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Abstract. We discuss the quenched tail estimates for the random walk in ran-
dom scenery. The random walk is the symmetric nearest neighbor walk and the
random scenery is assumed to be independent and identically distributed, non-
negative, and has a power law tail. We identify the long time asymptotics of
the upper deviation probability of the random walk in quenched random scenery,
depending on the tail of scenery distribution and the amount of the deviation.
The result is in turn applied to the tail estimates for a random walk in random
conductance which has a layered structure.

1. Introduction

In this article, we study the random walk in random scenery, mainly in the con-
tinuous time setting. This model is first introduced and studied in the discrete time
setting by Borodin [7, 8] and Kesten–Spitzer [26] independently. It is the sum of
independent and identically distributed random variables ({z(x)}x∈Zd ,P) along a
random walk ((Sn)n∈Z+ , P0) starting at the origin:

(1.1) Wn =
n∑

k=1

z(Sk).

One of the motivation in [26] was to construct a new class of self-similar processes
as a scaling limit of this process under the joint law. They proved that, when d = 1
and z and S are centered and belong to the domain of attraction of stable law with
index α ∈ (0, 2] and β ∈ (1, 2] respectively, the rescaled process

(1.2)
(
n−(1− 1

β
+ 1

αβ
)W⌈nt⌉

)
t≥0

converges in distribution under P⊗P0. Subsequently, a lot of works have been done
to extend the distributional limit theorems, not only under the joint law but also
for the quenched scenery, namely for almost all realizations of the scenery, and to
obtain law of iterated logarithm type results. We refer the reader to the introduction
of [24] for more details and background.
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In this paper, we discuss upper tail estimates with quenched scenery which is
assumed to be non-negative and have a power law tail. The tail estimate for the
random walk in random scenery is studied rather recently. As for the annealed tail
estimates, that is, under the joint law, there are extensive results. In the case of
Gaussian scenery, for the Brownian motion [11] and for the Markov chains satisfying
the level-2 full large deviation principle [23] instead of the random walk, the large

deviation principles for t−
3
2Wt and n− 3

2Wn are proved. Later the moderate devia-
tions are also studied for the Brownian motion in d ≤ 3 [10]. The paper [28] also
includes an upper tail estimate for the stable process in Brownian scenery, which is a
continuous space counterpart. The bounded scenery case is studied in [31, 2] for the
Brownian motion and the large deviation principle for t−1Wt is established. More
recently, the random walk in a random scenery with stretched or compressed expo-
nential tail attracted much attention, partially in relation to the recent development
on the tail estimates for the self-intersection local time [13, 29]. There are various re-
sults depending on the tail and the spatial dimensions [4, 5, 20, 21]. Later, under the
Cramér condition for the upper tail and the finiteness of third moment, [19] proved
quite precise moderate deviation estimates. Also in one dimensional case, the mod-
erate deviations are studied for stable random walk in a scenery with sub-Gaussian
tail [30].

Concerning the quenched tail estimates, there are not many results. In the case of
one dimensional Brownian motion in Gaussian scenery [3] and bounded scenery [2],

the large deviation principles are proved for t−1(log t)−
1
2Wt and t−1Wt respectively.

And again [10] extends the result to the moderate deviations for the Brownian
motion in Gaussian scenery for d ≤ 3. For more on the technical correspondence,
see Remark 8 below. One may also consider the tail behavior under the scenery law
with the random walk trajectory fixed. In this case the large deviation principle is
proved in [23].

The random walk in random scenery is naturally interpreted as a diffusing particle
in a layered random media. See for example the introduction of [3] where it is studied
under the name “diffusion in a random Gaussian shear flow drift”. In this paper,
we study another model — the random walk in a random layered conductance
introduced and studied in [1]. Here again we assume that the random conductance
has a power law tail. See Section 2.2 below for the precise setting. This process can
be described as the time change of the simple random walk with the clock process
given by the random walk in random scenery. By using the tail estimates for the
latter, we derive asymptotics of the super-diffusive deposition probabilities.

2. Setting and results

Throughout the paper, ({z(x)}x∈Zd ,P) is a family of non-negative, independent
and identically distributed random variables with the distribution satisfying

(2.1) P(z(x) > r) = r−α+o(1) as r → ∞
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for some α > 0.

Remark 1. The non-negativity could be replaced by some assumption on the lower
tail. For instance, z being bounded from below would suffice for the results in
Section 2.1. We work with non-negative scenery with an application to the random
conductance model (Section 2.2) in mind.

2.1. Random walk in random scenery. Let ({St}t≥0, Px) be the continuous time
simple random walk on Zd starting at x ∈ Zd. We consider the additive functional
defined by

(2.2) At =

∫ t

0

z(Su)du.

This is a natural continuous time analogue of the random walk in random scenery.

Theorem 1. Let ρ > 0. Then P-almost surely,

(2.3) P0 (At ≥ tρ) = exp
{
−tp(α,ρ)+o(1)

}
as t → ∞, where

(2.4) p(α, ρ) =

{
2αρ
α+1

− 1, ρ ∈
(
α+1
2α

∨ 1, α+1
α

]
,

α(ρ− 1), ρ > α+1
α

for d = 1 and

(2.5) p(α, ρ) =

{
2αρ−d
2α+d

, ρ ∈
(

d
2α

∨ 1, α+d
α

]
,

α(ρ−1)
d

, ρ > α+d
α

for d ≥ 2. Furthermore, when d = 1 and ρ < α+1
2α

∨ 1 or d ≥ 2 and ρ < d
2α

∨ 1,
P-almost surely the above probability is bounded from below by a negative power of
t.

Figure 1 shows the phase diagram of p(α, ρ). The graph of p(α, ρ) in the same
case can be found in Figures 4 and 5 in subsection 5.1.

Remark 2. We can prove the corresponding results for the discrete time random
walk in random scenery by the same argument. The exponent in the first regime
is the same but in the second regime it would be ∞. This is because the random
walk needs to travel much further distance than t to achieve At ≥ tρ in the second
regime. See Section 4.2 below.

Corollary 1. Let α ≤ 1. Then P⊗ P0-almost surely,

(2.6) lim sup
t→∞

logAt

log t
≤

{
α+1
2α

, d = 1,

d
2α
, d ≥ 2.
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Figure 1. The phase diagram of the exponent p(α, ρ). The curves
are ρ = (α+1

2α
1d=1 +

d
2α
1d≥2) ∨ 1 and ρ = α+d

α
.

Remark 3. This follows immediately from Theorem 1 and the Borel–Cantelli Lemma
and is, to the best of our knowledge, new. The exponent in the one dimensional case
coincides with the self-similar parameter identified in [26], see (1.2). When d ≥ 2,
the random walk visits a single site not too many times and hence At should be-
have in a similar way to the sum of independent and identically distributed random
variables, in which case the scaling exponent is 1/α. Based on this observation, we
believe that (2.6) is not sharp for d ≥ 3. We focus on α ≤ 1 since in the other case
α > 1, one can prove much finer asymptotics

(2.7) lim
t→∞

1

t
At = E[z(0)]

P⊗P0-almost surely, for example by using Kakutani’s random ergodic theorem [25]
as pointed out in [17]. In one-dimensional case with stronger moment conditions,
even finer asymptotics, the law of iterated logarithm for At − tE[z(0)], is shown
in [14, 34].

When d = 1, α ≤ 1 and ρ = α+1
2α

, the bound (2.3) with p(α, ρ) = 0 holds by

monotonicity. The same applies also for d ≥ 2, α ≤ d
2
and ρ = d

2α
. On the other

hand, when d = 1, α > 1 and ρ = 1 or d ≥ 2, α > d
2
and ρ = 1, the tail of P0 (At ≥ ct)

depends on c. This tends to one for c < E[z(0)] whereas for c > E[z(0)], this is the
standard large deviation regime. We can get a lower bound by extrapolation and in
fact it is the correct tail behavior.
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Theorem 2. Let d = 1 and α > 1 or d ≥ 2 and α > d
2
. Then for any c > E[z(0)],

P-almost surely,

(2.8) P0 (At ≥ ct) =

exp
{
−t

α−1
α+1

+o(1)
}
, d = 1,

exp
{
−t

2α−d
2α+d

+o(1)
}
, d ≥ 2

as t → ∞.

2.2. Random walk in layered random conductance. The model considered
here is the random walk in random conductance in Z1+d which is constant along
lines parallel to an axis. We write x ∈ Z1+d as (x1, x2) with x1 ∈ Z and x2 ∈ Zd. In
what follows, any points in Rk \ Zk (k ∈ N) are to be understood as closest lattice
points. Let ((Xt)t≥0, P

ω
x ) be a continuous time Markov chain with jump rates

(2.9) ω(x, x± ei) =

{
z(x2), i = 1,

1, i ≥ 2.

Such a process is sometimes called the variable speed random walk in the random
conductance field ω. This is related to the random walk in random scenery as
follows: Let (S1, S2) be the continuous time simple random walk on Z1+d. Then we
have a representation

(2.10) (X1
t , X

2
t )t≥0 = (S1

A2
t
, S2

t )t≥0,

where the clock process is defined by A2
t =

∫ t

0
z(S2

u)du.
This model is introduced in [1], Example 1.11 in order to demonstrate an anoma-

lous tail behavior of the transition probability and an upper bound is obtained.
Define a random distance — sometimes called the chemical distance — by

(2.11) dω(x, y) = inf
γ∈Γ(x,y)

∑
e∈γ

1√
ω(e) ∨ 1

,

where Γ(x, y) denotes the set of nearest neighbor paths connecting x and y. Then
the following upper bound is proved in [1], Theorem 1.10:

(2.12) P ω
x (Xt = y) ≤ ct−

d
2

exp
{
−c−1 d

ω(x,y)2

t

}
, t > dω(x, y),

exp
{
−c−1dω(x, y)

(
1 ∨ log dω(x,y)

t

)}
, t ≤ dω(x, y).

We take x = 0, y = tδe1 + tγe with γ ≥ 0, δ ∈ (1
2
,∞), and e being a unit vector

orthogonal to e1, that is, we are looking at a super-diffusive deposition. It is not
difficult to show that

(2.13) dω(0, tδe1 + tγe) = t
2δα
2α+d

∨γ+o(1), as t → ∞
P-almost surely (see Lemma 1.12 in [1] for the case d = 1). Then (2.12) yields a
stretched-exponential upper bound

(2.14) P ω
0 (Xt = tδe1 + tγe) ≤ exp

{
−t(

4δα
2α+d

−1)∨(2γ−1)+o(1)
}
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when 2δα
2α+d

∨ γ ≤ 1. We are interested in whether this captures the correct asymp-

totics. The following theorem shows that it is sharp if and only if δ = 2α+d
2α

and

γ ≤ 1. Note that in this case, we have dω(0, tδe1 + tγe) = t1+o(1) which corresponds
to the boundary case of (2.12).

Theorem 3. Let γ, δ ≥ 0 and e be a unit vector orthogonal to e1. Then for P-almost
every ω,

(2.15) P ω
0 (Xt = tδe1 + tγe) = exp

{
−tq(α,δ)∨((2γ−1)∧γ)+o(1)

}
as t → ∞, where with the convention α

0
= ∞, for d = 1,

(2.16) q(α, δ) =



0, δ < 1
2
∨ α+1

4α
,

2δ − 1, δ ∈
[
1
2
, α
α+1

)
,

4αδ−α−1
3α+1

, δ ∈ [ α
α+1

∨ α+1
4α

, 2α+1
2α

],

α(2δ−1)
α+1

, δ ∈ (2α+1
2α

, α
(α−1)+

),

δ, δ ≥ α
(α−1)+

.

The second case is to be understood as void for α < 1. For d ≥ 2,

(2.17) q(α, δ) =



0, δ < 1
2
∨ d

4α
,

2δ − 1, δ ∈
[
1
2
, 2α
2α+d

)
,

4αδ−d
4α+d

, δ ∈ [ 2α
2α+d

∨ d
4α
, 2α+d

2α
],

α(2δ−1)
α+d

, δ ∈ (2α+d
2α

, α
(α−d)+

),

δ, δ ≥ α
(α−d)+

.

with the second case understood as void for α < d
2
.

Theorem 4. Let γ ≤ 1
2
and e be a unit vector orthogonal to e1. Suppose d = 1 and

δ < 1
2
∨ α+1

4α
or d ≥ 2 and δ < 1

2
∨ d

4α
. Then, P-almost surely, P ω

0 (Xt = tδe1+tγe) is
bounded from below by a negative power of t.

Figures 2 and 3 show the phase diagrams of the displacement exponents q(α, δ)∨
((2γ − 1) ∧ γ) in the one-dimensional case.

In the heat kernel estimate for random walks in random environment, it is some-
times useful to give a probabilistic control on the range of time (or space) in which
an estimate like Theorem 3 holds true. It turns out that we cannot hope much in
this model. For r > 0, define

(2.18) τr = sup

{
t ≥ 0:

∣∣∣∣ 1

log t
log
∣∣logP ω

0 (Xt = tδe1 + tγe)
∣∣− q(α, δ)

∣∣∣∣ > r

}
.

that is, the last time when the upper or lower bound is violated by r in the exponent.
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Figure 2. The phase diagram of the displacement exponents in the
case d = 1 and α ≤ 1. The slopes of the increasing piecewise linear
curve starting at (α+1

4α
, 1
2
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and 2α

α+1
from the left.

0
-

6

δ

γ

α
α+1

1
2

2α+1
2α

α
α−1

1
2

1

0 2δ − 1
4αδ−α−1

3α+1

α(2δ−1)
α+1

δ

2γ − 1

γ

Figure 3. The phase diagram of the displacement exponents in the
case d = 1 and α > 1. The slopes of the increasing piecewise linear
curve starting at (1

2
, 1
2
) are 1, 2α

3α+1
, 2α

α+1
and 1 from the left.

Theorem 5. Suppose q(α, δ) > (2γ − 1) ∧ γ. Then in the third or fourth regimes
in (2.16) and (2.17), for sufficiently small r > 0,

(2.19) P(τr ≥ t)≥t−r(C1+o(1))
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as t → ∞, where

(2.20) C1 =


α+1
2
, d = 1 and δ ∈ ( α

α+1
∨ α+1

4α
, 2α+1

2α
]

α + d
2
, d ≥ 2 and δ ∈ ( 2α

2α+d
∨ d

4α
, 2α+d

2α
],

d, d ≥ 1 and δ ∈ (2α+d
2α

, α
(α−d)+

).

In the second regime in (2.16) and (2.17), for sufficiently small r > 0,

(2.21) P(τr ≥ t)≥

{
t−α−δ(α−1)− r

2
(3α+1))+o(1), d = 1,

t−2α+δ(2α+d)− r
2
(4α+d))+o(1), d ≥ 2.

Remark 4. We only stated the lower bounds since the point of Theorem 5 is the
slow decay of P(τr ≥ t). With some additional effort, it is possible to find the
matching upper bound by largely repeating the argument for Theorem 1.

Remark 5. We exclude the case q(α, δ) ≤ (2γ − 1) ∧ γ since there the heat kernel
bound has little to do with z-field. In particular, the only possibility is that the lower
bound is violated and it must be because of atypically small values of z. Based on
this observation, one can show that for sufficiently small r, P(τr ≥ t) is bounded by
exp{−tC2} for some C2 > 0.

3. A bound on the continuous time random walk

We frequently use the following estimate on the transition probability of the con-
tinuous time simple random walk pt(x, y) = Px(St = y). This can be found in [16],
Proposition 4.2 and 4.3.

Lemma 1. There exist positive constants c1–c4 such that when t ≥ 1,

(3.1) c1t
− d

2 exp

{
−c2

|x|2

t

}
≤ pt(0, x) ≤ c3t

− d
2 exp

{
−c4

|x|2

t

}
for |x| ≤ t and

(3.2) exp

{
−c2|x|

(
1 ∨ log

|x|
t

)}
≤ pt(0, x) ≤ exp

{
−c4|x|

(
1 ∨ log

|x|
t

)}
for |x| > t.

4. Proofs for the random walk in random scenery

Both for the lower and upper bounds, we shall restrict our attention to the event

(4.1)

{
max
0≤u≤t

|Su| ≤ tµ
}

for a certain µ ≥ 1
2
. Note that P-almost surely,

(4.2) max
|x|≤tµ

z(x) = t
dµ
α
+o(1)
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and the point of maximum xmax of z within |x| ≤ tµ satisfies |xmax | = tµ+o(1) as
t → ∞.

4.1. Lower bounds of Theorem 1. We prove the lower bounds for the probability
with an additional terminal constraint

(4.3) P0(At ≥ tρ, St = 0) ≥ exp
{
−tp(α,ρ)+o(1)

}
,

with the right hand side replaced by a negative power of t when p(α, ρ) = 0, i.e., ρ <
α+1
2α

∨ 1 (d = 1) or ρ < d
2α

∨ 1 (d ≥ 2). We will use these bounds in the proof of
Theorems 3 and 4. The basic strategy for the lower bound is simple. We let the
random walk go to xmax within time t

4
, leave the right amount of local time there by

the time t
2
and then come back to the origin. In the second regime where ρ > α+d

α
,

the random walk stays at xmax all the time in [ t
4
, t
2
] and its probability is easy to

evaluate. But in the other regime, the optimal strategy is to leave the local time
much smaller than t

4
and we need a moderate deviation estimate for the local time

in [12]. Throughout the proof of the lower bound, we assume (4.2).

The second regime ρ > α+d
α

: In this case, we choose µ = α(ρ−1)
d

+ ϵ > 1 so that

ρ < dµ
α
+ 1. Then the above strategy of the random walk yields At ≥ 1

4
t
dµ
α
+1 > tρ.

By using the Markov property and Lemma 1, we have

P0 (At ≥ tρ, St = 0)

≥ P0

(
S t

4
= xmax

)
Pxmax

(
Su = xmax for any u ∈

[
0,

t

4

])
× Pxmax

(
S t

2
= 0
)

≥ exp

{
−tµ+ϵ − t

4

}(4.4)

for sufficiently large t, which is the desired bound.

The first regime ρ ∈
((

α+1
2α

1d=1 +
d
2α
1d≥2

)
∨ 1, α+d

α

]
: In this case, the right hand

side of (2.3) is sub-exponential and hence we must choose µ ≤ 1. We introduce a
stopping time

(4.5) ζt = inf

{
u ≥ 0: ℓu(xmax ) ≥

tρ

z(xmax )

}
where ℓ denotes the occupation time of the random walk. Note that Sζt = xmax

almost surely. Then, the strong Markov property and Lemma 1 show

P0 (At ≥ tρ, St = 0)

≥ P0

(
S t

4
= xmax

)
Exmax

[
p 3t

4
−ζt

(xmax , 0)1{ζt≤ t
4
}

]
≥ exp

{
−t2µ−1+ϵ

}
P0

(
ℓ t

4
(0) ≥ tρ−

dµ
α
+ϵ
)(4.6)
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for sufficiently large t. In order to bound the second factor, we employ the following
result:

Theorem 6 (Theorem 1 in [12]). Suppose f is a nonnegative bounded function with
a finite support containing the origin and

(4.7) lim
t→∞

sup
x∈supp f

∣∣∣∣ 1

a(t)
Ex

[∫ t

0

f(Su)du

]
− 1

∣∣∣∣ = 0.

Let 1 ≪ b(t) ≪ t. Then for λ > 0,

(4.8) lim sup
t→∞

1

b(t)
logP0

(∫ t

0

f(Su)du ≥ λa

(
t

b(t)

)
b(t)

)
≤ −1− log

λ

4

and for λ ∈ (0, 1),

(4.9) lim inf
t→∞

1

b(t)
logP0

(∫ t

0

f(Su)du ≥ λa

(
t

b(t)

)
b(t)

)
≥ − log

1 + λ

1− λ
.

Remark 6. An inspection of the proof in [12] shows that the upper bound holds
even for functions ft depending on t provided that it is non-negative and satisfies

(4.10) lim sup
t→∞

1

a
(

t
b(t)

) sup
x∈suppft

Ex

[∫ t
b(t)

0

ft(Su)du

]
≤ 1.

This version will be used in the proof of the upper bound. See A for a proof.

We apply this to f = 1{0} so that
∫ t

0
f(Su)du = ℓt(0) and

(4.11) a(t) =

{
c
√
t, d = 1,

to(1), d ≥ 2.

The choice

(4.12) b(t) =

{
t2ρ−

2µ
α
−1+2ϵ, d = 1,

tρ−
dµ
α
+2ϵ, d ≥ 2

makes

(4.13) a

(
t

b(t)

)
b(t) =

{
c
√

tb(t) = ctρ−
µ
α
+ϵ, d = 1,

to(1)b(t)1+o(1) ≤ tρ−
dµ
α
+ϵ, d ≥ 2

for sufficiently large t and hence we get, with λ = 1
2
(say),

(4.14) P0

(
ℓt(0) ≥

c

2
tρ−

dµ
α
+ϵ
)
≥

exp
{
−ct2ρ−

2µ
α
−1+2ϵ

}
, d = 1,

exp
{
−ctρ−

dµ
α
+2ϵ
}
, d ≥ 2,
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By doing the trivial change of variable t 7→ t
4
and slightly changing ϵ, we obtain

(4.15) P0 (At ≥ tρ, St = 0) ≥

exp
{
−t2µ−1+ϵ − t2ρ−

2µ
α
−1+2ϵ

}
d = 1,

exp
{
−t2µ−1+ϵ − tρ−

dµ
α
+2ϵ
}

d ≥ 2.

Optimizing over µ, that is attained at

(4.16) µ =

{
αρ
α+1

, d = 1,

α(ρ+1)
2α+d

, d ≥ 2,

which are in (1
2
, 1] in this regime, we find the desired lower bound.

The third regime ρ <
(
α+1
2α

1d=1 +
d
2α
1d≥2

)
∨ 1: We first give the proof for d = 1.

Let us start with the case α > 1 and ρ < 1. In this case, P0(A t
2
> tρ) converges to

one by the law of large numbers (2.7). Thus for sufficiently large M > 0, we have

P0

(
A t

2
> tρ, S t

2
< Mt

1
2

)
≥ 1

2
. By using the Markov property and the local central

limit theorem, we conclude that

P0 (At > tρ, St = 0)

≥ P0

(
A t

2
> tρ, S t

2
< Mt

1
2 , St = 0

)
≥ t−

1
2
−ϵ

(4.17)

for any ϵ > 0.
Next, for α ≤ 1 and ρ < α+1

2α
, we let the random walk go to the highest point of

z-field in [−t
1
2 , t

1
2 ] within time t

4
, leave the local time larger than t

1
2 there by the

time t
2
and come back to the origin at t. Since the above highest value of z is t

1
2α

+o(1)

P-almost surely, we have At ≥ t
1
2
+ 1

2α
+o(1). On the other hand, the probability of this

event is bounded from below by a power of t by the local central limit theorem for
St and the central limit theorem for ℓt(0) in Darling–Kac [15].
In higher dimensions, if α > d

2
and ρ < 1 one can follow the same strategy as

above. When α ≤ d
2
and ρ < d

2α
, note that the highest point of z-field in [−t

1
2 , t

1
2 ]d

is t
d
2α

+o(1) ≫ tρ P-almost surely. Thus it suffices to let the random walk stay there
for the unit time instead of t

1
2 . The rest of the argument is the same.

4.2. Upper bound of Theorem 1: the second regime. In the second regime,
that is, when ρ > α+d

α
, the proof of the upper bound is very simple. We set

(4.18) µ =
α(ρ− 1)

d
− ϵ > 1

for small ϵ > 0 so that

(4.19) max
|x|≤tµ

z(x) = t
dµ
α
+o(1) < tρ−1
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as t tends to infinity, P-almost surely. This implies that {max0≤u≤t |Su| ≤ tµ}∩{At ≥
tρ} = ∅ (up to a P-null set) for sufficiently large t. Therefore,

P0

(∫ t

0

z(Su)du ≥ tρ
)

≤ P0

(
max
0≤u≤t

|Su| > tµ
)

≤ exp
{
−tµ+o(1)

}
,

(4.20)

where we have used Lemma 1 and the reflection principle.

4.3. Upper bound of Theorem 1: the first regime. In the proof of the lower
bound, we concentrate on the contribution from the highest peak of z-field. What
remains to show is that the contributions from lower values of z are negligible —
more precisely, it is much harder for the random walk to leave the right amount of
occupation time on lower level sets of z. Throughout this subsection, we fix

(4.21) µ =

{
αρ
α+1

, d = 1 and ρ ∈
[
α+1
2α

∨ 1, α+1
α

]
,

α(ρ+1)
2α+d

, d ≥ 2 and ρ ∈
[

d
2α

∨ 1, α+d
α

]
,

which are the optimal values found in the proofs of lower bounds (cf. (4.16)). In
view of (4.2), we may replace z by

(4.22) z̃(x) =
(
z(x) ∧ t

dµ
α
+ϵ
)
1{|x|≤tµ}

for a small fixed ϵ > 0.
We define the level sets of z̃-field by H0 = Zd and

(4.23) Hk = Hk(t) =
{
x ∈ Zd : z̃(x) ≥ tkϵ

}
for k ≥ 1.

Note that Hk = ∅ if k > K := [dµ
ϵα
]. Our starting point is the following obvious

bound:

P0 (At ≥ tρ) ≤
K∑
k=0

P0

(
ℓt(Hk \ Hk+1) ≥

1

K + 1
tρ−(k+1)ϵ

)
+ P0

(
max
0≤u≤t

|Su| > tµ
)
.

(4.24)

Thanks to Lemma 1, we have

(4.25) P0

(
max
0≤u≤t

|Su| > tµ
)

= exp
{
−t2µ−1+o(1)

}
(recall µ ≤ 1) and hence the second term on the right hand side is harmless.

We bound each summand in the first term by applying the version of Theorem 6
mentioned in Remark 6 to ft = 1Hk

(see also A). The input required in the upper
bound is the asymptotics of a( t

bt
). (Note that when f depends on t, we cannot relate

this to that of a(t).) Therefore we start by studying

(4.26) Ex

[∫ tη

0

f(Su)du

]
= Ex[ℓtη(Hk)]
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for η > 0.

Lemma 2. For any η > 0 and d ≥ 1, there exists a positive constant c such that
the P-probability of

(4.27) sup
|x|≤tµ

Ex[ℓtη(Hk)] ≤ c

{
t
η
2 (log t)3, d = 1 and kϵ > η

2α
,

tϵ, d ≥ 2 and kϵ > η
α

is bounded from below by 1− c exp{−c−1(log t)2}. In particular, the above holds for
all sufficiently large t, P-almost surely.

Proof. Let us first explain the outline of the proof. It is straightforward to check that
the mean EEx[ℓtη(Hk)] satisfies the desired bound. Then we show a concentration
around the mean, which should not be hard since Ex[ℓtη(Hk)] is a linear functional
of i.i.d. random variables {1{z̃(y)≥tkϵ}}y∈Zd . However, if we apply the martingale
difference method directly to this family, then it turns out that we have too many
terms. It is necessary (and natural) to take into account that these random variables
degenerate as t → ∞. To this end, we shall divide [−tµ, tµ]d into smaller cubes
{Ij}j≥1 in such a way that P(#Ij ∩ Hk ≥ 1) is bounded away from 0 and 1. Then
we use a martingale difference type method (McDiarmid’s inequality, Theorem 6.5
in [9]) to {Ij ∩ Hk}j≥1. That #Ij ∩ Hk is unbounded causes a little problem but
a simple truncation argument resolves it. This is the role of trimmed sets defined
below.

Now we start the proof. We prove the lemma for the special case

(4.28) P(z(x) > r) = r−α ∧ 1

and indicate how to deal with the general case in the proof. For any x ∈ Zd,

EEx[ℓtη(Hk)] =

∫ tη

0

∑
y∈Zd

pu(x, y)P(z̃(y) ≥ tkϵ)du

≤
∫ tη

0

∑
y∈Zd

pu(x, y)t
−αkϵdu

≤ c

{
t
η
2 , d = 1,

tϵ, d ≥ 2,

(4.29)

where we have used the assumptions on kϵ.
Next we show a concentration of Ex[ℓtη(Hk)] around its mean. Let Ij be the cube

t
αkϵ
d (j + [0, 1

2
)d) (j ∈ 1

2
Zd) and define a trimmed set Hk ⊂ Hk by keeping only at

most (log t)2 points in each Ij. (The way how to choose these points does not matter
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in what follows.) It is simple to check that

P(Hk ̸= Hk) ≤
∑
j∈ 1

2
Zd

P(#(Hk ∩ Ij) > (log t)2)

≤ 2−(log t)2#

{
j ∈ 1

2
Zd : Ij ∩ [−tµ, tµ]d ̸= ∅

}
≤ 2−

1
2
(log t)2

(4.30)

by using the bound

P
(
#(Hk ∩ Ij) ≥ (log t)2

)
≤
(

|Ij|
(log t)2

)
P
(
z(x) > tkϵ

)(log t)2
≤
(
|Ij|t−αkϵ

)(log t)2
= 2−d(log t)2 .

(4.31)

Remark 7. In order to deal with a general distribution of the form (2.1), we modify
the side-length Lt of Ij as

(4.32) Ld
tP
(
z(x) > tkϵ

)
∼ 1

2
as t → ∞.

In the rest of the proof, we replace t
αkϵ
d by Lt which is still t

αkϵ
d

+o(1).

We are going to apply McDiarmid’s inequality (Theorem 6.5 in [9]) to Ex[ℓtη(Hk)],
regarding it as a function of independent random variables {Ij∩Hk}j∈ 1

2
Zd . Let x = 0

for simplicity and define Hk as the set of all possible realizations of Hk. Then the
influence caused by changing the configuration in Ij is bounded as

∆j = sup
Hk,H′

k∈Hk which differ only on Ij

|E0[ℓtη(Hk)]− E0[ℓtη(H′
k)]|

≤ sup

{∫ tη

0

∑
y∈Y

pu(0, y)du : Y ⊂ Ij and #Y ≤ (log t)2

}
.

(4.33)

Let us consider the case d = 1 or 2 first. Lemma 1 implies

(4.34) pu(0, y) ≤ c(u− d
2 ∧ 1)

exp
{
− |y|2

ctη

}
, |y| ≤ tη,

c exp
{
− |y|

c

}
, |y| > tη

for u ≤ tη. For |j| ≤ 1, we simply replace y in (4.34) by 0 and obtain

R.H.S. of (4.33) ≤ (log t)2
∫ tη

0

c(u− d
2 ∧ 1)du

≤ c

{
t
η
2 (log t)2, d = 1,

(log t)3, d = 2.

(4.35)
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Next, for 1 < |j| ≤ tη−
αkϵ
d , since the worst case is to have all the points of Y ⊂ Ij

closest to the origin, we have

R.H.S. of (4.33) ≤ (log t)2
∫ tη

0

c(u− d
2 ∧ 1) exp

{
−t

2αkϵ
d

−η(|j| − 1)2

c

}
du

≤ c exp

{
−t

2αkϵ
d

−η(|j| − 1)2

c

}{
t
η
2 (log t)2, d = 1,

(log t)3, d = 2

(4.36)

by using the first line of (4.34). Finally for |j| > tη−
αkϵ
d ∨1, one can see that

R.H.S. of (4.33) ≤ exp{−c|j|}(4.37)

again by considering the worst case and using the second line of (4.34). The sum of
this part is always bounded.

Now we can complete the case d = 1. For kϵ > η
2α
, the off-diagonal part (4.36) is

stretched exponentially small and∑
j

∆2
j ≤

∑
|j|≤1

[R.H.S. of (4.35)]2 +
∑
j≥2

[R.H.S. of (4.36)]2 +O(1)

= ctη(log t)4 +O(1).

(4.38)

Therefore, McDiarmid’s inequality implies

P
(
|E0[ℓtη(Hk)]− EE0[ℓtη(Hk)]| > t

η
2 (log t)3

)
≤ c exp

{
−tη(log t)6

c
∑

j ∆
2
j

}

= c exp

{
− 1

2c
(log t)2

}
.

(4.39)

Using (4.29) and the fact that #Hk is at most polynomial in t (recall that Hk are
subsets of [−tµ, tµ] by the definition of z̃), we are done.

The argument for the case d = 2 is very similar to d = 1. For kϵ > η
α
, the

part (4.36) is again stretched exponentially small and hence∑
j

∆2
j ≤

∑
|j|≤1

[R.H.S. of (4.35)]2 +
∑
j≥2

[R.H.S. of (4.36)]2 +O(1)

= c(log t)6 +O(1).

(4.40)

This bounds and McDiarmid’s inequality yield

(4.41) P
(
|E0[ℓt(Hk)]− EE0[ℓt(Hk)]| > (log t)4

)
≤ c exp

{
− 1

2c
(log t)2

}
and the rest is the same as before.
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Finally we settle the case d ≥ 3. This case is simpler since we know

(4.42)

∫ tη

0

pu(0, y)du ≤
∫ ∞

0

pu(0, y)du ≤ c(|y|+ 1)2−d.

Using this in (4.33), we obtain∑
j

∆2
j ≤ (log t)4

∑
j

sup
y∈Ij

(∫ tη

0

pu(0, y)du

)2

≤ c(log t)4
∑
j

(
t
αkϵ
d |j|+ 1

)4−2d

.

(4.43)

This is always O((log t4)) and the rest is routine.
The second part of the lemma follows from the first one and the Borel–Cantelli

lemma. □

We use this lemma, together with Theorem 6, to bound

(4.44) P0

(
ℓt(Hk \ Hk+1) >

1

K + 1
tρ−(k+1)ϵ

)
≤ P0

(
ℓt(Hk) >

1

K + 1
tρ−(k+1)ϵ

)
.

Note first that this probability is zero if k < ρ−1
ϵ

− 1 as the total mass of ℓt is t.
Hence we are only concerned with

(4.45) ρ− 1− ϵ ≤ kϵ ≤ dµ

α
+ ϵ.

Let us start with the case d = 1. We choose b(t) = t2ρ−1−2(k+2)ϵ and η = 2(1 + (k +
2)ϵ− ρ). Thanks to (4.45), one can verify that kϵ > η

2α
for sufficiently small ϵ. This

allows us to use Lemma 2 to obtain

(4.46) 4a

(
t

b(t)

)
b(t) <

1

K + 1
tρ−(k+1)ϵ.

Therefore, Theorem 6 yields the bound

P0

(
ℓt(Hk \ Hk+1) >

1

K + 1
tρ−(k+1)ϵ

)
≤ P0

(
ℓt(Hk \ Hk+1) > 4a

(
t

b(t)

)
b(t)

)
≤ exp{−b(t)}
= exp

{
−ct2ρ−1−2(k+2)ϵ

}
.

(4.47)

Since this is increasing in k, the largest upper bound is for k = K and then
b(t) = tp(α,ρ)−cϵ. Now all the terms on the right hand side of (4.24) are bounded by
exp{−tp(α,ρ)−cϵ} and the proof is completed.
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The case d ≥ 2 is almost the same. We choose η = 1 − ρ + (k + 3)ϵ and b(t) =
tρ−(k+3)ϵ. One can check that this satisfies kϵ > η

α
with the help of (4.21) and hence

by Lemma 2,

(4.48) 4a

(
t

b(t)

)
b(t) <

1

K + 1
tρ−(k+1)ϵ.

Then, just as above, we obtain

(4.49) P0

(
ℓt(Hk \ Hk+1) >

1

K + 1
tρ−(k+1)ϵ

)
= exp

{
−ctρ−(k+3)ϵ

}
which is largest and matches (2.3) at k = K.

Remark 8. Let us comment on the technical difference between our proof and the
earlier works [3, 2, 10] that contain quenched tail estimates. We focus on the upper
bound which is more involved in the present model.

The arguments in [3, 2, 10] rely on the spectral theoretic technics which were de-
veloped in the study of the so-called parabolic Anderson model. More precisely, they
obtain the upper bound through the exponential moment (with a small parameter
ϵt) of At, using the fact that it is a solution of ∂tu = (∆ + ϵtz)u. By restricting the
problem to a certain macro-box as we have done above and using the eigenfunction
expansion, the problem is reduced to the behavior of the largest eigenvalue of ∆+ϵtz
in a large box. Then a localization procedure demonstrated in [22] (Proposition 1)
allows them to bound it by the maximum of eigenvalues among smaller sub-boxes.
A crucial ingredient to control the maximum of local eigenvalue is a large devia-
tion principle for a scaled z-field in a suitable function space, Lemma 2.1 in [2] or
Theorem 1 in [10].

In our heavy tailed setting, it seems difficult to find a substitute for the large
deviation principle for the z-field. The above proof reveals that the relevant part of
the z-field looks like a delta function. This makes the choice of function space (or
topology) a delicate problem.

4.4. Proof of Theorem 2. We follow the same strategy as in the previous subsec-
tion. Fix c′ ∈ (E[z(0)], c) and bound the large deviation probability as

P0 (At ≥ ct) ≤ P0

(∫ t

0

z(Su) ∧ tlϵdu ≥ c′t

)
+

K∑
k=l

P0

(
ℓt(Hk \ Hk+1) ≥

c− c′

K + 1
t1−(k+1)ϵ

)
+ P0

(
max
0≤u≤t

|Su| > tµ
)
,

(4.50)

where we set ρ = 1 in the definition of K and µ. The third term is negligible
as before. As for the second term, we use the same level sets Hk and η as in the
previous subsection. Then with ρ = 1, we see that the assumptions of Lemma 2 hold
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for k > 2
α−1

(d = 1) and k > 3
α−1

(d ≥ 2) and hence (4.47) and (4.49) respectively.

Thus if we set l to be the smallest integer larger than 2
α−1

(d = 1) and 3
α−1

(d ≥ 2),
then the summand with k = K dominates all the others. Since it has the desired
asymptotics, it remains to show that the first term in (4.50) is negligible.

In order to simplify the notation, we rename lϵ to ϵ and c′ to c. We are going to
show that for any ϵ ∈ (0, 1

20
), P-almost surely,

(4.51) P0

(∫ t

0

z(Su) ∧ tϵdu > ct

)
≤ exp

{
−t1−7ϵ

}

for large t. This proves Theorem 2 since the exponents in (2.8) are strictly less than
one. Our argument is again based on [12] (the proof of Theorem 2 there, presented
in Section 3) and hence it is natural to begin with the following type of bound.

Lemma 3. Let ϵ > 0. Then P-almost surely, for all sufficiently large t,

(4.52) sup
|x|≤t

∣∣∣∣Ex

[∫ T

0

z(Su) ∧ tϵdu

]
− TE[z(0)]

∣∣∣∣ ≤ T

log t

holds for any T ∈ [t5ϵ, t].

Proof. One can check that it suffices to prove the claim for z1[−2t,2t]d instead of z.

Henceforth, every configuration appearing below is set to be zero outside [−2t, 2t]d.
The proof is similar to that of Lemma 2. The average over the random scenery is
close to TE[z(0)]. Indeed, there exists c > 0 such that

∣∣∣∣EEx

[∫ T

0

z(Su) ∧ tϵdu

]
− TE[z(0)]

∣∣∣∣ = TE[(z(0)− tϵ)+]

≤ cT

tϵ(α−1)/2

(4.53)

for any t > 0, uniformly in T ∈ [tϵ, t] and x ∈ [−t, t]d. Note that this is much smaller
than T/ log t for sufficiently large t > 0 since we are considering α > 1. We shall

bound the variation of Ex[
∫ T

0
z(Su)∧tϵdu] as a functional of z. For two configurations

z1 and z2, by using the Cauchy–Schwarz inequality and the Chapman–Kolmogorov
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identity, we have∣∣∣∣Ex

[∫ T

0

z1(Su)du

]
− Ex

[∫ T

0

z2(Su)du

]∣∣∣∣
=

∣∣∣∣∣∣
∑

y∈[−2t,2t]d

∫ T

0

pu(x, y)z1(y)du−
∑

y∈[−2t,2t]d

∫ T

0

pu(x, y)z2(y)du

∣∣∣∣∣∣
≤
∫ T

0

 ∑
y∈[−2t,2t]d

pu(x, y)
2

 1
2
 ∑

y∈[−2t,2t]d

|z1(y)− z2(y)|2
 1

2

du

≤ |z1 − z2|2
∫ T

0

p2u(x, x)
1
2du

≤ cT
3
4 |z1 − z2|2.

(4.54)

This allows us to use the Talagrand’s concentration inequality (Theorem 6.6 in [32]
and the argument below (4.2) in the same paper to replace the median by the mean)
to obtain the bound

P
(∣∣∣∣Ex

[∫ T

0

z(Su) ∧ tϵdu

]
− EEx

[∫ T

0

z(Su) ∧ tϵdu

]∣∣∣∣ ≥ T

4 log t

)
≤ c1 exp

{
−c2

T 2

T
3
2 t2ϵ(log t)2

}
.

(4.55)

One can check that the argument of the exponential is a positive power of t for
T > t5ϵ and ϵ < 1

20
From this and (4.53), we deduce the discretized bound

(4.56) sup
|x|≤t

∣∣∣∣Ex

[∫ T

0

z(Su) ∧ tϵdu

]
− TE[z(0)]

∣∣∣∣ ≤ T

4 log t

uniformly in T ∈ [t5ϵ, t] ∩ N for all sufficiently large t ∈ N, P-almost surely, by the
Borel–Cantelli lemma. This can be extended to continuum T , with a price of extra
factor 2 on the right hand side, by a simple monotonicity argument. Moreover,
as we vary t over an interval [⌊t⌋, ⌊t⌋ + 1], the sup|x|≤t is monotone and the above

integral varies at most O(Ttϵ−1). Hence the above bound extends to continuum t
with another extra factor 2. □

Now we repeat the argument in the proof of Theorem 2 in [12]. We write λ = t−6ϵ

and f(x) = z(x) ∧ tϵ to simplify the notation. Let Puf(x) = Ex[f(Su)] and

(4.57) uλ(x) =

∫ ∞

0

e−λuPuf(x)du = (λ−A)−1f(x),

where A = (2d)−1∆ denotes the generator of the continuous time simple random
walk. Note that P-almost surely, f is not identically zero and hence uλ(x) > 0 for
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all x ∈ Zd. By definition we have

(4.58) −Auλ(x) = uλ(x)(vλ(x)− λ),

with vλ = fuλ
−1, that is, uλ is harmonic for A+ (vλ − λ) and consequently

(4.59) uλ(x) = e−λtEx

[
uλ(St) exp

{∫ t

0

vλ(Su)du

}]
.

By using Lemma 3 and the obvious bound
∫ T

0
Puf(x)du ≤ Ttϵ for T ≥ 0, we obtain

(4.60) uλ(x) ∼
E[z(0)]

λ

as λ = t−6ϵ ↓ 0 uniformly in |x| ≤ t. Indeed, integration by parts shows

uλ(x) =

[
e−λu

∫ u

0

Psf(x)ds

]∞
u=0

+

∫ ∞

0

λe−λu

∫ u

0

Psf(x)dsdu

=

∫ t

t5ϵ
λe−λuuE[z(0)]du+R(λ),

(4.61)

where the first term is asymptotic to λ−1E[z(0)] and R(λ) is the remainder term.
The latter is bounded as

|R(λ)| ≤

(∫ t5ϵ

0

+

∫ ∞

t

)
λe−λutϵudu+

1

log t

∫ t

t5ϵ
λe−λuudu

= o(λ−1).

(4.62)

Using this in (4.59), we find

E0

[
exp

{
λ

E[z(0)] + ϵ

∫ t

0

f(Su)du

}
: max

0≤u≤t
|Su| ≤ t

]
≤ E0

[
exp

{∫ t

0

vλ(Su)du

}
: max

0≤u≤t
|Su| ≤ t

]
≤ 1

min|x|≤t uλ(x)
E0

[
uλ(St) exp

{∫ t

0

vλ(Su)du

}]
(4.59)

≤ eλt
uλ(0)

min|x|≤t uλ(x)

(4.60)
= eλt(1 + o(1))

(4.63)
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as t tends to infinity. Applying the Markov inequality, we arrive at

P0

(∫ t

0

f(Su)du ≥ ct, max
0≤u≤t

|Su| ≤ t

)
≤ 2 exp

{
λt− ct

E[z(0)]λ−1

}
= 2 exp

{
−
(

c

E[z(0)]
− 1

)
t1−6ϵ

}
.

(4.64)

As P0(max0≤u≤t |Su| > t) decays exponentially in t, this completes the proof of
(4.51).

5. Proofs for the random walk in random layered conductance

5.1. Proofs of Theorems 3 and 4. Recall that we write x ∈ Z1+d as (x1, x2) with
x1 ∈ Z and x2 ∈ Zd. Also whenever one finds a point in Rk below, it should be
understood as a closest lattice point.

Proof of Theorem 3. We give the proof only for d = 1 since the higher dimensional
case is almost the same. Without loss of generality we may assume e = e2. Let
S1 and S2 be continuous time simple random walks on Z independent of each other
(strictly speaking, they have jump rates 1

2
). Then our process has the representation

(5.1) (X1
t , X

2
t )t≥0 = (S1

A2
t
, S2

t )t≥0,

where the clock process is defined by A2
t =

∫ t

0
z(S2

u)du. This representation allows
us to write

P ω
0 (Xt = tδe1 + tγe2) = P⊗2

0 (S1
A2

t
= tδ, S2

t = tγ)

= E0[pA2
t
(0, tδ)1{S2

t =tγ}].
(5.2)

The last formula involves only the second random walk S2 and henceforth we drop
the superscript.

Upper bound: We first use Hölder’s inequality to obtain

(5.3) R.H.S. of (5.2) ≤ E0

[
pAt(0, t

δ)2
] 1

2 P0(St = tγ)
1
2 .

By Lemma 1, we have

(5.4) P0(St = tγ) = exp{−t(2γ−1)∧γ+o(1)}
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as t tends to infinity. On the other hand,

E0

[
pAt(0, t

δ)2
]
≤ E0

[
exp

{
−ct2δ

At

}
1{At≥tδ}

]
+ E0

[
exp{−ctδ}1{At<tδ}

]
≤

∑
0≤k<tM

exp

{
− ct2δ

tδ + k + 1

}
P0

(
tδ + k ≤ At < tδ + k + 1

)
+ P0

(
At ≥ tM

)
+ E0

[
exp{−ctδ}1{At<tδ}

]
.

(5.5)

The second term can be made negligible by choosing M > 0 sufficiently large and
using Theorem 1. The first term is bounded by

(5.6) tM sup
ρ∈[δ,M ]

exp{−ct2δ−ρ}P0 (At ≥ tρ)

with a slightly smaller constant c > 0. We use Theorem 1 to proceed as

(5.7) exp{−ct2δ−ρ}P0 (At ≥ tρ) ≤ exp
{
−ct2δ−ρ − tp(α,ρ)−ϵ

}
for any ϵ > 0, where p(α, ρ) is set to be zero for ρ ≤ α+1

2α
∨ 1. Therefore, we arrive

at an upper bound of the form

(5.8) E0[pAt(0, t
δ)2] ≤ exp

{
−ctq(α,δ)−ϵ

}
with

(5.9) q(α, δ) = δ ∧
(

inf
ρ∈[δ,M ]

p(α, ρ) ∨ (2δ − ρ)

)
.

It is a simple matter of checking that this coincides with (2.16).

Remark 9. We give a brief guide on the final step above for d = 1. In what follows,
the constant M > 0 is chosen sufficiently large. Figures 4 and 5 might also help.
Note that p(α, ρ) is increasing in ρ whereas 2δ− ρ is decreasing. Hence the infimum
over ρ ∈ (0,∞) of p(α, ρ)∨ (2δ− ρ) takes place at the point where p(α, ρ) = 2δ− ρ,
which has a unique solution except for the case α > 1 and 1

2
< δ < α

α+1
. One can

check that the minimizer lies outside [δ,M ] if and only if α > 1 and δ > α
α−1

, in
which case the infimum over ρ ∈ [δ,M ] is attained at δ. Based on these observations,
one finds that

(5.10)



0, δ ≤ 1
2
∨ α+1

4α
,

4αδ−α−1
3α+1

, α
α+1

∨ 1
2
≤δ < 2α+1

2α
,

α(2δ−1)
α+1

, 2α+1
2α

≤ δ < α
(α−1)+

,

α(δ−1)
d

, δ > α
(α−1)+

.
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Figure 4. The case α ≤ 1: The decreasing lines are h = 2δ−ρ. The
increasing dashed line is h = ρ. The increasing piecewise linear curve,
including the flat piece from (0, 0) to (α+1

2α
, 0), is h = p(α, ρ). In this

case, the slopes of the latter never exceed one. It follows that the
point 2δ−ρ = p(α, ρ) is always below δ, that is, the point of ρ = 2δ−ρ.

In the first three cases, the values are smaller than δ and the fourth one is larger
than δ. Finally, in the remaining case α > 1 and 1

2
< δ < α

α+1
, we have

(5.11) p(α, ρ) ∨ (2δ − ρ) =

{
2δ − ρ, ρ ≤ 1,

p(α, ρ), ρ > 1

and this takes the minimum value 2δ − 1 at ρ = 1 ∈ [δ,M ].

Lower bound: Since the lower bounds in the first regimes in (2.16) and (2.17)
follow from Theorem 4, we consider the other cases. In the third and fourth regimes
α+1
4α

∨ α
α+1

< δ < α
(α−1)+

, we set

(5.12) ρ =

{
(2δ+1)(α+1)

3α+1
< α+1

α
, α+1

4α
∨ α

α+1
< δ < 2α+1

2α
,

2δ+α
α+1

≥ α+1
α

, δ ≥ 2α+1
2α

which gives the infimum in the proof of the upper bound. One can verify that this
is larger than δ ∨ 1 ∨ α+1

2α
and hence p(α, ρ) is to be computed by (2.4). (This can

be seen from Figures 4 and 5. Indeed, the point where p(α, δ) crosses 2δ − ρ lies in
{ρ > 1∨α+1

2α
} and also on the right of the dashed line with slope 1.) Now we use the
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Figure 5. The case α > 1: The decreasing lines are h = 2δ− ρ. The
increasing dashed line is h = ρ. The increasing piecewise linear curve,
including the flat piece from (0, 0) to (1, 0), is h = p(α, ρ). When
α > 2, the slope of the last piece exceeds one. Then the point of
2δ − ρ = p(α, ρ) may be above δ that is, the point of ρ = 2δ − ρ.

first part of Lemma 1 and the Markov property to obtain

R.H.S. of (5.2)

≥ E0

[
pAt(0, t

δ) : St = tγ,

(
t

2

)ρ

≤ At ≤ tM , S t
2
= 0

]
≥ exp

{
−t2δ−ρ+o(1)

}
P0

((
t

2

)ρ

≤ A t
2
, S t

2
= 0

)
P0(S t

2
= tγ)

− P0(At > tM).

(5.13)

Theorem 1 shows that the last term in (5.13) decays faster than the desired lower
bound for sufficiently large M . We use (4.3) for the second factor and Lemma 1 for
the third factor to bound the first term from below by

(5.14) exp
{
−t(2δ−ρ)∨p(α,ρ)∨((2γ−1)∧γ)+o(1)

}
.

This is the desired lower bound.
In second regime α > 1 and 1

2
< δ ≤ α

α+1
, note first that we may impose the

constraint At ≤ t
α+1
α by Theorem 1 as above since

(5.15) P0

(
At ≥ t

α+1
α

)
= exp

{
−t1+o(1)

}
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decays faster than the desired bound. We use (4.3) with ρ = 1− ϵ to see that there
is m > 0 such that

(5.16) P0

(
t1−ϵ ≤ A t

2
, S t

2
= 0
)
≥ t−m

for large t. Then, the lower bound follows by the same way as in (5.13).
Finally, in the last case δ ≥ α

(α−1)+
> 1, we impose t1−ϵ ≤ At ≤ tM under which

Lemma 1 yields

(5.17) pAt(0, t
δ) ≥ exp

{
−tδ+o(1)

}
.

Given this bound, we can argue as before to obtain

R.H.S. of (5.2) ≥ E0

[
pAt(0, t

δ) : St = tγ, t1−ϵ ≤ At ≤ tM , S t
2
= 0
]

≥ exp
{
−tδ+o(1)

}
t−mP0(S t

2
= tγ)− P0(At ≥ tM).

(5.18)

The last term is negligible for sufficiently large M by Theorem 1. Using Lemma 1
once again, we arrive at the desired lower bound. □
Proof of Theorem 4. This is an easy consequence of (4.3) and Theorem 1. Indeed,
we have

R.H.S. of (5.2)

≥ E0

[
pAt(0, t

δ) : St = tγ,

(
t

2

)2δ

≤ At ≤ t
α+d
α , S t

2
= 0

]

≥ inf

{
pu(0, t

δ) : u ∈

[(
t

2

)2δ

, t
α+d
α

]}
P0

(
A t

2
≥
(
t

2

)2δ

, S t
2
= 0

)
P0(S t

2
= tγ)

− P0(At ≥ t
α+d
α )

(5.19)

as before and the last term decays super-polynomially by Theorem 1. Now if γ and
δ satisfy the condition of Theorem 4, then the probability P0(A t

2
≥ ( t

2
)2δ, S t

2
= 0)

is bounded from below by a power of t and the transition probabilities pu(0, t
δ) for

u ∈ [t2δ, t
α+d
α ] and P0(S t

2
= tγ) also decay like a negative power of t by the local

central limit theorem. □

5.2. Proof of Theorem 5. We shall present a proof for the third regime in (2.16)
and later indicate how to adapt the argument to the other regimes, see Remark 10
below. Note that in the regimes of concern, the tail asymptotics are determined
by the probability that the second (d-dimensional) component of the random walk
goes to an extreme point of z-field and stays there. In particular, the vertical
displacement plays no role in the exponents. The key observation is that the heat
kernel bound is violated when z-field has a atypically large extreme value and this
has a polynomial decaying probability.
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Fix ρ which appears in the lower bound of Theorem 3 and also the corresponding
µ in the lower bound of Theorem 1. Consider the event

(5.20)

{
ω : max

|x|≤tµ−
r
2

z(x) ≥ t
dµ
α
+ r

2

}
.

This event has a probability larger than t−
r(α+d)

2
+o(1). On this event, we let the

random walk go to a point that maximizes z(·) within |x| ≤ tµ−
r
2 and then follow

the same strategy as in the lower bound of Theorem 1. This strategy gives a slightly
better lower bound

(5.21) P ω
0 (Xt = tδe1) ≥ exp

{
−tq(α,δ)−r+o(1)

}
and hence we have proved the lower bound

(5.22) P(τr > t) ≥ t−
r(α+d)

2
+o(1).

Remark 10. When d ≥ 2 and δ ∈ ( 2α
2α+d

∨ d
4α
, 2α+d

2α
] or d ≥ 1 and δ ∈ (2α+d

2α
, α
(α−d)+

)

(the fourth regime), the event

(5.23) max
|x|≤tµ−

r
2

z(x) ≥ t
dµ
α
+r or max

|x|≤tµ−r
z(x) ≥ t

dµ
α

respectively plays the role of (5.20). When q(α, δ) ∨ ((2γ − 1) ∧ γ) = 2δ − 1 (the
second regime), the event

(5.24) max
|x|≤tδ−

r
2

z(x) ≥

{
t1+δ+ 3r

2 , d = 1,

t2(1−δ+r), d ≥ 2,

plays the role of (5.20).

6. Open problems

We list a few open problems:

(i) It is of course desirable to get rid of o(1) errors from both Theorems 1 and 3.
The proof of Theorem 1 tells us that it would be helpful to understand the

asymptotics of sup|x|≤R Ex[
∫ T

0
z(Su)du] as R, T → ∞ in a coupled manner.

For this problem, one should be careful about the formulation. As observed
in [33], the result can fluctuate in the leading order and then the weak and
almost sure limit may differ.

(ii) It is also interesting to understand how P0(At ≥ t
α+1
2α b(t)) (d = 1, α ≤ 1)

and P0(At ≥ t
d
2α b(t)) (d ≥ 2, α ≤ d

2
) behave for a function b(t) → ∞. This

possibly leads to the law of iterated logarithm type result.
(iii) In the case E[z(0)] < ∞, it would be nice to complement Theorem 2 by

finding an estimate on P0(At ≤ ct) for c < E[z(0)]. In contrast to Theorem 2,
the strategy for the random walk is to stay on a low level set of z-field.
Therefore it is natural to expect that the order of logP0(At ≤ ct) is different
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from Theorem 2. The study of lower deviations is also related to the on-
diagonal estimate for the random conductance model through

(6.1) P ω
0 (Xt = 0) = E0[pAt(0, 0) : St = 0] ∼ ct−

d
2E0

[
A

− 1
2

t

∣∣∣St = 0
]
.

(iv) Concerning the random conductance model, a natural extension is to make
other lines parallel to axis random. It no longer admits the time change
representation in terms of the random walk in random scenery. When con-
ductance is bounded and uniformly elliptic, it is what is called toy-model
in [6], Section 2.3. The quenched invariance principle proved there extends
to the case where the conductance of every coordinate axis has finite mean.
The heavy tailed case would be much more complicated and there might be
an explosion in finite time.

Appendix A.

We include the following version of Chen’s result for the sake of completeness.
The bound and its proof are literary taken from [12]. As it is a non-asymptotic
result, it applies to f which depends on t and one can deduce the version indicated
in Remark 6.

Proposition 1. Suppose t > 0, f : Zd → [0,∞) be a bounded function and a, b : (0,∞) →
(1,∞) satisfy

(A.1) sup
x∈suppf

Ex

[∫ t
b(t)

0

f(Su)du

]
≤ a

(
t

b(t)

)
.

Then for λ > 0,

(A.2) P0

(∫ t

0

f(Su)du ≥ λa

(
t

b(t)

)
b(t)

)
≤ 2

1
2 e

1
24(b(t)−1)

(
λe

4

)−b(t)+1

.

Proof. Note first that the supremum in (A.1) can be extended to x ∈ Zd by using
the strong Markov property at the hitting time to suppf . The key lemma is the
following non-asymptotic bound for the moments of an additive functional.

Lemma 4. For any m ∈ N, t > 0 and a bounded function f : Zd → [0,∞),

(A.3) sup
x∈Zd

Ex

[(∫ t

0

f(Su)du

)m]
≤ m! sup

x∈Zd

Ex

[∫ t

0

f(Su)du

]m
.

This goes back at least to [27], see the proof of Lemma 3 there.
In what follows, we write [b(t)] for the integer part of b(t) and

(A.4) Ik =

∫ kt
[b(t)]

(k−1)t
[b(t)]

f(Su)du
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for 1 ≤ k ≤ [b(t)]. Then by the multinomial identity,

Ex

[(∫ t

0

f(Su)du

)[b(t)]
]
= Ex


[b(t)]∑

k=1

∫ kt
[b(t)]

(k−1)t
[b(t)]

f(Su)du

[b(t)]


≤
∑

k1+···+k[b(t)]=[b(t)]

[b(t)]!

k1! · · · k[b(t)]!
Ex

[
Ik11 · · · Ik[b(t)][b(t)]

]
.

(A.5)

Applying the Markov property at kt
[b(t)]

(1 ≤ k < [b(t)]) and using Lemma 4, we find

(A.6) Ex

[
Ik11 · · · Ik[b(t)][b(t)]

]
≤ k1! · · · k[b(t)]! sup

y∈Zd

Ey

[∫ t
[b(t)]

0

f(Su)du

]k1+···+k[b(t)]

.

Hence the right hand side of (A.5) is bounded by

(A.7) [b(t)]!

(
2[b(t)]

[b(t)]

)
sup
y∈Zd

Ey

[∫ t
[b(t)]

0

f(Su)du

][b(t)]
≤ (2[b(t)])!

[b(t)]!
a

(
t

[b(t)]

)[b(t)]

.

Finally, the Markov inequality together with Stirling’s approximation (see [18],
Chapter II-9) yields

Px

(∫ t

0

f(Su)du ≥ λa

(
t

[b(t)]

)
[b(t)]

)
≤
(
λa

(
t

[b(t)]

)
[b(t)]

)−[b(t)]

Ex

[(∫ t

0

f(Su)du

)[b(t)]
]

≤ λ−[b(t)][b(t)]−[b(t)]

√
2π(2[b(t)])2[b(t)]+

1
2 e−2[b(t)]+ 1

24[b(t)]

√
2π[b(t)][b(t)]+

1
2 e−[b(t)]

= 2
1
2 e

1
24[b(t)]

(
λe

4

)−[b(t)]

.

(A.8)

□
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