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Abstract

The corticospinal system and local spinal circuits control human bipedal locomotion. The pri-

mary motor cortex is phase-dependently activated during gait; this cortical input is critical for

foot flexor activity during the swing phase. We investigated whether gait-combined rhythmic

brain stimulation can induce neuroplasticity in the foot area of the motor cortex and alter gait

parameters. Twenty-one healthy subjects participated in the single-blinded, cross-over

study. Each subject received anodal transcranial patterned direct current stimulation over

the foot area of the right motor cortex during gait, sham stimulation during gait, and anodal

transcranial patterned direct current stimulation during rest in a random order. Six subjects

were excluded due to a failure in the experimental recording procedure. Complete-case

analysis was performed using the data from the remaining 15 subjects. Self-paced gait

speed and left leg stride length were significantly increased after the stimulation during gait,

but not after the sham stimulation during gait or the stimulation during rest. In addition, a sig-

nificant increase was found in the excitability of the corticospinal pathway of the left tibialis

anterior muscle 30 min after stimulation during gait. Anodal transcranial patterned direct cur-

rent stimulation during gait entrained the gait cycle to enhance motor cortical activity in

some subjects. These findings suggest that the stimulation during gait induced neuroplastic-

ity in corticospinal pathways driving flexor muscles during gait.

Introduction

During human bipedal locomotion, cortical and supraspinal projections control posture and

leg movements in coordination with the spinal locomotor system [1]. Compared with the qua-

drupedal gait of animals, the biomechanical need for an erect bipedal gait appears to have fur-

ther encephalized the neural control of human walking [1, 2].
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Phasic corticospinal excitability has been found to modulate motoneuronal circuits during

walking [1, 3, 4]. The corticospinal neurons show increase of activity in controlling the flexor

muscles during walking, but this increase is not often seen in controlling the extensor muscles

[4, 5]. A significant coherence between the primary motor cortex (M1) and flexor muscles,

such as the tibialis anterior (TA), is found prior to heel strike during the swing phase of walk-

ing [6]. Stroke patients with lesions in the sensorimotor cortex or corticospinal tracts often

exhibit drop-foot during the swing phase [7]. These findings suggest that corticospinal inputs

contribute to the phasic control of swing-related activities in foot flexor muscles.

Patterned rhythmic transcranial direct current stimulation (tDCS) such as transcranial

alternating current stimulation (tACS) [8–12] and tACS with a constant direct current (DC)

offset [13–15], are noninvasive methods of modulating brain activity. These approaches can

modulate intrinsic brain rhythmicity, thereby altering sensorimotor and cognitive functions

[16–22]. Applying tACS over the M1 at 20 Hz slows voluntary arm movements by entraining

cortical beta-band activity [20]. Therefore, offering tACS at a similar frequency to that of rest-

ing movement could control tremor in patients with Parkinson’s disease [23]. The use of tACS

with a constant positive DC offset over the M1 has been shown to increase corticospinal excit-

ability, with the effect being sustained for more than 20 min [13].

Human bipedal gait is a regular movement based on brain and spinal rhythmicity [1, 4, 24].

However, no reports published thus far have indicated whether patterned tDCS can modulate

brain rhythmicity during gait to enhance corticospinal activity-associated gait control. If pat-

terned tDCS can alter gait-associated corticospinal activity, the method may become a promis-

ing therapeutic approach in the recovery of gait function for patients with central nervous

system disorders. In previous studies, patterned tDCS was found to entrain and enhance brain

activity; however, the method was not used in a time-locked way and the frequency parameters

of the tDCS were unrelated to intrinsic brain rhythmicity [14, 15, 17–22]. In this study, we

hypothesized that the use of patterned tDCS over the M1 foot area at a frequency similar to a

normal gait frequency, applied in a non-time-locked way and without relation to individual

gait cycles, may induce plasticity of the M1 and modulate gait parameters. We assumed that

the frequency of patterned tDCS similar to a normal gait frequency might be also similar to

that of the cortical activity associated with stepping during gait. The main outcome measure

was gait parameters, and the secondary measure was M1 excitability controlling a tibialis ante-

rior (TA) muscle as one of foot flexor muscles.

Methods

Experimental protocol

Participants. Twenty-three healthy volunteers were recruited in the study using the Web

advertisement of Kyoto University (URL: http://www.s-coop.net/service/arbeit/). Inclusion

criteria was no history of chronic or acute neurological, psychiatric, or medical diseases; no

family history of epilepsy; no present pregnancy; no cardiac pacemaker; no previous surgery

involving implants (aneurysm clips and brain or spinal electrodes), and absence of acute or

chronic medication or drug intake. Based on the consideration of inclusion criteria, two volun-

teers were excluded and only 21 healthy individuals (nine women and 12 men) aged 20–40

years [mean ± standard deviation (SD), 25.9 ± 7.0 years] were included in the study. The sam-

ple size was determined for detecting the effect of M1 oscillatory tDCS according to the previ-

ous reports [8, 13, 20, 25]. All were right-handed according to the Edinburgh handedness

inventory [26] and had right foot preference according to the Chapman test [27]. The study

protocol was approved by the Committee of Medical Ethics of the Graduate School of
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Medicine, Kyoto University, Japan (C-800) and written informed consent was obtained from

all subjects.

Electromyogram (EMG) recording. EMGs were recorded from the right and left TA

muscles (foot flexors) and gastrocnemius (GC) muscles (foot extensors) using pairs of silver

electrodes in a belly-tendon montage. A pair of electrodes for GC muscles was pasted on the

surface of lateral head of gastrocnemius muscle. The EMG was amplified, filtered (bandpass,

5–1,000 Hz), and digitized at a sampling rate of 10 kHz using the Map1496 system (Nihon-

Santeku Co., Osaka, Japan).

Transcranial magnetic stimulation (TMS) procedures. For TMS, each subject was

seated comfortably in an armchair. Focal TMS was performed using a double-cone magnetic

coil (outer diameter of each wing, 14 cm) connected to a Magstim 200 magnetic stimulator

(Magstim, Whitland, Dyfed, UK). The center of the junction region of the coil was placed tan-

gentially to the scalp and 90˚ lateral to the midline, and stabilized during the measurement.

The coil was held so that currents in the brain flowed rightward for stimulation of the left M1

and leftward for stimulation of the right M1 [28].

The optimal TMS coil scalp positions for induction of motor responses from bilaterial TA

and GC muscles were determined for each subject. The resting motor threshold (rMT) was

defined as the minimum stimulator output eliciting motor evoked potentials (MEPs) > 50 μV

in five out of 10 consecutive pulses [29]. The rMTs were represented as percentage of the maxi-

mum stimulator output.

To assess corticospinal excitability, MEP amplitudes were measured with TMS intensity

fixed to produce a MEP of approximately 1 mV from bilateral TA and GC muscles (stimulus

intensity, SI1 mV) at rest using the Magstim 200 apparatus. TMS intensities with SI1 mV as

percentage of the maximum stimulator output were recorded for bilateral TA and GC muscles

in the baseline. Complete muscle relaxation was continuously monitored by visual feedback of

surface EMGs. The peak-to-peak amplitudes of the MEPs were measured in each single trial

and averaged for each subject.

To investigate the motor inhibitory system, the cortical silent period (CSP) was assessed for

the bilateral TA and GC muscles. CSP is considered to reflect inhibitory GABAB-ergic neuron

activities in the M1 area [30]. TMS pulses were given with a stimulation intensity of 140% rMT

during isometric submaximal contraction. After the maximum EMG amplitudes were mea-

sured during the maximum contraction, subjects were asked to maintain the contraction so

that around 40% of the maximum EMG amplitudes were kept. During the contraction, visual

check of the raw EMG data was performed by the experimenter. If the EMG amplitudes did

not reach the targeted level, subjects were asked to strengthen their muscle contraction. The

EMG amplitudes were not always kept at exactly 40% of the maximum EMG amplitudes since

the level of background activation has no effect on the CSP duration [31, 32]. The duration of

the CSP was defined as the time from TMS onset until return of voluntary EMG activity and it

was manually analyzed by the experimenters [30]. Each muscle was measured in a random

order.

The rMT was 51.9% ± 10.9% of the maximum stimulator output for the left TA muscle,

52.3% ± 10.6% for the left GC, 53.0% ± 10.0% for the right TA muscle, and 53.1% ± 10.0% for

the right GC muscle. The stimulator intensities required to elicit an MEP of 1 mV (SI1 mV)

were 69.4% ± 14.8% for the left TA muscle, 76.1% ± 14.6% for the left GC, 74.5% ± 12.4% for

the right TA muscle, and 77.7% ± 12.6% for the right GC muscle.

Gait analysis. To investigate the effects on basic walking function, a 10-meter walk test

was performed. Subjects were asked to walk at their preferred walking speed along a 14-meter

walkway without any break to the end point while wearing their shoes. To eliminate accelera-

tion and deceleration periods, subjects started and ended their laps 2 meter before and beyond
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the middle 10 meter of walkway. Subjects were videotaped at a rate of 30 frames per second in the

sagittal plane as they walked (GZ-E355, JVC KENWOOD Co., Ltd., Japan). The time to cover the

10 m of the walkway was measured by frame-by-frame advance function and the mean distance

of 8 strides of the left leg (i.e., from one left foot floor contact to the next) was measured by mark-

ing the start and end point in a freeze-frame in offline (Everio MediaBrowser 4, JVC KENWOOD

Co., Ltd., Japan; Adobe Photoshop CS6, Adobe Systems Co., Ltd., Japan.). The participants were

asked to perform two trials in the 10-meter walk test. The individual self-paced 10-meter walk

speed and the left stride length were calculated from the two trials.

The evaluation was performed before, immediately after, and 30 min after the intervention

(designated as the “pre,” “post0,” and “post1” time points, respectively), which required

approximately 15 min.

Interventional protocol

Subjects first performed a 4-min walk on a treadmill (DK-208, Daikou Co., Ltd., Japan) to con-

firm individual preferred gait frequency. Then subjects performed a 10-min walk at this com-

fortable pace during the tACS-Gait intervention. The electrical currents for tACS with a

constant DC offset were delivered through a neuroConn DC Stimulator (Ilmenau, Germany).

The stimulation current waveform was a sinusoidal wave of 2 mA (from 0 mA to +2 mA)

peak-to-peak amplitude delivered at the approximate gait frequency (within ±0.01 Hz). As for

stimulation parameters, we chose the sinusoid waveform of tACS currents because it was safely

used and effectively modified brain activity in previous studies [9, 25, 26]. tACS currents were

not given in a time-locking way and was unrelated to the subjects’ gait cycle during the inter-

vention. tACS with a constant DC offset lasted for the entire 10-min walk plus fade-in and

fade-out periods of 10 cycles. For tACS with a constant DC offset over the right M1 foot area,

the electrode (3 × 3 cm) was centered on the scalp position where the TMS coil elicited the

largest and the most reliable motor response in the left TA muscle. The reference electrode

(5 × 5 cm) was centered 3 cm left-lateral and 3 cm rostral from the inion over the occipital area

(Fig 1).

In the sham stimulation condition, current was delivered only 10 cycles with electrodes

positioned on the right M1 foot area with fade-in and fade-out periods of 10 cycles.

We conducted three interventional experiments: (1) tACS with a constant positive DC off-

set to the right M1 foot area during treadmill gait (tACS-Gait) as described, (2) sham tACS

during treadmill gait (Sham-Gait), and (3) tACS with a constant positive DC offset on the

right M1 foot area during rest (tACS-Rest). They were conducted in a random order on three

different days, with a break of at least 5 days between each.

Assessment of entrainment effects of tACS with a constant DC offset on

gait parameters

We investigated the entrainment effects of tACS with a constant DC offset on gait cycle in the

tACS-Gait condition. Individual gait cycle was assessed by an accelerometer placed on the middle

of the lower back (BrainAmp system, Brain Products GmbH, Germany) so that the positive peak

of acceleration indicated the initiation of the left leg stance phase. The tACS with a constant DC

offset current waveform was recorded concurrently with the accelerometer to determine the

phase difference by using the signal-out function of a DC Stimulator (Ilmenau, Germany).

Assessment of rhythmic sensation during tACS with a constant DC offset

To confirm whether subjects felt any rhythmicity of the tACS currents, they were asked to

push the button whenever they felt any sensation during tACS applied over the M1 area in the
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resting state on days different from those of the intervention. We simultaneously recorded the

tACS currents and the timing of button-pushing for 5 min. This assessment was conducted

one day between the 1st and 2nd session or between the 2nd and 3rd session in a random assign-

ment to each subject with a break of at least 5 days before and after each session.

Data analysis

To investigate a relationship between the changes in corticospinal excitability of the stimulated

area and walking function in tACS-Gait, correlation coefficients were calculated between the

change ratios (= post0/pre and post1/pre) of the MEP amplitudes from the left TA muscles,

the gait speed and the left leg strides.

To determine whether pre-EMG activity was altered for CSP measurements before and

after the interventions, the integral values (μV�sec) of the root mean square (RMS) of EMG

activity (μV) for 100 msec before the TMS pulse were calculated.

For evaluation of the entrainment effect, recorded tACS currents were zero-phase bandpass

filtered by using first order Butterworth filter in both directions in off-line at cut-off frequen-

cies of 0.5 and 2 Hz. Analytic signals were acquired by the bandpass filtered currents following

Hilbert transform.

The instantaneous phase of the initiation of the gait cycle in the left leg (the positive peak

recorded by the accelerometer) was calculated during 10 min of treadmill gait. All instanta-

neous phases of the positive peak were represented by complex numbers and averaged. The

absolute value and phase of the average were regarded as the phase synchronization index

(PSI) and mean phase difference (MPD), respectively. A PSI of 0 represents no entrainment

and 1 represents complete entrainment of gait cycle by tACS. To investigate whether gait cycle

Fig 1. Interventional protocol. Three experimental interventions were performed: (1) tACS of the right M1 foot area during treadmill gait (tACS-Gait) (2) sham tACS

during treadmill gait (Sham-Gait) and (3) tACS of the left M1 foot area during rest (tACS-Rest). Corticospinal excitability was evaluated by transcranial magnetic

stimulation (TMS)-induced motor evoked potentials (MEPs) before, immediately after, and 30 min after the intervention (designated as the ‘pre’, ‘post0’, and ‘post1’

time points, respectively). Gait parameters were evaluated before and 30 min after the intervention.

https://doi.org/10.1371/journal.pone.0208691.g001
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was entrained to a specific phase, the averaged MPDs of tACS were calculated and represented

by complex numbers. The phase of the averaged MPDs were regarded as the MPDAvg.

For assessment of rhythmic sensation, analytic signals of tACS currents were acquired by

the bandpass filtered currents following Hilbert transform in the same way as analysis of the

entrainment effects described before. The instantaneous phase of the time to push the button

was calculated during 5 min of recording. All instantaneous phases were represented by com-

plex numbers and averaged. The absolute value was regarded as the PSI, respectively.

To investigate a relationship of PSIs and MPDs with changes in corticospinal excitability

and walking parameters in tACS-Gait, correlation coefficients were calculated between the

PSIs, the MPDs, the change ratios of the MEP amplitudes from the left TA muscles, the gait

speed and the left leg strides.

Statistical analysis

Complete-case analysis was performed with listwise deletion. The MEP amplitude, CSP dura-

tion, and the 10-m walk test parameters were subjected to two-way repeated-measures analysis

of variance (ANOVA) with Condition [Time (pre, post0 and post1) × Condition (tACS-Gait,

Sham-Gait, and tACS-Rest)] as a within-subject factor. Furthermore, they were subjected to

two-way repeated-measures ANOVA [Time (pre, post0 and post1) × Order (session order: 1st,

2nd and 3rd)] as a within-subject factor to investigate whether the session order had an effect

on the results. Pre-stimulus EMG activity (RMS × time) in CSP measurement was subjected to

one-way repeated-measures ANOVA with time (pre, post0, and post1) as a within-subject fac-

tor under each condition (tACS-Gait, Sham-Gait, and tACS-Rest).

Individual PSIs for evaluation of the entrainment effect and of the rhythmic sensation and

the averaged PSI for the entrainment effects were assessed for statistical significance by non-

parametric testing against an empirical null-distribution by using Matlab program (Matlab

2014b, The MathWorks, Inc., USA). The null-distribution was constructed by computing the

statistic PSI over randomly oriented unit vectors, which were repeated 100,000 times accord-

ing to the Bootstrap methods [33, 34]. To investigate whether MPDAvg was significantly close

to a specific phase, the MPDAvg was subjected to the V-test of the circular statistics [35, 36].

Significance was accepted at the 5% confidence level (p< 0.05).

If necessary, the Greenhouse–Geisser correction was used to adjust for the sphericity,

changing the degrees of freedom using the correction coefficient epsilon. The Bonferroni cor-

rection for multiple comparisons was used for the post hoc t-test. Effects were considered sig-

nificant at p< 0.05. All data are expressed as the mean ± SD unless otherwise indicated. The

JMP statistical package (JMP Pro 12.2, SAS Institute Inc., USA) was used for each of the 259

analyses unless otherwise described.

Results

There were no adverse effects of TMS and tACS with a constant DC offset. No subjects

reported phosphenes, vertigo, or skin irritation from stimulation.

For investigation of relationship between phase of stimulation current and gait cycle, the

recording of accelerometer data was stopped in the middle of the experiment in the six sub-

jects, because of the failure of accelerometer sensors. The data from the remaining 15 subjects

were used for each statistical test by way of complete-case analysis.

As for the evaluation of the rhythmic sensation, the average number of the button push (±
SD) was 6.78 ± 10.27 in the nine subjects. The remaining six subjects did not push the button

since they did not feel any sensation during the stimulation. No participants exhibited
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significant PSI [average PSI (± SD): 0.38 ± 0.28, 95% confidence interval (CI): 0.292–0.997],

suggesting that they did not sense the rhythmicity of stimulation during tACS.

During the interventions, the average (±SD) speed of treadmill walking for 10 min in the 15

subjects was 3.34 ± 0.39 km/h under the experimental conditions of tACS-Gait and Sham-

Gait. The average frequency of tACS with a constant DC offset to match stride frequency was

0.94 ± 0.08 Hz for all three experimental conditions (tACS-Gait, Sham-Gait, and tACS-Rest).

Effects of tACS with a constant DC offset on gait parameters

The average (± SD) of the 10m walking speed and of the left stride length were shown in

Table 1.

There was a significant difference in the self-paced 10-meter walk speed and in the left leg

stride length among tACS-Gait, Sham-Gait, and tACS-Rest conditions (10-m walk speed: F(4,

112) = 3.98, p = 0.005, left leg stride length: F(4, 112) = 3.79, p = 0.006 by repeated measures

ANOVA). The 10-meter walk speed was significantly increased 30 min after the tACS -Gait

condition compared with that after the Sham-Gait (p = 0.009, by post hoc t-test) and tACS

-Rest conditions (p = 0.018). No differences were found between the tACS-Gait and Sham-

Gait conditions at post0 (p = 0.444), between tACS-Gait and tACS-Rest conditions at post0

(p = 0.051) and between the Sham-Gait and tACS-Rest conditions at post0 and post1 (at post0,

p = 0.604 and at post1, p = 0.809, respectively; Fig 2A). The left leg stride was significantly

increased 30min after the tACS -Gait condition compared with that after the Sham-Gait

(p = 0.025) and immediately (post0) and 30 min (post1) after the tACS -Gait condition com-

pared with that after the tACS -Rest condition (at post0, p = 0.032 and at post1, p = 0.022). No

differences were found between the tACS-Gait and Sham-Gait conditions at post0 (p = 0.597)

and between the Sham-Gait and tACS-Rest conditions at post0 and post1 (at post0: p = 0.332

and at post1: p = 0.959, respectively; Fig 2B).

The order of the three session had no significant effect (10-meter walk speed: F(4, 112) =

0.662, p = 0.619, left leg stride length: F(4, 112) = 0.518, p = 0.722).

Effects of tACS with a constant DC offset on corticospinal excitability

within the right M1 foot area

The average (± SD) of the MEP amplitudes with SI1mV was shown in Table 2.

There was a significant difference in the MEP amplitude of the left TA muscle among the

three conditions (F(4, 112) = 4.75, p = 0.0014). Pair-wise comparisons revealed a significant

increase in MEP amplitude of the left TA muscle 30 min after the tACS -Gait condition

Table 1. Gait parameters.

10 meter-walk test

tACS-Gait Sham-Gait tACS-Rest

walk speed (m/sec)

pre 1.28 ± 0.20 1.31 ± 0.21 1.31 ± 0.20

post0 1.33 ± 0.15 1.30 ± 0.17 1.27 ± 0.19

post1 1.39 ± 0.16 1.32 ± 0.20 1.32 ± 0.22

stride length (cm)

pre 131.1 ± 13.6 133.3 ± 15.6 133.1 ± 12.5

post0 135.5 ± 12.2 133.2 ± 13.7 130.8 ± 11.9

post1 137.7 ± 11.4 133.5 ± 15.6 133.1 ± 14.4

The average (± SD) of the 10m walking speed and of the left stride length were shown.

https://doi.org/10.1371/journal.pone.0208691.t001
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compared to the Sham-Gait condition (p = 0.007) and the tACS -Rest condition (p< 0.001;

Fig 3), but no difference was found between the tACS-Gait and Sham-Gait conditions at post0

(p = 0.289), between tACS-Gait and tACS-Rest conditions at post0 (p = 0.220) and between

the Sham-Gait and tACS -Rest conditions at post0 and post1 (at post0: p = 0.886 and at post1:

0.087, respectively). In contrast to the left TA muscle, there were no significant differences in

the MEP amplitudes from the right TA and left and right GC muscles among the conditions

(right TA muscle: F(4, 112) = 0.711, p = 0.586, left GC muscle: F(4, 112) = 1.43, p = 0.230, right

GC muscle: F(4, 112) = 0.266, p = 0.900). The order of the three session had no significant

effect (left TA muscle: F(4,112) = 1.40, p = 0.238, right TA muscle: F(4,112) = 0.677, p = 0.609,

left GC muscle: F(4,112) = 0.575, p = 0.681, right GC muscle: F(4,112) = 1.80, p = 0.133).

For evaluating inhibitory networks in the M1, the CSP was measured. The integral values

(μV�sec) of RMS in pre-stimulus EMG activity for 100 msec are shown in Table 3. There were

no significant differences before and after each intervention (tACS-Gait: left TA muscle: F(2,

28) = 1.38, p = 0.269, right TA muscle: F(2, 28) = 1.72, p = 0.198, left GC muscle: F(2, 28) =

1.50, p = 0.241, right GC muscle: F(2, 28) = 0.325, p = 0.726, Sham-Gait: left TA muscle: F(2,

Fig 2. The 10-m walk speed and the left leg stride. The walk speed (a) and of the left leg stride (b) were shown in the tACS-Gait, Sham-Gait and tACS-Rest conditions.

https://doi.org/10.1371/journal.pone.0208691.g002
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28) = 2.16, p = 0.134, right TA muscle: F(2, 28) = 1.54, p = 0.232, left GC muscle: F(2, 28) =

0.586, p = 0.563, right GC muscle: F(2, 28) = 2.52, p = 0.099, tACS-Rest: left TA muscle: F(2,

28) = 0.18, p = 0.836, right TA muscle: F(2, 28) = 3.26, p = 0.053, left GC muscle: F(2, 28) =

1.83, p = 0.180, right GC muscle: F(2, 28) = 0.179, p = 0.837).

Table 2. MEP amplitudes with SI1mV from the bilateral TA and GC muscles.

MEP amplitudes with SI1mV (mV)

tACS-Gait Sham-Gait tACS-Rest

left TA

pre 0.70 ± 0.17 0.82 ± 0.30 0.76 ± 0.27

post0 0.93 ± 0.35 0.80 ± 0.29 0.79 ± 0.46

post1 1.14 ± 0.39 0.89 ± 0.45 0.72 ± 0.36

left GC

pre 0.62 ± 0.23 0.54 ± 0.21 0.55 ± 0.25

post0 0.52 ± 0.19 0.52 ± 0.24 0.65 ± 0.40

post1 0.63 ± 0.35 0.58 ± 0.27 0.60 ± 0.39

right TA

pre 0.83 ± 0.31 0.82 ± 0.30 0.81 ± 0.31

post0 0.77 ± 0.38 0.86 ± 0.43 0.92 ± 0.49

post1 0.97 ± 0.51 0.91 ± 0.38 1.03 ± 0.63

right GC

pre 0.56 ± 0.26 0.61 ± 0.31 0.58 ± 0.17

post0 0.50 ± 0.22 0.59 ± 0.36 0.52 ± 0.22

post1 0.56 ± 0.27 0.68 ± 0.29 0.61 ± 0.30

The average (± SD) of the MEP amplitudes with SI1mV was shown.

https://doi.org/10.1371/journal.pone.0208691.t002

Fig 3. Changes of the left TA MEP amplitudes. The left TA MEP amplitudes were shown. The amplitude was significantly greater (indicative of enhanced

corticospinal excitability) both immediately (post0) and 30 min (post1) after tACS-Gait compared with that after Sham-Gait and tACS-Rest.

https://doi.org/10.1371/journal.pone.0208691.g003
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The average (± SD) of the CSP was shown in Table 4.

No significant differences were found in the CSP of the left and right TA and the left and

right GC muscles among conditions (left TA: F(4,112) = 0.732, p = 0.572; right TA: F(4,112) =

1.31, p = 0.270; left GC: F(4,112) = 1.12, p = 0.349; right GC: F(4,112) = 0.239, p = 0.916). The

Table 3. Pre-stimulus EMG activity.

tACS-Gait Sham-Gait tACS-Rest

left TA

pre 9583 ± 1366 11467 ± 2067 10190 ± 1213

post0 9642 ± 1232 10308 ± 2126 9886 ± 959

post1 10198 ± 1354 13121 ± 2282 10288 ± 1240

right TA

pre 11467 ± 2446 11330 ± 2246 10521 ± 1250

post0 10308 ± 1223 10730 ± 2262 11331 ± 1216

post1 13121 ± 2028 12734 ± 2811 12490 ± 1652

left GC

pre 7491 ± 1066 8213 ± 1058 6903 ± 611

post0 7055 ± 831 8920 ± 900 7879 ± 1061

post1 7900 ± 1027 8791 ± 1080 7882 ± 964

right GC

pre 8220 ± 980 8591 ± 870 8927 ± 1313

post0 8440 ± 842 10538 ± 1307 9342 ± 1506

post1 8670 ± 939 9106 ± 1420 8867 ± 859

(Average ± SEM) (μV�sec)

Pre-stimulus EMG activity was not significantly changed before and after the interventions in the CSP measurement.

https://doi.org/10.1371/journal.pone.0208691.t003

Table 4. The CSP from the bilateral TA and GC muscles.

CSP (msec)

tACS-Gait Sham-Gait tACS-Rest

left TA

pre 196.7 ± 23.8 202.8 ± 21.0 188.2 ± 19.3

post0 194.9 ± 25.6 194.0 ± 33.3 188.1 ± 24.6

post1 210.5 ± 29.5 204.1 ± 25.9 192.1 ± 22.2

right TA

pre 198.2 ± 24.1 206.4 ± 26.7 198.0 ± 32.4

post0 189.6 ± 34.3 195.3 ± 30.6 199.4 ± 31.9

post1 198.9 ± 30.3 213.1 ± 36.6 196.3 ± 36.4

left GC

pre 173.6 ± 18.6 175.7 ± 20.7 170.4 ± 24.8

post0 173.7 ± 22.6 174.7 ± 24.0 174.7 ± 20.2

post1 180.5 ± 22.0 178.5 ± 26.7 166.2 ± 22.8

right GC

pre 176.8 ± 31.0 175.1 ± 34.0 177.3 ± 33.0

post0 177.1 ± 29.9 172.4 ± 29.3 175.0 ± 26.9

post1 180.1 ± 29.4 182.3 ± 32.6 178.3 ± 28.1

The average (± SD) of the CSP was shown.

https://doi.org/10.1371/journal.pone.0208691.t004

Gait-related M1 plasticity by brain stimulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0208691 December 21, 2018 10 / 19

https://doi.org/10.1371/journal.pone.0208691.t003
https://doi.org/10.1371/journal.pone.0208691.t004
https://doi.org/10.1371/journal.pone.0208691


order of the three session had no significant effect (left TA muscle: F(4,112) = 0.461, p = 0.765,

right TA muscle: F(4,112) = 0.383, p = 0.820, left GC muscle: F(4,112) = 0.930, p = 0.449, right

GC muscle: F(4, 112) = 0.677, p = 0.609).

Relationship of corticospinal excitability and walking function

The change ratios (post1/pre) of the MEP amplitudes from the left TA muscles were positively

correlated with those of the gait speed (r = 0.767, p = 0.001) and those of the left leg strides

(r = 0.678, p = 0.005) (Fig 4A and 4B), while the change ratios (post0/pre) of those parameters

were not correlated (ratios of MEP amplitudes and gait speed: r = − 0.213, p = 0.446, ratios of

MEP amplitudes and gait speed: r = − 0.066, p = 0.816).

Relationship between phase of stimulation current and gait cycle in the

tACS-Gait condition

The mean number of gait cycles counted on the left leg was 530.5 ± 63.2, and the mean fre-

quency of tACS was 0.95 ± 0.08 Hz over 10 min. The 95%CI for the statistically significant PSI

was approximately 0.08 (0.0706–0.0841). Twelve subjects exhibited significant PSI, whereas

three did not (Table 5). The average PSI of all the subjects was 0.15 ± 0.13, representing signifi-

cant entrainment compared with the null distribution (0.05 confidence level = 0.441,

p< 0.05). To investigate whether gait cycle was entrained to a specific phase, the averaged

MPDs of tACS were calculated with complex numbers (the calculated phase represented by

Fig 4. Correlation between change ratio of the left TA MEP amplitudes, walk speed and left leg stride. (a) The change ratios (post1/pre) of the MEP amplitudes from

the left TA muscles were positively correlated with those of the 10-m walk speed. (b) The change ratios (post1/pre) of the MEP amplitudes from the left TA muscles were

positively correlated with those of the left leg stride.

https://doi.org/10.1371/journal.pone.0208691.g004
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MPDAvg). The MPDAvg was −86.1˚. According to the V-test, MPDAvg was significantly

approximate to − 90˚ (p = 0.045< 0.05).

Relationship of PSI and MPD with corticospinal excitability and walking

function

Neither of the PSIs nor the MPDs were correlated with the change ratios (post1/pre) of the

MEP amplitudes of the left TA muscle (PSI: r = − 0.142, p = 0.613 and MPD: r = 0.050,

p = 0.860), 10-m walk speed (PSI: r = − 0.243, p = 0.383 and MPD: r = 0.001, p = 0.997) and left

leg stride (PSI: r = − 0.400, p = 0.139 and MPD: r = − 0.128, p = 0.650).

Discussion

Anodal transcranial patterned stimulation to the right M1 foot area increased the walk-speed

and the stride length, and enhanced corticospinal excitability of the left leg TA (foot flexor)

muscle when combined with walking. Moreover, gait-combined anodal transcranial patterned

stimulation but not sham stimulation or anodal transcranial patterned stimulation at rest

enhanced left TA corticospinal excitability for at least 30 min after intervention. The degree of

enhancement of the left TA corticospinal excitability was positively correlated with that of the

enhancement of gait parameters. In 12 of 15 participants tested, gait-combined anodal tran-

scranial patterned stimulation to the right M1 foot area also entrained the gait cycle. These

findings suggest that anodal patterned brain stimulation enhanced corticospinal input to the

left leg muscles and increased gait speed and left leg stride as well as entrained neuronal activ-

ity within the right M1 foot area. This is the first demonstration that anodal patterned nonin-

vasive cortical stimulation can induce a prolonged change in gait function, presumably by

possibly activating synaptoplastic mechanisms in corticospinal pathways originating in the M1

foot area [37–41].

Table 5. Individual PSI and MPD.

Subject # Number of the gait cycle tACS Freqency (Hz) PSI �p<0.05 MPD

(-180<θ≦180˚)

1 445 0.92 0.061 (7.1)

2 530 0.88 0.060 (109)

3 457 0.77 0.196 � -87.9

4 598 0.94 0.341 � -99.8

5 423 0.97 0.097 � -55.2

6 560 0.93 0.202 � -75

7 598 0.94 0.122 � 169.2

8 573 0.9 0.241 � -96.2

9 562 1.07 0.010 (159.1)

10 586 1.03 0.072 � -105.5

11 581 1 0.080 � -101.1

12 476 0.84 0.509 � -29

13 535 1.06 0.083 � -94.6

14 587 0.99 0.092 � -93

15 447 0.95 0.083 � -108.4

The individual gait cycles over 10 min, frequency of tACS, PSI and MPD are shown. In the six subjects, the recording of accelerometer data was stopped in the middle of

the experiment. Twelve subjects exhibited significant PSI, whereas three did not.

� means p < 0.05.

https://doi.org/10.1371/journal.pone.0208691.t005
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During human bipedal gait, corticospinal activity is higher in leg flexors such as the TA

muscle than in extensors such as the GC muscle [4, 42]. Our findings suggest that anodal tran-

scranial patterned stimulation enhances corticospinal input to the flexor muscles involved in

the swing phase by inducing long-term potentiation (LTP)-like effects on membrane poten-

tials and synaptic connections [37–41, 43–45] and that corticospinal excitability is increased

specifically for leg flexors such as the TA muscles. Patients with stroke lesions involving the

sensorimotor cortex or the internal capsule often show walking deficits like foot-drop due to

decreased activation of the ankle flexors and increased tonus in the ankle extensors [7]. One

therapeutic aim of treatment for this deficit is to improve paretic flexor function. Most previ-

ous approaches targeted peripheral nerves and muscles to indirectly influence corticospinal

tracts [46, 47]. Our findings suggest a possible alternative approach to directly improve output

from the injured corticospinal tract by potentiation.

In our findings, activity-dependent effects were likely induced by the tACS-Gait interven-

tion because neither Sham-Gait nor tACS-Rest showed any observable changes. Previous

reports showed that online stimulation, that is concurrent brain stimulation with trainings

could enhance between-session consolidation of learning compared with offline stimulation

[48, 49], indicating that associative LTP-like effects were induced through the Hebbian rule in

training-specific neuronal circuits as activity-dependent effects [50, 51]. We found that the

degree of increase in the left TA corticospinal excitability was positively correlated with that of

the enhancement of gait parameters, suggesting that increased corticospinal excitability might

have contributed to alteration of walking ability. The tACS-Gait intervention might be an

effective approach as a training combined with brain stimulation for functional recovery of

patients with brain damages [52–54].

We found the time-dependent aftereffects of the tACS-Gait intervention. Significant

changes in corticospinal excitability and in walk speed were found 30 min after, not immedi-

ately after the intervention. Previous studies reported time-dependent consolidation of anodal

tDCS on the M1 area [55–58]. The tDCS retained the acquired visuomotor skill more than 3

hours after the training, while the sham stimulation groups showed loss of the skill, and there

was no significant difference between the tDCS and sham stimulation groups during and 15

min after the training [57]. A consolidation-like mechanism might have worked in our find-

ings, although 30 minutes appeared a rather short time to induce consolidation. Further inves-

tigation of time-dependency of the effects is necessary in future. If the performance gains are

retained by the stimulation, it is useful in application to clinical settings in rehabilitation since

it can lead to improve gait function in daily life activity, not only during the training.

We did not observe any changes in the CSP duration after tACS-Gait, Sham-Gait and

tACS-Rest. Previous studies showed that high-frequency rTMS on the affected M1 area

induced prolongation of CSP duration [59, 60] and improvement of gait parameters [61] in

patients with Parkinson’s disease who often show impaired M1 inhibitory system [62]. It sug-

gested that GABAB receptor-mediated intracortical inhibitory neurons might have not been

involved in gait-related cortical activity and unmodulated by tACS with positive DC offset in

healthy subjects.

In our study, an entrainment effect was observed between the patterned brain stimulation

and the individual gait cycle in 12 of 15 subjects. Previous studies showed that the patterned

brain stimulation such as tACS with or without DC offset could entrain the brain oscillation

when it applied at a frequency similar with that of endogenous specific band frequency [16–

22]. During human gait, there is significant coherence between the M1 leg area and TA mus-

cles during the swing phase of walking [6] and alpha- and beta-band power in the sensorimo-

tor cortex is significantly increased prior to the toe-off [24]. Previous studies have found that

low frequency brain oscillations can be modulated with higher frequency oscillation through
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cross-frequency coupling actions such as phase–amplitude coupling and phase–phase cou-

pling [63, 64] and that slow (0.75 Hz) frequency tACS increases and expands theta oscillations

(4–8 Hz) into widespread brain areas [14]. Those gait cycle-dependent M1 oscillations may

have been entrained through cross-frequency coupling and tACS-Gait intervention, leading to

modulation of individual gait rhythms. In future, EEG recordings during gait would be neces-

sary to reveal a linkage between brain oscillations during gait and entrainment of gait rhythms

by tACS-Gait intervention.

While oscillatory brain activity was entrained by patterned brain stimulation, the afteref-

fects seem independent of phase-continuity and neither due to prolonged phase alignment nor

frequency synchronization to the exact stimulation frequency [65–68]. In the present study,

there was no correlation of the degree of phase synchronization and differences with the

changes of corticospinal excitability and those of gait parameters.

Our findings suggested that the aftereffects were induced by combination of anodal stimu-

lation with a constant positive DC offset and gait exercises through a frequency-independent

plasticity. We could not elucidate an effect of the stimulation pattern by the current procedures

and results.

In our study, the phase difference between the stimulation and initiation of the stance

phase on the target side was significantly close to −90˚. It is likely that this specific phase differ-

ence was stabilized by the brain-tDCS interaction. One recent study found that tDCS similar

in frequency to Parkinsonian tremor could exacerbate the tremor at one phase difference and

suppress it at another [23]. When the patterned tDCS was synchronized with the tremor cycle

at the suppressive phase difference, it markedly attenuated tremor by modulating oscillatory

cortical activities at tremor frequency [23, 69]. The phase difference that we found may be opti-

mal for entraining the gait-related cortical rhythm since the increasing electrical current with

sinusoidal form appears to match the increasing swing phase-related cortical activity [4–6]. In

the future, patterned tDCS synchronized with the gait cycle of the paretic leg at a specific

phase difference could be used to enhance gait-related phasic cortical activity, leading to

improvement of gait function in patients with central nervous system (CNS) disorders. Gait-

combined brain stimulation could be a promising therapy for gait disturbances caused by

brain damage.

It remains unclear what specific parameters of the patterned tDCS are most critical for the

modulation of rhythmic brain activity. For instance, it is unknown whether patterned tDCS

with a constant DC offset is more effective for driving intrinsic rhythmicity than patterned

tDCS without offset. The net current polarity, which is the offset of the patterned tDCS, deter-

mines the direction of shift in cortical excitability, similar to the polarity-dependent effects of

conventional tDCS using a fixed current [13]. Therefore, it may be better to use tACS with a

constant positive DC offset to enhance neuronal activity in the lesioned brain. We suggest that

our method could be applied for the neurorehabilitation of patients with gait disorders caused

by CNS lesions.

There are several limitations in the present study. Firstly, since experimenters’ expectation

might influence the subjects’ walking speed [70], the study with double blind design would be

needed in the future. The Sham-Rest condition with a factorial design would be preferable for

the next step, which was found to be stable in a few subjects in a preliminary experiment, as

expected. The relationships between MEP variability rates for the TA muscles and the rates of

post-stimulus walking speed and stride variability were verified although the relationship

appeared to be weak due to the large variance. Further investigation would be necessary about

the effects on spinal excitability by concurrently measuring MEPs, EMGs, F waves and H

reflexes during gait [71–75], to confirm that the changes in MEPs in the current study is not

due to changes in spinal excitability.
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When walking speed and stride length increase, the timing of toe-off becomes faster, along

with larger EMG activities of the TA muscles during the swing phase [76–80]. In the present

study, enhanced TA muscles might have made the timing of foot clearance faster, resulting in

a faster start to the swing phase. Kinematic data including timing of foot clearance, flexion

angles of limb-joints, and leg muscle activities during both stance and swing phases would be

useful in revealing the effects of the tACS-Gait intervention in more detail [81–83].

Our findings suggested that the gait parameters were not changed from the effect of the pat-

terned stimulation, but rather from the anodal stimulation with a positive DC offset combined

with the gait exercise. To investigate detailed effects of patterned stimulation on gait-related

activities, comparison of the tACS and the tDCS combined with gait would be necessary in

future.

This is the first demonstration that patterned brain stimulation applied over the M1 foot

area during gait can enhance the excitability of corticospinal tracts controlling foot flexor mus-

cles, thereby altering gait parameters (notably walk speed and stride length). Furthermore, it

entrained individual gait cycle in some subjects. We speculate that this patterned stimulation

could be a potentially promising approach for treatment of patients with gait disturbance

caused by CNS disorders.
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