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Abstract 
A frequency-domain method is developed for evaluating the earthquake input 

energy to two building structures connected by viscous dampers.  It is shown that 

the earthquake input energies to respective building structures and viscous 

connecting dampers can be defined as works done by the boundary forces between 

the subsystems on their corresponding displacements.  It is demonstrated that the 

proposed energy transfer function is very useful for clear understanding of 

dependence of energy consumption ratios in respective buildings and connecting 

viscous dampers on their properties.  It can be shown that the area of the energy 

transfer function for the total system is constant regardless of natural period and 

damping ratio because the constant Fourier amplitude of the input acceleration, 

relating directly the area of the energy transfer function to the input energy, indicates 

the Dirac delta function and only an initial velocity (kinetic energy) is given in this 

case.  Owing to the constant area property of the energy transfer functions, the total 

input energy to the overall system including both buildings and connecting viscous 

dampers is approximately constant regardless of the quantity of connecting viscous 

dampers.  This property leads to an advantageous feature that, if the energy 

consumption in the connecting viscous dampers increases, the input energies to the 

buildings can be reduced drastically.  For the worst case analysis, critical excitation 

problems with respect to the impulse interval for double impulse (simplification of 

pulse-type impulsive ground motion) and multiple impulses (simplification of long-

duration ground motion) are considered and their solutions are provided. 
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1.  Introduction 
In the current structural design practice of buildings in earthquake prone 

countries, the structural control using base-isolation systems and passive dampers is 

of primary concern.  Especially a hybrid system of a base-isolation system and a 

passive damper control system is getting much interest (for example Murase et al. 

2013).   

Since base-isolation systems and passive control dampers are generally 

characterized as systems to absorb considerable energies supplied by a ground 

motion input, it is believed that the investigation from the viewpoint of earthquake 

input energy is suitable in such systems.  A lot of research works have been 

conducted on the topics of earthquake input energy to building structures (for 

example, Housner 1959; Zahrah and Hall 1984; Akiyama 1985; Uang and Bertero 

1990; Leger and Dussault 1992; Kuwamura et al. 1994; Ordaz et al. 2003; Takewaki 

2004a, b, 2005a, b, 2007a, b).  In some earthquake prone countries, the earthquake 

input energy is treated as an earthquake input demand in the seismic design 

regulations.  The earthquake input energy has usually been computed in the time 

domain since the development of advanced computational algorithms, e.g. numerical 

integration algorithms.  The time-domain approach has several advantages, e.g. the 

availability in non-linear structures, the description of time-history response of the 

input energy, the possibility of expressing the input energy rate.  On the other hand, 

the time-domain approach is not necessarily appropriate for probabilistic and bound 

analysis under uncertainties (Takewaki 2004a, 2005b, 2007).  For such purpose, the 

frequency-domain approach (Lyon 1975, Ordaz et al. 2003, Takewaki 2004a, b, 

2005a, b, 2006, 2007a, b) is appropriate because it uses the Fourier amplitude 

spectrum of input ground accelerations and the time-invariant energy transfer 

functions of the structure in an independent product form. 

Vibration control of buildings by connection is very popular recently (Seto 

1994, Luco and Barros 1998, Xu et al. 1999, Kim et al. 2006, Takewaki 2007b, 

Christenson et al. 2007, Basili and Angelis 2007, Ok et al. 2008, Cimellaro et al. 

2011, Roh et al. 2011, Zhu et al. 2011, Richardson et al. 2013a, b).  It was pointed 

out that the use of the difference of natural periods of two buildings is very useful 

and effective for vibration suppression because no energy supply is necessary.  It 

was shown that the total input energy by actual ground motions to the overall system 

including both buildings and connecting viscous dampers is supposed to be almost 

constant regardless of the quantity and location of connecting viscous dampers.  

This property was partially examined by the use of two single-degree-of-freedom 

(SDOF) models connected by a viscous damper.  A remarkable property of equi-area 

of the energy transfer functions supports the property of the nearly constant input 

energy.  This leads to an advantageous feature that, if the energy consumption in the 

connecting viscous dampers increases, the input energies to the buildings can be 

reduced drastically.   

In this paper, the input energies to connected buildings under double impulse 

(simplification of pulse-type impulsive ground motion) and multiple impulses 

(simplification of long-period and long-duration ground motion) are considered.  

Critical excitation problems for both inputs with respect to the impulse interval are 

posed and solved. 
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2. Earthquake input energy to connected SDOF models 
2.1 Equations of motion 

Consider a connected building structure shown in Fig.1(a).  The right building 

is called building 1 (main structure) and the left one building 2 (sub-structure).  It is 

noted that, when the spring and viscous damper in building 2 are removed, the 

model is reduced to a 2DOF shear building model.  Two cases, i.e. a structural 

system of disconnected two SDOF models and a structural system of rigidly 

connected two SDOF models (Figs.1(b), (c)), have been treated in Reference 

(Takewaki 2007b) as limiting cases for clear understanding of vibration properties 

of this system.  The formulation in the frequency domain will be shown in this 

section. 

Let 1m  and 2m  denote the masses of building 1 and 2.  The story stiffnesses 

and damping coefficients of building 1 and 2 are denoted by 1 1 2 2, , ,k c k c , 

respectively.  The stiffness and damping coefficient of the connecting damper are 

indicated by 3k  and 3c , respectively.  The equations of motion of the model shown 

in Fig.1(a) may be expressed as 
 

1 3 3 1 3 31 1 1 1 1

3 2 3 3 2 32 2 2 2 2

0 0 1

0 0 1
g

c c c k k km u u u m
u

c c c k k km u u u m

                 
                

                 
 

 (1) 
 

Fourier transformation of Eq.(1) results in the following form. 
 

[ ]{ } { } ( )gG U B U   (2) 

 
where [G] and {B} are the following coefficient matrix and vector. 
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[ ]
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 (3a) 

 

1 2{ } { }TB m m   (3b) 

 

The vector 1 2{ } { }TU U U  is the Fourier transform of the nodal displacements 

1 2{ } { }Tu u u .  i indicates the imaginary unit. 

The transfer function of the nodal displacement with respect to ( )gU   may be 

obtained as 
 

1
1 2 1 2{ } { } { / / } [ ] { }T T

D D D g gH H H U U U U G B    (4) 

 
where 
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 (5) 



4 

 

In Eq.(5), D denotes the following 
 

2 2
1 3 1 1 3 2 3 2 2 3

2
3 3

{ i ( )}{ i ( )}

( i )

i

D k k m c c k k m c c

k c

a b

   


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 

 

 (6) 

 
where 
 

4 2
1 2 1 2 2 1 3 2 3 1 1 2 2 3 3 1

1 2 2 3 3 1

( )a m m k m k m k m k m c c c c c c

k k k k k k
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1 2 3 2 1 3

1 3 2 3 2 3 1 3 3 3

{ ( ) ( )}

{( )( ) ( )( ) 2 }
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


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 (7b) 

 
The transfer function can be obtained in closed form. 

 

{ } (1/ ){ i i}T
DH D c d e f     (8) 

 

where 

2
1 2 3 2 3 2( )c m k k m k m     

1 2 3 2 3{ ( ) }d m c c m c     

2
2 1 3 1 3 1( )e m k k m k m     

2 1 3 1 3{ ( ) }f m c c m c     (9a-d) 

 

Finally the displacement and velocity transfer functions may be obtained in 

closed form. 
 

1

2 2
2
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( )i

D

D
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 (10) 
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
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      
 (11) 

 

2.2 Earthquake input energy in frequency domain 

With the help of these closed-form expressions, the input energy to the overall 

model may be expressed as 
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where ( )CF   is ‘the energy transfer function’ for the total system and is defined by 
 

1 2
2 2 2 2

1 2

( ) ( )1
( )

( )
C

m bc ad m be af
F

m m a b a b

 




  
  

   
 (13) 

 

Assume that the Fourier transform of the input ground acceleration is constant. 
 

( )gU A   (14a) 

 
This input ground motion acceleration indicates the Dirac delta function at t=0 

(Takewaki and Fujita 2009).  Then the input energy can be related directly to the 

area of the energy transfer function and expressed as 
 

2

0
( )I CE A F d 


   (14b) 

 
Since the energy given by the initial velocity is constant regardless of the stiffness 

and the damping coefficient of the model in the case of constant mass, it can be 

concluded that the area of the energy transfer function is constant regardless of the 

stiffness and the damping coefficient of the model. 

 

3. Earthquake Input Energy to Connected Models as Sum 

of Input Energies to Subassemblages 

 While Eq.(12) defines the energy transfer function for the whole system, the 

energy transfer function can also be defined for each subassemblage.  Assume 

3 0k   here for simplicity.  This means to deal with a viscous damper as the 

connecting system. 
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Fig.1 (a) Two SDOF models connected by viscous damper, (b) Disconnected two 

SDOF models, (c) Rigidly connected two SDOF models 

 

 Consider first the earthquake input energy in the time domain.  The work done by 

the boundary forces in each subassemblage (building 1, building 2 and connecting 

damper) can be expressed as follows. 
 

1
1 2 3 2 1 1 1 1 1 10

1 2

1
/ ( ) ( )( ) ( )I g gE m m c u u u u k u c u u dt

m m


           (15a) 

2
1 2 3 2 1 2 2 2 2 20

1 2

1
/ ( ) ( )( ) ( )I g gE m m c u u u u k u c u u dt

m m


            (15b) 

3 2
1 2 3 2 10

1 2

1
/ ( ) ( )IE m m c u u dt

m m


   
    (15c) 

 
Summation of Eqs.(15a-c), introduction of equilibrium equation between the 

boundary forces for the total system and the inertial force and use of integration by 

parts lead to the input energy to the overall system. 
 

1 2 1 1 2 20
1 2

1
/ ( ) ( )I gE m m m u m u u dt

m m


   

   (16) 

 
This coincides with Eq.(12). 

 Fourier and inverse Fourier transformation of Eqs.(15a-c) lead to the following 

expression of the input energy in the frequency domain. 
 

2( )
1 2 0

/ ( ) ( ) ( )
j j

gIE m m F U d  


    (j=1, 2, 3) (17) 
 

where 
 

(1) 2 *
3 2 1 1 3 2 1 1 1 1

1 2

1 i
( ) Re ( ) ( ) ( i )

( )
D D D D D DF c H H H c H H k c H

m m
  

 
      



 
  

  (18a) 

(2) 2 *
3 2 1 2 3 2 1 2 2 2

1 2

1 i
( ) Re ( ) ( ) ( i )

( )
D D D D D DF c H H H c H H k c H

m m
  

 
       



 
  

  (18b) 



7 

2(3) 2
3 2 1

1 2

1
( ) Re

( )
D DF c H H

m m
 


  
  

 (18c) 

 
Eqs.(12), (16), (17) provide 

 
(1) (2) (3)( ) ( ) ( ) ( )CF F F F       (19) 

 
The property of input energies to subassemblages can be understood from Eq. (17). 

Consider the case of 3 0k  .  The masses are 3
1 2 32.0 10 ( )m m kg   .  The 

spring stiffnesses are 7
1 1.88 10 ( / )k N m   and 7

2 3.76 10 ( / )k N m  .  The 

fundamental natural period of the main structure is 0.26(s) and that of the sub-

structure is 0.18(s).  This model corresponds to the case which is shown in the right-

side figure in Fig.2 as a large dot (Mitsuda et al. 2014).  The mass ratio is 

1 2/ 1.0m m    and the stiffness ratio is 0.5  .  In this case, the lowest mode 

represents the mode (mp-mode: meeting and parting-mode) in which both masses 

move in the reverse direction.  In this model, the lowest damping ratio increases 

monotonically with respect to the damping coefficient of the connecting damper as 

shown in the left-side figure in Fig.2.  The damping coefficients of the main 

structure and sub-structure are 5
1 1.88 10 ( / )c N s m   , 5

2 3.76 10c    ( / )N s m .  

Three cases of damping coefficients of the connecting dampers are 
5

3 3.76 10 ( / )c N s m   , 43.76 10 ( / )N s m  , 33.76 10 ( / )N s m  .   These values 

indicate the damping ratio 0.24, 0.024, 0.0024 for the model with rigid sub-structure. 
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Fig.2 Classification of natural frequency and damping ratio properties with respect 

to connecting damper level 
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Fig.3 Energy transfer functions for total system and subassemblages for three levels 

of connecting damper 

 

 

4. Earthquake input energy by double impulse (Simplified 

impulsive ground motion) 
    In Section 2-2, an input ground motion acceleration with a constant Fourier 

amplitude was considered.  As pointed out before, this input ground motion 

acceleration is the Dirac delta function at t=0.  A more practical input as a simplified 

impulsive ground motion may be a combination of impulses.  It is well understood 

that one cycle sinusoidal motion is a good substitute of a class of near-fault ground 

motions (Fling-step input) (see Mavroeidis and Papageorgiou 2003, Kalkan and 

Kunnath 2006, Khaloo et al. 2015).  It can be confirmed that, if the Fourier 

amplitudes of the double impulse and one cycle sinusoidal motion coincide well, the 
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maximum displacement responses of a resonant undamped single-degree-of-freedom 

system under both input models exhibit a good agreement.  This comparison is 

shown in Fig.4 where yd  is a reference deformation and yV  is a reference input 

level. 
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Fig.4 Comparison of the maximum deformation of a resonant one-degree-of-

freedom system under double impulse and the corresponding one-cycle sinusoidal 

wave 

 

 

Consider the following double impulse with 0t  as the interval (see Figs.5, 6). 
 

0( ) ( ) ( )gu t V t V t t     (20) 

where V is the change of velocity of ground motion at t=0 and 0t t . 

 
 

                

gu

0 0/t  

t

( )V t

0( )V t t 

corresponding one-cycle 

sine wave

 
Fig.5 Double impulse as simplification of impulsive ground motion acceleration 
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Fig.6 Velocity and displacement of double impulse 
 

 

The Fourier transform of Eq.(20) is expressed as 
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i
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The square of the absolute value of Eq.(21) is derived as 
 

2 2
0( ) (2 2cos )gU V t    (22) 

 
The normalized squared Fourier amplitude 02 2cos t  of the double impulse is 

shown in Fig.7 ( 0t =1s) together with the corresponding sine wave of one cycle.  It 

can be found that a fairly good correspondence exists in the first peak.  Because the 

first peak plays an important role in the evaluation of the critical input as explained 

just afterward, this correspondence in the first cycle is sufficient for the 

simplification of the sinusoidal wave (impulsive ground motion) by double impulse. 

The validity of using the double impulse as a substitute of one-cycle sine wave 

as shown in Fig.5 can be demonstrated by using time-history response analyses.  

The result is presented in Appendix 1.  It can be concluded that the double impulse 

is a good substitute of the one-cycle sine wave so long as their maximum Fourier 

amplitudes coincide. 

Eq.(12) for this input is obtained as 
 

2
1 2 00

/ ( ) ( ) (2 2cos )dI CE m m F V t  


    (23) 

 
The normalized expression of Eq.(23) can be described as 
 

2
1 2 00

/{( ) } ( )(2 2cos )dI CE m m V F t  


     (24) 

 
A critical excitation problem (Drenick 1970, Takewaki 2001, 2002, 2007a) can 

be formulated as follows for this double impulse. 
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[Critical Excitation Problem 1] Find 0t  of double impulse so as to maximize 

the normalized earthquake input energy 2
1 2/{( ) }IE m m V  given by Eq.(24). 

 
The worst interval of these impulses can be defined as such that the input 

energy attains the maximum (see Fig.8). 
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Fig.7 Normalized squared Fourier amplitude of ground motion as double impulse 

and its comparison with that of the corresponding sine wave of one cycle  

(the maximum value is adjusted) 
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Fig.8 Schematic diagram of normalized earthquake input energy with respect to 

interval of double impulse 

 

 

   The normalized input energies to subassemblies can be expressed following 

Eq.(17).  
 

2 ( )
1 2 00

/{( ) } ( )(2 2cos )
j j

IE m m V F t d  


    (j=1, 2, 3) (25) 
 

The worst interval of impulses can also be defined for each subassemblage. 
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Fig.10 Input energies to overall system, main structure, substructure and 

connecting damper with respect to interval of double impulses 
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Fig.11 Input energies to overall system, main structure, substructure and 

connecting damper with respect to interval of double impulses 

 

Figs.9-11 show the input energies, defined by Eqs.(24), (25), to the overall 

system, the main structure, the substructure and the connecting damper with respect 

to 0t  for three damper levels (small, medium, large).  It can be observed that the 

worst interval of two impulses can be different for the main structure, the 

substructure and the connecting damper depending on the connecting damper levels 

(small, medium, large). 
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5.  Earthquake input energy by multiple impulses 
(Simplified long-duration ground motion) 

    The double impulse represents an impulsive type earthquake ground motion.  

On the other hand, the long-duration ground motion can be represented by the 

following N impulses (see Fig.12).   
 

0 0 0( ) ( ) ( ) ( 2 ) ( 3 )gu t V t V t t V t t V t t            (26) 

 

gu

0 0/t  

t02t

0t

0( 2)N t

0( 1)N t03t

 
Fig.12  N impulses as simplification of long-duration ground acceleration 

 

The Fourier transform of Eq.(26) can be obtained as 
 

 





0 0

0 0 0 0

i
0 0 0

i i ( )i
0

i 2 i ( 2 ) i 3 i ( 3 )
0 0

( ) ( ) ( ) ( 2 ) ( 3 )

            = ( ) ( )

               ( 2 ) ( 3 )

            = (1

t
g

t t tt

t t t t t t

U V t V t t V t t V t t e dt

V t e V t t e e

V t t e e V t t e e dt

V e



 

   

    

 

 

 



   



     

       

 

    







0 0 0i i 2 i 3
)

t t t
e e

    
  

 

 (27) 
The square of the absolute value of Eq.(27) leads to 
 

0 0 0 0

222 1i i 2 i 3 i2 2

1
( ) 1 = 1 ( 1)

Nt t t ntn
g n

U V e e e V e
   

   


        (28) 

 
The normalized squared Fourier amplitude spectrum 0

2
1 i

1
1 ( 1)

N ntn

n
e

 


   for 20 

impulses ( 0 1.0st  ) is shown in Fig.13 together with that for the corresponding 

sinusoidal wave of 10 cycles.  It can be observed that a good coincidence exists in 

the first peak.  Since only the first peak plays an important role in the evaluation of 

the critical input as in the case of the double impulse, this correspondence in the first 

cycle is sufficient for the simplification of the sinusoidal wave (long-duration 

ground motion) by 20 impulses.  When we compute the input energy by 20 impulses 

(N=20), it is sufficient to replace 0(2 2cos )t  in Eq.(24), (25) with Eq.(28).  The 

resulting equation may be expressed as 
 

0

2
1 i2

1 2 10
/{( ) } ( ) 1 ( 1) d

N ntn
I C n

E m m V F e
 

  


     (29) 
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Fig.13 Normalized squared Fourier amplitude of ground motion as 20 impulses and 

its comparison with that of the corresponding sine wave of 10 cycles  
(the maximum value is adjusted) 

 

/ 

2/ ( )IE mV

0
( )dN F  




0t  
Fig.14 Schematic diagram of normalized earthquake input energy with respect to 

interval of 20 impulses 
 
A schematic diagram of normalized earthquake input energy with respect to the 

interval of 20 impulses is shown in Fig.14.  It may be possible to formulate a critical 

excitation problem as follows with the interval of impulses as a variable. 
 

[Critical Excitation Problem 2] Find 0t  of multiple impulses so as to maximize 

the normalized earthquake input energy 2
1 2/{( ) }IE m m V  given by Eq.(29). 

 

Figs.15-17 show the normalized earthquake input energies to the overall 

system and each subsystem with respect to impulse interval for three levels of 

connecting dampers.  The model parameters are the same as the above case.  The 

worst interval of impulses can also be defined for each subassemblage.  It can be 

observed that, when the level of the connecting dampers is small, the building 1 

(main structure), building 2 (substructure), connecting dampers and the total system 

exhibit different critical intervals of impulses.  On the other hand, when the level of 

the connecting dampers is large, those exhibit almost the same critical interval.  It 

can also be understood that, as 0t  becomes large, the normalized earthquake input 

energy converges to 
0

( )N F d 


 . 
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Fig.15 Input energies to overall system, main structure, substructure and 

connecting damper with respect to interval of 20 impulses 
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Fig.16 Input energies to overall system, main structure, substructure and 

connecting damper with respect to interval of 20 impulses 
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6. Conclusions 
The conclusions may be stated as follows. 

(1)  The energy transfer function ( )F   of damper-connected building models 

characterizing the earthquake input energy in the frequency domain has an equi-

area property regardless of the connecting damper quantity.  This property of 

( )F   can be proved by the time-domain method for an idealized model of input 

motions with a constant Fourier amplitude spectrum.  This idealized input model 

corresponds to the acceleration of the Dirac delta function in the time domain 

and the input energy can be characterized by the initially given kinetic energy 

depending only on the total mass and the initial velocity. 

(2)  The proposed energy transfer functions for the overall system and each 

subassemblage (respective buildings and connecting viscous dampers) are very 

useful for clear understanding of dependence of energy consumption ratios in 

respective buildings and connecting viscous dampers on their properties. 

(3)  Critical excitation problems with respect to the impulse interval for double 

impulse (simplification of pulse-type impulsive ground motion) and multiple 

impulses (simplification of long-duration ground motion) have been considered 

and their solutions have been provided.  The frequency domain formulation of 

earthquake input energy enabled the direct solution to the critical excitation 

problem.  It has been made clear that the worst interval of two or multiple 

impulses can be different for the main structure, the substructure and the 

connecting damper depending on the connecting damper levels. 

 

It is anticipated that the input energy to the overall system by a general ground 

motion input is approximately constant regardless of the quantity of connecting 

viscous dampers.  This property is also guaranteed and supported by the equi-area 

property of the energy transfer function and leads to an advantageous feature that, if 

the energy consumption in the connecting dampers increases, the input energies to 

the buildings can be reduced effectively. 

The evaluation of the earthquake input energy in the time domain is suitable 

for the evaluation of the time history of the input energy, especially for non-linear 

systems.  Dual use of the frequency-domain and time-domain techniques may be 

preferable in the advanced seismic analysis for robuster design. 

 

Acknowledgements 
Part of the present work is supported by the Grant-in-Aid for Scientific 

Research of Japan Society for the Promotion of Science (No.24246095, 15H04079).  

This support is greatly appreciated. Part of the numerical computation was 

conducted by Mr. K. Kojima of Kyoto University. The authors are grateful to him. 

 

 



17 

References 
Akiyama, H. (1985). Earthquake Resistant Limit-State Design for Buildings. 

University of Tokyo Press, Tokyo, Japan. 

Basili M, Angelis MD. (2007). Optimal passive control of adjacent structures 

interconnected with nonlinear hysteretic devices. Journal of Sound and 

Vibration; 301(1-2):106–125. 

Christenson RE, Spencer BF, Johnson EA.(2007).  Semiactive connected control 

method for adjacent multi-degree-of freedom buildings. Journal of 

Engineering Mechanics, ASCE; 133(3):290–298. 
Cimellaro, GP.  and Lopez-Garcia, D. (2011). Algorithm for design of controlled 

motion of adjacent structures. Journal of Structural Control and Health 
Monitoring; 18, 140–148. 

Drenick, RF. (1970). Model-free design of aseismic structures. Journal of the 

Engineering Mechanics Division, ASCE; 96(EM4), 483-493. 

Housner, G.W. (1959). Behavior of structures during earthquakes. Journal of the 

Engineering Mechanics Division, ASCE, 85(4), 109-129. 

Kalkan, E. and Kunnath, S.K. (2006). Effects of fling step and forward directivity on 

seismic response of buildings, Earthquake Spectra, 22(2), 367–390. 

Khaloo, A.R., Khosravi1, H. and Hamidi Jamnani, H. (2015). Nonlinear interstory 

drift contours for idealized forward directivity pulses using “Modified Fish-

Bone” models; Advances in Structural Eng.18(5), 603-627. 

Kim K, Rye J, Chung L. (2006). Seismic performance of structures connected by 

viscoelastic dampers. Engineering Structures; 28(2):83–195. 

Kuwamura, H., Kirino, Y., and Akiyama, H. (1994). Prediction of earthquake 

energy input from smoothed Fourier amplitude spectrum. Earthquake 

Engineering and Structural Dynamics, 23, 1125-1137. 

Leger, P., and Dussault, S. (1992). Seismic-energy dissipation in MDOF structures. 

Journal of Structural Engineering, ASCE, 118(5) 1251-1269. 

Luco JE and Barros FCP. (1998). Optimal damping between two adjacent elastic 

structures. Earthquake Engineering and Structural Dynamics; 27(7):649–659. 

Lyon, R.H. (1975). Statistical Energy Analysis of Dynamical Systems, The MIT 

Press, Cambridge, MA. 

Mavroeidis, G. P., and Papageorgiou, A. S. (2003). A mathematical representation 

of near-fault ground motions, Bull. Seism. Soc. Am., 93(3), 1099-1131. 

Mitsuda, E., Ohbuchi, M., Tsuji M. and Takewaki, I. (2014). Fundamental 

properties on eigenvibration and damping in connected building structures, J. 

Construction and Structural Engineering, Archi. Inst. of Japan, No.696, 227-

236 (in Japanese). 

Murase, M., Tsuji, M. and Takewaki, I. (2013). Smart passive control of buildings 

with higher redundancy and robustness using base-isolation and inter-

connection, Earthquakes and Structures, 4(6), 649-670. 

Ok S, Song J, Park K. (2008). Optimal design of hysteretic dampers connecting 

adjacent structures using multiobjective genetic algorithm and stochastic 

linearization method. Engineering Structures; 30(5):1240–1249. 



18 

Ordaz, M., Huerta, B., and Reinoso, E. (2003). Exact computation of input-energy 

spectra from Fourier amplitude spectra. Earthquake Engineering and 

Structural Dynamics, 32, 597-605. 

Richardson, A. , Walsh, K. K. and Abdullah, M. M.  (2013a). Closed-Form Design 

Equations for Controlling Vibrations in Connected Structures, Journal of 

Earthquake Engineering, 17:699–719. 

Richardson, A., Walsh, K. K., and Abdullah, M. M. (2013b). Closed-form equations 

for coupling linear structures using stiffness and damping elements, Journal of 

Structural Control and Health Monitoring 20(3), 259–281. 

Roh, H., Cimmellaro, GP.  and Lopez-Garcia, D. (2011). Seismic Response of 

Adjacent Steel Structures Connected by Passive Device. 14(3), 499-517, 

Advances in Structural Engineering. 

Seto K. (1994). Vibration control method for flexible structures arranged in parallel. 

Proceedings of the 1st World Conference on Structural Control, vol. 2, 

Pasadena, California; 62–71. 
Takewaki, I. (2001). A new method for nonstationary random critical excitation. 

Earthquake Engineering and Structural Dynamics, 30(4), 519-535. 
Takewaki, I. (2002). Critical excitation method for robust design: A review. Journal 

of Structural Engineering, ASCE, 128(5), 665-672. 
Takewaki, I. (2004a). Bound of earthquake input energy, Journal of Structural 

Engineering, ASCE, 130(9), 1289-1297. 

Takewaki, I. (2004b). Frequency domain modal analysis of earthquake input energy 

to highly damped passive control structures, Earthquake Engineering and 

Structural Dynamics; 33(5): 575-590. 

Takewaki, I. (2005a). Frequency domain analysis of earthquake input energy to 

structure-pile systems, Engineering Structures, 27(4), 549-563. 

Takewaki, I. (2005b). Bound of earthquake input energy to soil-structure interaction 

systems, Soil Dynamics and Earthquake Engineering, 25(7-10), 741-752. 

Takewaki, I. (2007a). Critical excitation methods in earthquake engineering, 

Elsevier, Second edition in 2013. 

Takewaki, I. (2007b). Earthquake input energy to two buildings connected by 

viscous dampers, Journal of Structural Engineering, ASCE, 133(5), 620-628. 

Takewaki, I., and Fujita, K. (2009). Earthquake input energy to tall and base-isolated 

buildings in time and frequency dual domains, J. of The Structural Design of 

Tall and Special Buildings; 18(6): 589–606. 

Uang, C.M., and Bertero, V.V. (1990). Evaluation of seismic energy in structures. 

Earthquake Engineering and Structural Dynamics, 19, 77-90. 

Xu YL, He Q and Ko JM. (1999). Dynamic response of damper-connected adjacent 

buildings under earthquake excitation. Engineering Structures; 21:135–148. 

Zahrah, T.F., and Hall, W.J. (1984). Earthquake energy absorption in SDOF 

structures. Journal of Structural Engineering, ASCE, 110(8) 1757-1772. 

Zhu HP, Ge DD, Huang X. (2011). Optimum connecting dampers to reduce the 

seismic responses of parallel structures. Journal of Sound and Vibration; 

330(9):1931–1949. 

 

 



19 

Appendix 1: Accuracy of double impulse as a substitute of one-cycle sine wave 

Consider the same connected building model as shown in Section 3.  The 

damping coefficient of the connecting damper is 4
3 3.76 10 ( / )c N s m    (medium). 

Fig.A1 shows the displacement time histories of the main structure and the 

substructure in the case where 0t  (interval of double impulses) is half the natural 

period of the ‘main structure’.  It can be observed that the response to the double 

impulse can be a good substitute of that to the corresponding one-cycle sine wave.  

On the other hand, Fig.A2 presents the displacement time histories of the main 

structure and the substructure in the case where 0t  is half the natural period of the 

‘substructure’.  It can be observed again that the response to the double impulse can 

be a good substitute of that to the corresponding one-cycle sine wave.  Furthermore 

it can be understood from these figures that the responses of the structure (main 

structure or substructure) to both inputs exhibit better correspondence when the 

natural period of that structure coincides with twice of the input interval 0t . 
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Fig.A1 Displacement time histories of the main structure and the substructure in the 

case where 0t  (interval of double impulses) is half the natural period of the main 

structure 
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Fig.A2 Displacement time histories of the main structure and the substructure in the 

case where 0t  (interval of double impulses) is half the natural period of the 

substructure  


