝑎 = 0, 𝑏 = 𝑝, 𝑝(𝑘) = {
𝐴𝑘𝑢̂𝑘, 𝑘 ∈ ℘
0, 𝑘 ∉ ℘

                          

                               (4) 

where A0,B0 and C0 are the reduced forms of A,B and C after applying the homogeneous 

boundary conditions. 
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