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Abstract 17 

Multi impulse is used as a representative of a series of many-cycle harmonic waves which substantially 18 
simulate the long-duration earthquake event.  An analytical formulation is developed for the elastic-19 
plastic response of a single-degree-of-freedom (SDOF) damped structure with bilinear hysteresis under 20 

the critical multi impulse condition.  Following the procedure for elastic-perfectly plastic models, a 21 

novel procedure using an energy balance law is introduced.  In this procedure, under the multi impulse 22 
condition, only the free-vibration exists, hence the energy balance law can be applied easily.  An 23 

approximate but effective treatment of the energy dissipated by the viscous damping is a new 24 
perspective.  It is shown that based on an analytical solution, the critical maximum plastic deformation 25 
and the corresponding critical impulse timing can be determined in the steady state condition depending 26 

on the input values. To investigate the reliability and accuracy of the proposed approach, a comparison 27 
is made with the response analysis outcome to the corresponding sine wave as a representative of the 28 

long-duration earthquake ground motion (GM). 29 

 30 

Keywords: Seismic response, Critical excitation, Critical response, Bilinear hysteresis, Viscous 31 

damping, Long-duration GM, Resonance, Multi impulse. 32 
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1. Introduction 35 

Versatile documentation of recent GM recording enabled the classification of types of earthquake GMs 36 

(Abrahamson et al. 1998).  One is a near-fault GM, the second is a random-type motion resulting from 37 

a subduction-zone fault and the third is determined as a long-duration (mostly far-fault) GM.  Other 38 

factors which influence the classification are the soil types (soft and stiff soil, rock) at recording stations 39 

and fault mechanisms. Long-period GMs are new-type motions which have been under investigation 40 

in the recent studies (see Takewaki et al. 2011).  Various influences of near-fault GMs on structural 41 

responses have also been discussed in litrature (for example Bertero et al. 1978, Kalkan and Kunnath 42 

2006).  Fling-step and forward-directivity are the main concepts for characterizing such near-fault GMs.  43 

Earthquake GMs provided by Northridge (USA, 1994), Hyogoken-Nanbu (Kobe, 1995), Chi-Chi 44 

(Taiwan, 1999), Bam (Iran, 2003) and Kumamoto (Japan, 2016) surprised many earthquake structural 45 

engineers and brought much interest. 46 

The fling-step (fault-parallel) and forward-directivity (fault-normal) motions have been simulated in 47 

terms of two or three wavelets.  Since the numerical formulation of elastic-plastic response is somehow 48 

complicated and many parameters have influence on that (e.g. period and amplitude of pulse, duration, 49 

ratio of pulse frequency to structure natural frequency, change of equivalent natural frequency for the 50 

increased input level), GM most of the previous investigations have considered a simplified elastic 51 

response only. 52 

To tackle such complicated problem, an innovative approach using impulses as inputs, i.e. the double 53 

impulse, has been recently introduced by Kojima and Takewaki (2015a). It was assumed that the 54 

double impulse characterizes the fling-step GM, if the magnitude is tuned in an appropriate manner. In 55 

the next stage a closed-form formulation was proposed for calculating the maximum elastic-plastic 56 

response of a structure under the ‘critical double impulse’.  It was demonstrated that under the 57 

considered double impulse, only the free-vibration could happen and the energy balance theory at two 58 

key vibration states (maximum deformation state and maximum velocity state) helps to derive such 59 

analytical expression.  It was also shown that according to impulses input level, after the 1st or 2nd 60 

impulses the maximum elastic-plastic deformation can be achieved. The accuracy of the proposed 61 

approach was investigated by comparing the proposed expressions with the results of time-history (TH) 62 

response analysis to the corresponding one-cycle sine wave as a representative of the fling-step 63 

earthquake motion.  The magnitude of the double impulse was tuned so that the comparison is valid.  64 

In this tuning, the maximum Fourier amplitude of the double impulse was set so as to be equal to that 65 

of the corresponding one-cycle sine wave.   In the study conducted by Kojima and Takewaki (2015b), 66 

the theory for the forward-directivity was derived by extending the proposed approach on fling-step 67 

expressions  68 

As another approach, Casapulla et al. (2010) and Casapulla and Maione (2016) considered the multiple 69 

sequence of impulses for the rocking response of a rigid block and derived the resonant response.  They 70 

introduced two types of multiple impulses, i.e. with gradually increasing intervals for resonance and 71 

with equal intervals. 72 
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The closed-form or analytical expressions for the elastic-plastic responses to earthquake GMs have 73 

been derived in the past only for the steady-state responses or transient responses to a simple harmonic 74 

wave (Caughey 1960a, b, Roberts and Spanos 1990, Liu 2000).  In general, a complexity will be 75 

imposed when there is a forced input in term of the harmonic wave, even for a simple solution in 76 

resonant and non-resonant cases.  Since 20th century, the seismic resistant design approach and 77 

developments considered the resonance phenomenon as a critical case in damage analysis of 78 

structures/infrastructures.  In general, the resonant frequency should be analyzed for a specified input 79 

level by parametrically changing the input frequency in the response to a harmonic wave (Caughey 80 

1960a, b, Iwan 1961, 1965a, b, Roberts and Spanos 1990, Liu 2000).  It is desirable that no 81 

computational iteration is needed in the analysis stage.  This can be achieved by introducing the multi 82 

impulse.  When using the multi impulse, the free vibration analysis can be conducted without the 83 

specification of input frequency before the second impulse is applied.  The analysis of resonant case 84 

can be done utilizing an energy balance law without the solution of differential equations. The timing 85 

of the impulses can as well be obtained as the time with zero restoring force.  To calculate the maximum 86 

elastic-plastic response after impulse can be obtained by equating the initial kinetic energy to the 87 

combined elastic strain and hysteretic energies. This methodology can be used to determine the critical 88 

response only. The critical resonant frequency can be found automatically for the gradually increasing 89 

input level of the multi impulse. 90 

In a recent investigation by (Kojima and Takewaki 2017), a closed-form critical response was derived 91 

for an undamped bilinear hysteretic SDOF model subjected to multi impulse.  In another paper (Kojima 92 

et al. 2017), a closed-form critical response was obtained for a damped elastic perfectly-plastic SDOF 93 

model subjected to double impulse.  However, the damping force-deformation relation was modeled 94 

by a quadratic function.  The first novelty of the current work is the combination of damping and 95 

bilinear hysteresis for multi impulse which has been initially developed by authors in (Akehashi et al., 96 

2018a).  Furthermore, the modeling of the damping force-deformation relation by an elliptical function 97 

is another new point from the accuracy viewpoint. 98 

Figure 1 shows a recorded resonant response in a tall building structure located in Osaka, Japan during 99 

the 2011 Tohoku earthquake.  Although only non-structural elements were significantly damaged in 100 

this structure, no clear damage in structural components was observed.  However, the viewpoint of 101 

resilience should be introduced in the future.  This incident clearly implies the warning to careful 102 

consideration on the response under long-duration earthquakes. 103 

 104 
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 105 
Figure 1 Recorded long-duration, long-period GM in a super tall building in Osaka, Japan during the 106 

2011 off the Pacific coast of Tohoku earthquake and resonant response at top (Takewaki et al. 2011) 107 

 108 

The multi impulse as shown in Figure 2(a) is used as a representative of the multi-cycle sinusoidal 109 

wave simulating the long-duration GM and a closed-form formulation is obtained for the steady-state 110 

response of a damped bilinear hysteretic SDOF structure, as shown in Figure 2(b). A prototype damped 111 

bilinear hysteretic SDOF model investigated in this paper and the explanation is given in section 2.  112 

The closed-form expressions are derived in section 3 for the elastic-plastic steady-state responses under 113 

the critical multi impulse and the critical time intervals in three cases (see Figure 2(c)).  CASE 0 is 114 

where the model remains elastic, CASE 1 indicates the case where each impulse is given at the point 115 

of zero restoring-force in the unloading process and the other case, CASE 2, presents the case where 116 

each impulse is given at the point of zero restoring-force in the loading process. The accuracy of the 117 

proposed formulation is investigated by comparison between the calculated maximum response and 118 

the results of TH response analysis of a SDOF damped bilinear hysteretic system under the multi 119 

impulse. In section 3.5, the accuracy of using the multi impulse in place of the long-duration GM is 120 

also verified through the comparison with the response under the corresponding multi-cycle sinusoidal 121 

wave.  In section 4, the response under the multi impulse with the critical time interval obtained in 122 

previous section is investigated to see whether in converges to the steady state condition..  It is clear 123 

that, if the vibration state converges to the steady state, the time interval between each set of 124 

consecutive impulses also converges to a constant value. The validity of the critical time interval 125 

calculated in previous sections is then investigated by TH response analysis for a SDOF damped 126 

bilinear hysteretic model under multi impulse with various impulse time intervals. The applicability 127 

and accuracy of the closed-form steady-state response are investigated in the final stage and the 128 

outcomes are presented in sections 6 & 7 respectively. The conclusions are summarized in Section 8. 129 

 130 

Ground acceleration

Ground velocity

Top displacement

8 cycles of 6-7 seconds

Long-duration, long-period ground 

motion of about 8 cycles is resonant 

with super high-rise building in Osaka

resonant
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       131 
(a)     (b) 132 

 133 
(c) 134 

Figure 2 Multi impulse and bilinear hysteretic restoring-force characteristic: (a) Multi impulse with 135 

constant time interval 0t , (b) Bilinear hysteretic restoring-force characteristic, (c) Steady-state loop in 136 

restoring-force characteristic under critical multi impulse 137 

 138 

2. Damped bilinear hysteretic SDOF system 139 

A damped bilinear hysteretic SDOF system, as shown in Figure 2(b) should be considered. The model 140 

has a mass of  m, stiffness of k and damping coefficient of c subjected to the multi impulse, as shown 141 

in Figure 2(a), with constant time interval.  The given input velocity of each impulse is denoted by V 142 

and the equal time interval between two neighboring impulses is quantified by 0t .  Let   denote the 143 

ratio of the (post-yield to the initial elastic)- stiffness.  In this paper, it is assumed that 0  .  The 144 

yield force and the yield deformation are characterized by yf  and yd  respectively.  Let 1 /k m  , 145 

1 12 /T   , 2
1 11 h    , 1 12 /T    , h, u and f, denote the undamped natural circular frequency, 146 

the undamped natural period, the damped natural circular frequency, the damped natural period, the 147 

damping ratio, the displacement of the mass relative to the ground (deformation of the system) and the 148 

restoring force of the model, respectively.  The over-dot symbol used to describe time derivative.  In 149 

section 3, these parameters will be treated as normalized ones.  Let 1( )y yV d  as the input velocity 150 

of a single impulse at which the SDOF model at rest just attains the yield deformation after the first 151 
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impulse. This parameter is related to the strength of the SDOF model. Numerical investigations are 152 

made in sections 4 through 7. 153 

 154 
3. Closed-form elastic-plastic steady-state response under critical multi impulse 155 

Kojima and Takewaki (2015a-c) derived analytical formulations for the critical elastic-plastic response 156 

of an undamped SDOF elastic-perfectly plastic model subjected to the several cases of double, triple 157 

and multi impulses.  Furthermore, Akehashi et al. (2018a) obtained the analytical maximum response 158 

of a damped SDOF bilinear hysteretic model subjected to the double impulse.  In this paper, the steady-159 

state elastic-plastic response is derived through an analytical approach for a damped bilinear hysteretic 160 

SDOF model subjected to the critical multi impulse.  161 

Each impulse causes the sudden change of velocity (the quantity V) of the mass and only free vibration 162 

arises after applying each impulse.  Since the response of SDOF system subjected to multi impulse 163 

motion can be derived by a series of free vibrations, the model responses (plastic deformation 164 

amplitude and maximum deformation) can be obtained by using an energy balance law at two states 165 

without solving directly the equation of motion (EOM). It should be noted that at each impulse, the 166 

kinetic energy is transformed into a combination of strain and hysteretic energy..  The impulse critical 167 

timing corresponds to the point of zero restoring-force and only a kinetic energy exists at this state as 168 

mechanical energies.  Considering this balance law, the model response in terms of maximum 169 

deformation can be obtained through a simplified approach.  Kojima and Takewaki (2015c) derived an 170 

analytical expression to calculate plastic deformation amplitude and critical timing for the SDOF 171 

elastic-perfectly plastic model subjected to the critical multi impulse.  The authors also developed a 172 

modified multi impulse motion, in which the second impulse is given at the point of zero restoring-173 

force, to derive the analytical plastic deformation amplitude and critical timing.  However, Kojima and 174 

Takewaki (2017) showed that the response of the undamped bilinear hysteretic SDOF model with a 175 

positive slope 0   is unstable under the initial impulses even under the condition that each impulse 176 

acts at the point of zero restoring-force; however, the response converges to a steady state as shown in 177 

Figure 2(c) after many repetitive impulses.   178 

In this section, it is assumed that the system is in the steady state in which each impulse acts at the 179 

point of zero restoring-force and the analytical elastic-plastic response and critical timing can be 180 

derived by using the energy balance law.  The response convergence is then investigated under multi 181 

impulse motion.  It may be interesting to note that the convergence of the response under a harmonic 182 

wave into the steady state was also demonstrated by (Iwan 1961). 183 

Plastic deformation level is the main criterion for classification of steady state under the critical multi 184 

impulse motion.  Three cases have been defined and explained in the next sections. 185 

 186 

3.1 CASE 0: Elastic range 187 

First, consider CASE 0.  Let us derive the plastic deformation amplitude and maximum deformation 188 

in the steady-state response of the damped bilinear hysteretic SDOF model using the energy balance 189 
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law.  Figure 3 shows the restoring force and damping force vs. deformation, to be used in the derivation 190 

of the maximum steady-state response.  The approximation of damping force-deformation realtion is 191 

defined based on quadratic function.  It is shown that this approximation is in good conformity with 192 

the exact solution. 193 

The velocity cv  at the point of zero restoring-force is derived by solving the EOM in the unloading 194 

process. The velocity cv  is expressed by 195 

max/ ( / )c y yv V E u d  , (1) 196 

where,  197 

2exp[( / 1 )(0.5 )]E h h        (2) 198 

2arctan( / 1 )h h     (3) 199 

The relation of damping force with deformation after the 2nd impulse is evaluated using a quadratic 200 

function with the vertex max( , ) ( ,0)Du f u  and passing the point ( , ) (0, ( ))D cu f c v V  , as shown in 201 

Figure 3(b). The Df (damping force) can be calculated as follows:  202 

max( ) 1 ( / )D cf c v V u u     max(0 )u u   (4) 203 

Integrating Eq. (4) from 0u   to maxu u , the work conducted by Df  after impulse can be determined 204 

by Eq. (5) as follows: 205 

max max

max max0 0
( ) 1 ( / ) (2 / 3) ( )

u u

D c cf du c v V u u du c v V u       . (5) 206 

From Eq. (5), the energy balance law at the points of zero restoring-force and the the maximum 207 

deformation maxu  leads to 208 

2 2
max max( ) / 2 ( / 2) (2 / 3) ( )c cm v V ku c v V u     . (6) 209 

By using Eqs. (1), (6), maxu  can be obtained as  210 

 2
max 0 0 0 0 0/ 4 / 2yu d B B A C A     , (7) 211 

where,  212 

2
0 1 (8 / 3)A E h E     (8) 213 

0 {(8 / 3) 2 }( / )yB h E V V    (9) 214 

2
0 ( / )yC V V    (10) 215 

 216 
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   217 
(a)                            (b) 218 

Figure 3 Restoring and damping forces vs. deformation(CASE 0) 219 

[
2

/ (4 / 3) (16 / 9) 1yV V h h E    ]: (a) Restoring force-deformation relation, (b) Quadratic function 220 

approximation of damping force-deformation relation. 221 

 222 

Consider the boundary between CASE 0 and CASE 1. This boundary input velocity level between 223 

this two cases can be provided by Eqs. (1), (6) and max yu d , 224 

2/ (4 / 3) (16 / 9) 1yV V h h E     (11) 225 

 226 

3.2 CASE 1: Impulse in unloading process 227 

Consider the next case, CASE 1.  Let us derive the plastic deformation amplitude and maximum 228 

deformation in the steady-state response of the elastic-plastic SDOF model subjected to the critical 229 

multi impulse.  Figure 4 shows the restoring force and damping force for deformation which are used 230 

in the derivation of the critical response in CASE 1.  In this derivation, an energy approach is used 231 

again.  A similar Quadratic function approximation used in CASE 0 is introduced to evaluate the work 232 

by the damping force. 233 

The velocity cv  at the zero restoring-force point in the unloading process can be formulated by finding 234 

a solution for the EOM in the unloading process. The velocity cv  is expressed in terms of pu  by  235 

/ {1 ( / 2)( / )}c y p yv V E u d   (12) 236 

The relation of deformation and the damping force is approximated using a quadratic function with the 237 

vertex max( , ) ( ,0)Du f u  and passing the point ( , ) ( {(1 / 2} , ( ))D p cu f u c v V     , as shown in Figure 238 

3(b). Df can then be obtained as follows: 239 

max max( ) ( ) / ( {(1 / 2} )D c pf c v V u u u u        max( {(1 / 2} )pu u u      (13) 240 

By integrating Eq. (13) from {(1 / 2} pu u     to maxu u , the work done by the damping force can be 241 

determined: 242 

max

{(1 /2}
(2 / 3) ( ){(1 ( / 2)) }

p

u

D c p yu
f du c v V u d




  
    , (14) 243 

Rf

k

1
umaxu

maxu
u

( )cc v V 

 cc v V

Df

maxu

maxu

ccv

ccv



Akehashi et al.                                                                                          Critical Response for Long-duration Motion 

Akehashi et al. 9 

where max ( / 2)p yu u d  . By using Eq. (14), the energy balance law at the zero restoring-force point 244 

and the point attaining the maximum deformation maxu  (Figure 4: points A and C respectively) leads 245 

to 246 

2( ) / 2 (2 / 3) ( ){(1 ( / 2)) } (area of ABCD)c c p ym v V c v V u d       (15) 247 

The last term in Eq. 15 indicates the area of the quadrilateral in Figure 4(a). pu can be obtained through 248 

Eq. (16) by substituting Eq. (12) into Eq. (15), 249 

2
1 1 1 1 1/ { 4 }/ 2p yu d B B AC A    , (16) 250 

where 251 

2 2
1 ( / 4)(1 ) (2 / 3) (2A E h E        (17) 252 

  1 ( / ) (8 / 3) {1 (4 / 3)( / )}y yB E V V h E h V V        (18) 253 

2
1 ( ( / )) (8 / 3)( ( / )) 1y yC E V V h E V V       (19) 254 

 255 

   256 
(a) (b) 257 

Figure 4 Restoring and damping forces for deformation in CASE 1 258 

[ 2 2(4 / 3) (16 / 9) 1 / {(8 / 3) (64 / 9) 4 }/ 2yh h E V V h h E         ]: (a) Restoring force 259 

vs.deformation relation, (b) Quadratic approximation of damping force-deformation relation. 260 

 261 

On the boundary between CASE 1 and CASE 2, the zero restoring-force point is equal to the point of 262 

the yield initiation and each impulse acts at this point. The input velocity level on this boundary can be 263 

determined from Eqs. (12), (15) and / 2 /p yu d  , 264 

2/ {(8 / 3) (64 / 9) 4 }/ 2yV V h h E      (20) 265 

 266 
3.3 CASE 2: Impulse in loading process (second stiffness range) 267 

In the final stage, we may derive the steady-state response of the elastic-plastic hysteretic SDOF model 268 

subjected to the critical multi impulse motion by means of the energy balance law.  Figure 5 shows the 269 

restoring force and damping force for deformation which are used in the formulation of the critical 270 

response in CASE 1 using an energy-based approach.  The velocity mv , i.e. the local maximum value 271 
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H
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2 yd pu

maxumaxu u
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maxumaxu
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of the velocity between the starting point of unloading and the zero restoring-force point, is not equal 272 

to the velocity cv  at the zero restoring-force point, if 0h  . In CASE 2, the velocity mv  can be derived 273 

by using an elliptical approximation of the damping force-deformation relation. 274 

The velocity mv  can as well be determined based on the energy approach. The damping force-275 

deformation relation between the starting point of unloading and the zero restoring-force point can be 276 

approximated by an ellipse which has the vertexes max( , ) ( ,0),Du f u   2 2( (1 / 1) ( / ) , )y m md h v cv    , 277 

where  2 /h h  , 2  . The work done by the damping force can be expressed by the quarter of 278 

the area of the ellipse. Therefore, the energy balance law between point A and C in Figure 5 leads to 279 

2
2 2/ 2 {( / 2) (2 (1/ )) ( / ) }/ 4 (area of ABCEFG)m m p y mmv cv u d h v             (21) 280 

From Eq. (21), mv  can be expressed in terms of pu  by  281 

2 2
2 22 1 2 1

4 4 (1 2 )
4 16 4

p p p pm

y y y y y

u u u uv h h
Y

V Y d Y d d d

  


  

         
                          

         

, (22) 282 

where 283 

2
21 (1 )Y h    (23) 284 

Assuming that the velocity between the starting point of unloading and the zero restoring-force point 285 

attains the local maximum value mv  in the re-loading process, the term cv  can be expressed in terms 286 

of mv  by using the EOM. 287 

c mv Zv  (24) 288 

where 289 

  2 2
2 2 2 21 exp / 1Z h h h      (25) 290 

 2
2 2 2arctan / 1h h    (26) 291 

By solving the EOM between the zero restoring-force point and the point attaining the maximum 292 

deformation maxu , pu  is related to cv  by 293 

2 2( / 2) ( / ) ( ) /p y cu d v V E    , (27) 294 

where 295 

  2
2 2 2 2exp / 1 ( / 2 )E h h       (28) 296 

From Eqs. (22), (24) and (27), pu can be obtained as 297 

 2
2 2 2 2 2/ 4 / 2p yu d B B A C A    , (29) 298 
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where 299 

2 2
2 2

2

1 ( / )

4 4

E Z Y hE Z
A

Y






   (30) 300 

2 2 2
2 2 2 2

2

1 (1 2 )( / )

2 y

hE E hE E Z YZ Z V
B

Y Y V

  

  

    
       

  

 (31) 301 

2
2 2 2

2 2 2 2 2
2 2

2 1 ( / )2 2
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    (32) 302 

The phenomenon of response divergence can occur where / ( 2 2) /yV V      if 0h   (Kojima and 303 

Takewaki 2017). If 0h  , the phenomenon cannot occur even for the large input velocity level / yV V  304 

(this will be explained in Section 3.5). A similar phenomenon exists under a sine wave input (Iwan 305 

1961). 306 

 307 

Figure 5 Restoring force and damping force for deformation in CASE 2 308 

[ 2/ {(8 / 3) (64 / 9) 4 }/ 2yV V h h E     ] 309 

 310 
3.4 Critical impulse timing 311 

In this section, the critical time interval 0
ct  between two neighboring is derived.  In contrast with the 312 

previous publications for the SDOF model without viscous damping, it may be complicated to 313 
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formulate an analytical expression on the critical time interval between the impulses in CASE 1 and 314 

CASE 2. For this purpose, the TH response analysis is used for the critical multi impulse (each impulse 315 

acts at the zero restoring-force point) and the time interval is evaluated as the time up to the zero 316 

restoring-force timing. It seems compulsory to continue conducting the analysis until the response 317 

converges to a steady state. 318 

Figure 6 depicts the normalized time interval 0
ct  considering several levels of the input velocity, 319 

various post-yield stiffness ratios 0.1,0.3,0.5   and various damping ratios 05,0.1,0.2h   . In 320 

CASE 0, the critical time interval is obtained as 0
ct . In CASE 1 and CASE 2, as the damping ratio 321 

becomes larger, the plastic deformation pu  and the critical time interval 0
ct  reduce. Finally, 0

ct  322 

converges to 
2

2 2/ ( 1 )h   , a half of the damped natural period,  because the second stiffness range 323 

greatly surpasses the initial elastic stiffness range. Therefore, the larger damping ratio leads to the 324 

longer, critical time interval. The sudden change in slope indicates the transition zone for CASEs 0, 1 325 

& 2.  326 

 327 
(a) 328 

     329 
(b) (c) 330 

Figure 6  Critical impulse timing 0 1/ct T  considering range of input level / yV V  for various post-yield 331 

stiffness ratios  , (a)    ,  (b) 3   , (c) 5   . 332 
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 333 
3.5 Accuracy check of the proposed expression under multi impulse  334 

To check the accuracy of the proposed formulation under the multi impulse (since the damping force-335 

deformation relation is approximated, the expression is approximate), let us use the TH response 336 

analyses of the SDOF model subjected to the multi impulse and the amplitude-tuned multi-cycle sine 337 

wave. 338 

In the evaluation process, it is substantial to tune the input levels between the multi impulse and the 339 

corresponding multi-cycle sine wave considering  the equal maximum Fourier amplitude (Kojima and 340 

Takewaki 2017).  The natural period ( lT ), the circular frequency ( 2 /l lT  ), the acceleration 341 

amplitude ( lA ) and the velocity amplitude ( /l l lV A  ) of the corresponding sine wave are used in 342 

this section considering 02 c
lT t .  It should be noted that the cycles number of the multi-cycle sine 343 

wave is half of the number of impulses.  It is assumed that the steady state is existed only after a 344 

sufficient number (for example over 20 impulses) of impulses in the derivation of the response under 345 

the multi impulse motion.  The input velocity level of the multi impulse can be expressed based on the 346 

acceleration amplitude of the corresponding multi-cycle sine wave as follows: 347 

/ (2 / )l l lV A V    (33) 348 

Figures 7-9 compare the maximum deformations of the SDOF models for 0.1,0.3,0.5   and 349 

05,0.1,0.2h   .  The comparison indicates that TH response analysis under the critical multi impulse 350 

and the amplitude-tuned multi-cycle sine wave will approximate the damping force-deformation 351 

relation of the dashpot quite accurately. The response of the undamped SDOF with the small post-yield 352 

stiffness under the multi impulse and that under the sine wave do not correspond well with that for the 353 

large input level (Kojima and Takewaki 2017).  The responses of the damped bilinear hysteretic SDOF 354 

model subjected to those inputs correspond better compared to the undamped model. 355 

It is known that the displacement response of a linear elastic SDOF model to steady-state harmonic 356 

excitation is almost inversely proportional to the damping ratio h. From Figures 8 and 9, it can be 357 

observed that maxu  is almost inversely proportional to the damping ratio h in the range of / 8yV V  . 358 

With the large input level, the second stiffness range in the response greatly surpasses the initial elastic 359 

stiffness range and the model behaves like a linear elastic model of stiffness k . 360 

 361 
 362 
 363 
 364 
 365 
 366 
 367 
 368 
 369 
 370 
 371 
 372 
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 373 
(a) 374 

   375 
(b)                            (c)  376 

Figure 7  Comparison of maximum deformations for a sample model (  ), TH response analysis 377 

under multi impulse and corresponding multi-cycle sine wave,  378 

(a) 05h   , (b) 1h   , (c) 2h   . 379 

 380 

 381 

 382 

 383 

 384 
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 385 
(a) 386 

   387 
(b)                            (c)  388 

Figure 8  Comparison of maximum deformations for a sample model of ( 3   ), TH response 389 

analysis under multi impulse and corresponding multi-cycle sine wave,  390 

(a) 05h   , (b) 1h   , (c) 2h   . 391 

 392 

 393 

 394 
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 395 
(a) 396 

   397 
(b)                            (c)  398 

Figure 9  Comparison of maximum deformations for a sample model ( 5   ), TH response analysis 399 

under multi impulse and corresponding multi-cycle sine wave,  400 

(a) 05h   , (b) 1h   , (c) 2h   . 401 

 402 

4. Convergence of impulse timing  403 

It is investigated In this section, the response for the multi impulse with the constant time interval 0
ct  404 

(Section 3.4) is investigated to see whether it converges to a steady state with each impulse at the zero 405 

restoring-force point (see Figure 3).  The transient response after the first several cycles of impulses is 406 

difficult to achieve, because the number of impulses needed for convergence depends on the level of 407 

input velocity and the post-yield stiffness ratio.  The TH response analysis is used to determine the 408 

response with the constant time interval 0
ct . Consider the parameters 1 1.0(rad/s), 0.04(m),yd    409 

4
11.0 10t T    ( 1T : fundamental natural period of the elastic model).  t  represents the time step in 410 

the TH response analysis.  In case of multi impulse, the response under the multi impulse can be simply 411 

calculated by adding V  to the mass velocity at the impulse timing.  Figures 10 and 11 show the time 412 

histories of system responses for the multi impulse with the constant time interval 0
ct  in the model 413 

with 0.3, 0.05h    and / 2.0,6.0yV V  .  It is assumed that time interval is determined based on the 414 
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steady state condition.  The acting points of impulses are marked with red circles in Figures 10 and 11.  415 

It is shown that the model response converges to a steady state in which each impulse acts at the zero 416 

restoring force irrespective to the level of the input velocity.  Furthermore, it can be observed that the 417 

maximum deformation and the plastic deformation amplitude after convergence coincide with the 418 

closed-form formulations in Section 3.2 and Section 3.3.  In the model with 0.3, 0.05h    and 419 

/ 2.0yV V   corresponds to CASE 1 in Section 3.2, the impulse acting points converge to the point of 420 

zero restoring force in the unloading process (see Figures 10).  From Figure 10, the required number 421 

of impulses is determined about 15.  Figure 11 shows similar results for CASE 2, considering 422 

/ 6.0yV V  .  From Figure 11, CASE 2 needs about 20 impulses for convergence. Compared with the 423 

undamped model (Kojima and Takewaki 2017), a damped bilinear hysteretic model requires a smaller 424 

number of impulses for convergence in both of CASE 1 and CASE 2. 425 

 426 

   427 
(a)          (b) 428 

   429 
(c) (d) 430 

Figure 10  Model response under multi impulse with time interval 0
ct  for / 2.0yV V   and 431 

0.3, 0.05h    (impulse timing is critical one obtained by steady-state assumption):  432 

(a) displacement, (b) velocity, (c) restoring force and (d) restoring force-deformation relation.  433 
 434 
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   435 
(a)          (b) 436 

   437 
(c) (d) 438 

Figure 11  Model response under multi impulse with time interval 0
ct  for / 6.0yV V   and439 

0.3, 0.05h    (impulse timing is critical one obtained by steady-state assumption):  440 

(a) displacement, (b) velocity, (c) restoring force and (d) restoring force-deformation relation.  441 

 442 

5. Proof of Critical timing proof 443 

The validity of the critical timing is investigated here.  The time-history response analysis has been 444 

conducted for the SDOF model subjected to the multi impulse with the various impulse timing 0t .  In 445 

the analysis, a variety of input velocity and post-yield stiffness ratios are considered.  As discussed in 446 

Section 3, it is assumed that the critical timing of each impulse be set as the time with zero restoring 447 

force.  The parameters 1 1.0(rad/s), 0.04(m),yd    
4

11.0 10t T    are considered in the analysis.   448 

The normalized maximum deformation max / yu d  with respect to the impulse timing 0 0/ ct t  normalized 449 

by the critical timing for post-yield stiffness ratio 0.3  , damping ratio 0.05h   and various input 450 

velocity levels / yV V are depicted in Figure 12.  It is evident that the critical timing 0
ct  derived in 451 

Section 3.4 provides the critical one under the multi impulse and gives the upper bound of max / yu d .  452 

The closed-form expressions of max / yu d  derived in Sections 3.2 and 3.3 are equal to the upper bound 453 

of max / yu d  in Figure 12. 454 
 455 



Akehashi et al.                                                                                          Critical Response for Long-duration Motion 

Akehashi et al. 19 

    456 
(a)                            (b) 457 

Figure 12 Maximum deformation with respect to timing of multi impulse for 0.3, 0.05h    and 458 

various input levels: (a) / 1, 2,3yV V  , (b) / 5,6,7yV V   459 
 460 

6. Applicability of critical multi impulse timing to corresponding sine wave 461 

In Section 3.5, it was made clear that, if for tuning purpose the maximum Fourier amplitude is selected 462 

as the main parameter, a relatively good correspondence will be resulted between the response under 463 

the multi impulse with the time interval as shown in Section 3.4 and that under the corresponding multi-464 

cycle sine wave.   In this section, it is investigated whether the critical timing of the multi impulse 465 

derived in Section 3.4 can also be a good approximate of the critical period of the multi-cycle sine 466 

wave.   467 

In the exact resonance curve (Iwan 1961), the resonant equivalent frequency of the harmonic wave for 468 

a specific acceleration amplitude must be obtained.  To this aim, it is inevitable to solve the 469 

transcendental equation by parametrically changing the frequency of excitation.   470 

To compute the response of SDOF model for the multi-cycle sine wave with various period ( lT ),various 471 

levels of input velocity and various post-yield stiffness ratios, the TH response analysis has been 472 

conducted subjected to multi-cycle sine wave.  lT , 2 /l lT  , lA  and /l l lV A   are as described in 473 

Section 3.5, for the case of sine wave tuned to the multi impulse with the constant time interval 0t  and 474 

the input velocity level V .  It is assumed that the input period 02lT t .  It should be noted that the 475 

input period should be changed for the specific velocity amplitude calculated by Eq. (33) with the input 476 

velocity level V.  The critical period of the multi-cycle sine wave is characterized as 02c c
lT t  for a 477 

specific velocity amplitude lV . 478 

The model responses ( max / yu d  and /p yu d ) with respect to the input period 0 0/ ( / )c c
l lT T t t  479 

normalized by the approximate critical period for 0.3  , 0.05h   and various input velocity levels 480 

/ yV V  are illustrated in Figure 13.  It can be seen that 02c c
lT t  is a fairly good approximate of the 481 

critical period of the multi-cycle sine wave for a specific velocity amplitude.  482 

 483 
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  484 
(a)                            (b) 485 

Figure 13  Maximum deformation with respect to period of corresponding sine wave for 486 

0.3, 0.05h    and various input levels: (a) / 1, 2,3yV V  , (b) / 5,6,7yV V   487 

 488 

7. Exact solution and verification 489 

The comparison with the resonance curve under the sine wave computed by using the exact solution 490 

(Iwan 1961) is made for the accuracy check of the proposed expression on the steady-state response 491 

under the critical multi impulse.  In the conventional curve given by (Iwan 1961), the transcendental 492 

equation has to be solved by parametrically changing the excitation frequency and the resonant 493 

equivalent frequency of the harmonic wave for a specific acceleration amplitude should be extracted 494 

from the given curve.  On the other hand, the proposed method gives a closed form solution for the 495 

direct critical steady-state response under a specific input level.  The input level of the multi impulse 496 

and the corresponding sine wave has been tuned by using the equivalence of the maximum Fourier 497 

amplitude as described in previous sections.  498 

A comparison between the proposed formulation and the conventional resonance curve proposed by 499 

Iwan (1961) is made in Figure 14.  The parameter *  in Figure 14 denotes the ratio of the excitation 500 

frequency 2 /l lT   of the corresponding sine wave to the elastic natural circular frequency 1 .  In 501 

addition, r  indicates the ratio of the excitation acceleration amplitude l l lA V  of the corresponding 502 

sine wave to the parameter 2
1y yA d .  /l yr A A  is also equal to the product of the normalized 503 

acceleration amplitude by yf  and the model mass. The red line in Figure 14 indicates the maximum 504 

deformation under the critical multi impulse. The red solid circles in the red line present the input levels 505 

of the multi impulse.  Considering 02 c
lT t  in the critical case, the normalized critical timing 0 1/ct T  506 

can be converted to 1 0* / (2 )cT t   . The critical time interval obtained in Section 3.4 is used for 0
ct . 507 

The black line in Figures 14(a) and 14(b) are representing the resonance curves with 508 

0.552,0.955,1.23r  and 1.80, 2.13, 2.46r   respectively..  In addition, the blue dotted lines in Figure 509 

14 presents the resonance curve for constant velocity amplitude.  From Figure 14(a), it is evident that 510 

the proposed closed-form expression corresponds much better to the blue dotted lines than the black 511 

lines for the case of small input levels. With the large input levels, the resonance point in the blue 512 
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dotted line and that in the black line exhibit a fairly good correspondence. Therefore, the proposed 513 

formulation on the critical maximum deformation under the multi impulse corresponds well to both.  514 

 515 

   516 
(a)  (b) 517 

Figure 14 Comparison of closed-form maximum deformation under critical multi impulse resonance 518 

curves under sine wave for 0.3, 0.05h    and various input levels:  519 

(a) / 1, 2,3yV V  , (b) / 5,6,7yV V   520 

 521 
 522 
8. Conclusions  523 

The long-duration GM has been modeled by the multi impulse and the closed-form solution has been 524 

derived for the maximum steady-state response of a damped bilinear hysteretic SDOF model subjected 525 

to the critical multi impulse.  While the conventional method for the sine wave (Iwan 1961) requires 526 

the resonant equivalent frequency which can be computed by changing the excitation frequency 527 

parametrically, the steady-state response under the critical multi impulse can be obtained in closed-528 

form (without repetition) for the variating input level in the proposed approach.  The conclusions are 529 

as follows:  530 

(1) It is assumed that the system is in he steady state in which each impulse acts at the point of zero 531 

restoring-force, and the closed-form critical response have been derived implementing an energy-532 

based approach under the critical multi impulse have been derived by using the energy balance law 533 

and the approximation (quadratic or elliptical) of the damping force-deformation relation of the 534 

dashpot.  Considering the level of input velocity and the plastic deformation, the critical steady 535 

state is classified into three cases.  In CASE 0, the model remains elastic.  In CASEs 1 and 2, each 536 

impulse acts at the point of zero restoring-force in the unloading and loading processes respectively.   537 

(2) In case of constant time interval, the model response will be converged to steady state as depicted 538 

in Figure 3.  The model responses after convergence into the steady state correspond to the closed-539 

form expressions. 540 



Akehashi et al.                                                                                          Critical Response for Long-duration Motion 

 22 

(3) The reliability and accuracy of the derived closed-form solution have been verified through the TH 541 

response analysis. The comparison has been made between the steady-state response under the 542 

critical multi impulse and that under the corresponding multi-cycle sinusoidal wave as a 543 

representative of the long-duration GM.  The results clearly confirmed the multi impulse is an 544 

acceptable substitute of the multi-cycle sinusoidal wave in the evaluation model response if the 545 

maximum Fourier amplitude is tuned. Compared with the undamped model, the responses of a 546 

damped bilinear hysteretic SDOF under those inputs correspond better. 547 

(4) The critical time interval can be derived using the TH response analysis in Section 3.4. The validity 548 

of the critical time interval is confirmed by the analysis for the damped bilinear hysteretic SDOF 549 

model subjected to the multi impulse under a variety of impulse timing.  The critical timing of each 550 

impulse is defined as the time with zero restoring-force in the steady state. 551 

(5) Double of the critical time interval is a good approximate of the critical period of the multi-cycle 552 

sinusoidal wave with the corresponding input amplitude. 553 

 554 

In the previous paper (Akehashi et al., 2018a), a closed-form critical response was derived for a damped 555 

bilinear hysteretic SDOF model subjected to the double impulse. That proposed methodology was 556 

extended to the problem of critical excitation for a base-isolated building structure on ground under a 557 

near-fault GM (double impulse) by reducing the structural model into an SDOF system (Akehashi et 558 

al., 2018b). The approach proposed in this paper can also be extended to the problem of critical 559 

excitation for a base-isolated structure under long-duration motion. 560 

 561 
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