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COMPUTATION OF QUOTIENT GROUPS
OF INVERSE LIMITS OF BURNSIDE RINGS

Masaharu Morimoto

Graduate School of Natural Science and Technology, Okayama University

Abstract. Let G be a finite group. For a subgroup H of G, we have the
Burnside ring A(H) of H. For a set F of subgroups of G, we have the
inverse limit L(G) of the category consisting of modules A(H) (H € F),
and the restriction homomorphism from A(G) to L(G). In this article,
we discuss computational theory of the cokernel of the homomorphism.

1. INTRODUCTION

This article is supplementary to the joint work [5] with Masafumi Sugimura.

Let G be a finite group. Let S(G) denote the set of all subgroups of G and set
Fo = S(G) ~ {G}. Let G be a subset of S(G) closed under taking subgroups and
conjugations by elements of G. For H € S(G), let A(H) denote the Burnside ring of
H and A(H,GNS(H)) denote the submodule of A(H) generated by [H/K], where
K runs over GNS(H) (see [2], [4]). We have the inverse limit Lz, (G, G) = l(iﬂl}_G.A
of the functor A.: H — A(H,G NS(H)), where H € Fg, which is a submodule
of the cartesian product Pr,(G,G) = [lycr, A(H,G N S(H)), and the restriction

homomorphism

resf. : A(G,G) — Lz.(G,G)

(see [3]). Let Qr.(G,G) denote the cokernel of res%_. It is interesting to compute
the abelian group Qz,(G,G) for a given group G. For a natural number &, let Cj

denote a cyclic group of order k. Let p be a prime and let Z, denote a module
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consisting of p elements. Let m and n be non-negative integers. The following three

computational results have been obtained.

Theorem (Y. Hara-M. Morimoto [3]).
(1) For G=Cpm (m>1), Qr.(G,S8(G)) = Z,™".
(2) For G = Cp,..p,, (i distinct primes), Qr,(G,S8(G)) = O.

Theorem (M. Sugimura [6]).
(1) For G =Cym x Cp (m > 1), Qr.(G,S8(Q)) = 7, p+1,
(2) For G = Cym x Cpo (m > 2), Qry(G,S(G)) = 7, D@ +D+p+L

Theorem (M. Morimoto-M. Sugimura [5]). For G = Cpym X Cpn (m > n > 2),
Qr.(G,S8(G)) = Z,", where

n—3
r=pt+2p" "+ ) (2k+ 1)p" T+ (20— 4)p
k=1
n
+(2n —2)+ (m —n) (Zpk —pn_1> .
k=0

In the present paper, we discuss computational theory to obtain the results above.

For example, the next fact follows from Lemma 3.1 and Theorem 6.1.

Theorem 1.1. Let G be a finite (nontrivial) group and N a normal subgroup of G.
Suppose each mazimal (proper) subgroup H of G contains N. Let K be the set of all
subgroups H of G not containing N. Then it holds that

Q}'G (G’ S(G)) = Qfg(aa S(@)) S2) Q.FG (G’ IC),
where G = G/N.

The result of Morimoto-Sugimura [5] mentioned above is obtained by using Corol-

lary 7.3.
2. INVERSE LIMIT Lxz(F) AND REMARKS

Let &(G) denote the subgroup category of G, namely the objects of &(G) are
all subgroups of G' and the morphisms of &(G) are all triples (H, g, K) consisting
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of H € 8(G), g € G, K € S(G) such that gHg™! C K. Here (H,g,K) is a
morphism from H to K. Each morphism (H, g, K) induces a (group) homomorphism
tigxk : H — K by t(a) = gag™ fora € H.

Let F be a subset of S(G). Let § denote the full subcategory of &(G) such
that Obj(F) = F and let 2Ab denote the category of abelian groups of which the
objects are all abelian groups and the morphisms are all (group) homomorphisms.
Let F': § — 2b be a contravariant functor. Then we have the inverse limit lim F

—F
of F' with respect to F, where

: _ (H,g,K)*'rx =
IE;F_ {(IH) € H F(H) ’ v (H,gg,K) € Mor(%)}

HeF
(see [1]). This inverse limit will be denoted by Lx(F).

We subsequently use the next fact without specifically mentioning.

Proposition 2.1. If F(H) is a free Z-module for each H € F then lim F is a

—F
direct summand of []ycr F(H).

Let e denote the identity element of G. For a morphism (H,e, K) of &(G), let
res denote the homomorphism (H,e,G)* : F(K) — F(H). Let Pr(F) denote
the cartesian product [],.- F(H). The image of the restriction homomorphism
res® = [[yerres : F(G) — Pr(F) is contained in Lz(F) and therefore res®
induces res§ : F(G) — Lz(F). Let Bx(F) denote the image of res% and Q#(F) the
quotient group Lz(F)/Bx(F), namely the cokernel of res%.

Let F* denote a complete set of representatives of G-conjugacy classes of sub-
groups belonging to F such that 7* C F. Let proj : [[ycF(H) = []ycr-F(H) be
the canonical projection. This gives the homomorphisms proj, : Lx(F) — Lz (F)
and projg : Br(F) = Br-(F') as well as the homomorphism pg : Q#(F) = Qx«(F).
Clearly, the diagram

Br(F)—— Lr(F) — Qx(F)
N
Bz (F)—— Lr«(F) —> Q- (F)

commutes.
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Proposition 2.2. In the diagram above, projg, proj;, and pg all are isomorphisms.

Proof. By definition of inverse limit, proj; is an isomorphism. Since projy is surjec-
tive and proj;, is injective, projg is bijective. As proj; and projg are isomorphisms,

pq@ is an isomorphism. O

3. DEFINITION OF Qr(G,G) AND INTERPRETATION OF Lx(G,G)

Let G be a subset of S(G) closed under taking conjugations by elements in G. For
a subgroup H of G, let G(NH) denote the set consisting of all KN H, where K ranges
over G. We have the restriction homomorphism res% : A(G,G) — A(H,G(NH)). Let
Pr(G,G) denote the cartesian product [] . » A(H, G(NH)). We have the restriction
homomorphism res® : A(G,G) — Pr(G,G). Let Lx(G,G) denote the inverse limit
l(iin A of the Burnside ring functor A : H — A(H,G(NH)), where H € §(G).
Siné:e the image of res® above is contained in Lx(G,G), we obtain the restriction
homomorphism res : A(G,G) — Lz(G,G). Let Bx(G, G) denote the image of res§
and let Qx(G, G) denote the cokernel of res%, i.e. Q#(G,G) = Lx(G,G)/ Bx(G,G).

Lemma 3.1. Let F be a subset of S(G) closed under taking subgroups, and let G be
a subset of S(G) closed under taking subgroups and conjugations by elements of G.

Then Lr(G,G) coincides with Bx(G, G), where

Br(G,G) ={z € Pr(G,G) | nz € Br(G,G) for some n € N}.

Proof. First recall that Lx(G,G) is a direct summand of the Z-free module Px(G, G).
The lemma above follows from the facts that Bx(G,G) C Lx(G,G) and that
rankz Br(G, G) = rankz Lz (G, G). O

4. DEFINITION OF GROUPS R(—) AND REMARKS

Let W be a finitely generated free Z-module. For a submodule U of W, we define
the submodule U of W as {x € W | nz € U for some n € N}. Therefore U is the
smallest direct summand of W containing U. We define a finite module Ry (U) by

(4.1) Rw(U)=U/U.
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Clearly, Rw (U) coincides with Ry (U). We readily see

Proposition 4.1. Let U = U; @ Uy be a submodule of W.

(1) U contains U, + Us.
(2) If U = U, + U, holds then Ry (U) = Rw(U;) ® Ry (Us).

Let f : V — W be a homomorphism between finitely generated free Z-modules
V and W. We define a finite module R(f) by

(42) R(f) = Rw(f(V)) (= f(V)/F(V)).

We immediately obtain

Proposition 4.2. Let V., W, V', and W’ be finitely generated free Z-modules, and
let f:V — W be a homomorphism.

(1) If a: V' — V is an epimorphism then R(f) = R(f o a).

(2) If B: W — W' is a homomorphism such that ﬂlf(—v) : f(V) = W' s split
ingective then R(f) = R(Bo f).

Let M = [u;j] be an m x n-matrix with entries in Z, i.e. M € My, »(Z). Then
we have the homomorphism fy : Z™ — Z" defined by fiy(z) = £ M, where £ =
[z1,...,Zm] € Z™. We define the finite module R(M) by
(4.3) R(M) = R(fu).

Therefore R(M) coincides with Rzn(U), where U = (uq, ..., %)z withu; = [ug, . . ., Ui

(i=1,...,m).

Example 4.3. For natural numbers py, ..., p, and the matrix
pr 0 -~ 0 0 -~ 0
0 . . E
M=\ 0 o
0 - 0 p, 0 --- 0
0O --- 0 00 ---0

R(M) is isomorphic to Z,, & --- ® Z,,.
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We remark that in general, the module R ( []Vé“ %12}) is not isomorphic to
22

R(M11) (&) R(MQQ), nor to R ([MH Mlg]) (&) R(Mgg)
Let A= {a,...,a,} and B= {b,...,b,} be Z-bases of V and W, respectively.
For a homomorphism f : V — W, the matrix My = [u;;] € M ,(Z) is defined by

f(a,)=2u,]b] (Z=1, ,m)
j=1

The matrix M is called the matriz presentation of f with respect to A and B. We

readily obtain

Proposition 4.4. Let f : V. — W be a homomorphism and let My = [u;;] €
M. n(Z) be the matriz presentation of f. Then the module R(f) is isomorphic to
R(My), and hence to Rzn(U), where U = (uq, ..., un)z andw; = [ug, ..., upm] (i =1,

.., m).

For matrices M, N € M, »(Z), we say that M is similar to N, and write M ~ N,
if there exist X € GL,,(Z) and Y € GL,(Z) such that N = X - M -Y. By

Proposition 4.2, we get

Proposition 4.5. Let M and N be matrices in M,, ,(Z). If M is similar to N then
R(M) is isomorphic to R(N).

Corollary 4.6. Let X € M, (Z), Y € Ms4(Z), and Z € My(Z). Then

R([g X};ZD gR([)O( 8]) ~ R(X) @ R(Y).

Proof. First note
[é ﬂ € GL,(Z).
The corollary above follows from the equality
[X X.Z] _ [X 0] [I Z]
O Y | |0 Y||O I
and Proposition 4.5. O

We give a computational example of Proposition 4.5.
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Example 4.7. Let p be a natural number and M the (p + 3) X (2p + 2)-matrix
1T 1 ... ... 1.0 0 0]
p 0 -+ - 00 1 1
0 p 0 01 0 1 1
: p 0 0 1
0 0 p 1 10
_0 0 0 P p pJ
We readily check that M is similar to the matrix
10 000 -+ - 0]
0 1 0 oo0oo0 -+ -0
N=1: . 000 0
0 0 1 00 0
0 - -« 0 0poO 0
0 -~ -~~~ 0 000 0]

IR

Therefore we get R(M) = R(N) = Z,.

5. COINCIDENCE OF R(res%) AND R(res§ .)

For F C 8(G), let Fnax be the set of all maximal elements of F and let F* be
a complete set of representatives of conjugacy classes of subgroups belonging to F
such that F* C F. If Fp.x is closed under taking conjugations by elements of G,
the equality Finax = Uyer,, -(H) holds, where (H) = {gHg™' | g € G}. Let G be
a subset of S(G) closed under taking conjugations by elements in G. We have the

commutative diagram

resG

LF(G,G) —2— Px(G,0)

n proj
m\

L-Fmax*(G’ g) ——]2_> P}-max‘(G7 g)

A(G,G)

consisting of canonical homomorphisms.

Proposition 5.1. For the diagram above, the following holds.
(1) The homomorphisms j; and jo are split injective.

(2) The composition projo j; : L(G,G) — Pr,, ~(G,G) is split injective.



(3) R(res?) = R(res? .) = R(jaoresg .).

Proof. Since A(H) is a free Z-module for each H € Fyax, j1 and jo are split injective,
which implies R(resf  .) = R(jyoresg_ .). Since j, and n both are split injective,
proj o ji is split injective and hence R(res$) 2 R(projo j; ores%). Thus we conclude
R(res%) = R(res§ .). a

The next corollary immediately follows from the proposition above.

Corollary 5.2. For the commutative diagram

Lx(G,G)

res§
m
resG

AG,G) — = [, (G,G)

x lm
reS-"'_mzlx"‘

L]:max‘ (Gﬁ g) —J> meax* (G7 g)

consisting of canonical homomorphisms, it holds that
R(res$) = R(res§ )= R(res% .) = R(joresy .).

Example 5.3 (cf. [3, Proposition 2.2]). Let p be a prime, C,, a cyclic group of order
p, G = Cp x Cp, F = Fg, and M the matrix given in Example 4.7. Then it holds
that

(5.1) Qr(G,S(G)) = R(resE) 2 R(j o resi )X R(M) X7,

6. DECOMPOSITION OF R(resg)

In this section, let N be a normal subgroup of G and let F and G be subsets of
S8(G) closed under taking conjugations by elements of G. We use the notation
F(>N)={H e F| HDN},
F(= N)/N ={H/N | H € F(= N)},
F(=N)Y=F~F(=N).
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Let
resf : A(G,G) = Lx(G,G),

res; : A(G,G(> N)) = Lr>n) (G, G(> N)),
resy A(G, 9(2 N)l) 4 L}'(G,Q(Z N)l)v and
fes; : A(G/N,G(> N)/N) = Lrnyn(G/N,G(> N)/N)

denote the restriction homomorphisms, respectively.

Theorem 6.1. If the condition N C (7 L is satisfied then it holds that

R(res$) = R(res;) @ R(resy) = R(T65,) @ R(resy).

Proof. We can readily see R(res;) = R(fes;). Observe the commutative diagram

(6.1) AG,G(= N)) —= Lrem (G, G(= N)) -~ Pz, +(G,G(> N))
|, b :
A(G,G) Z o L (G,0) £ Prpoer (G, G)

/ ] -

A(G,G(= N)) —,> Lr(G,G(= N)') —5;> Proas(G,G(> N))

~

consisting of canonical homomorphisms. By Proposition 5.1, we have R(res§) &
R(pores$), R(res;) & R(p, ores;), and R(resy) = R(p; oresy). There are canonical
direct sum decompositions

A(G,G) = A(G,G(> N))® A(G,G(> N)'), and

Pt (G, G) = Pror (G,G(= N)) © Pr,,»(G,G(= N)").

With respect to these direct sums, p o 1res.JGT coincides with (p; o res;) @ (ps o resy).
Thus we get R(p oresE) = R(p, ores;) @ R(py o resy). O

Example 6.2. Let p be a prime and m a natural number > 2. Let a and b be
generators of Cym and C,, respectively, and let G = Cym x C,, be the group generated
by a and b. Let N be the subgroup of G generated by a?" " We regard N = Cp, x E
as the subgroup of Cym x C,. Let F = Fg, K = G/N, and H = Fx. We remark



that K = Cym-1 x C,. Let M be the (p + 1) x (2p + 1)-matrix
(p 0 0011 - 1]
0 p - 011 1
: o0 :
6 o0 -~ 0 poO11 -1
0 0 0 0ppp - p
We readily show that M is similar to the matrix
[p 0 0000 - 0
0 p 000 ---0
: o0 :
0o 0 --- 0 pO0O0OO - 0
0 0 0 0100 - 0]

Thus we get R(M) = Z,P. It follows that
QR (G,S8(Q)) = R(res§) = R(res§_ .)= R(resf .)® R(M)

(6.2)
> Qu(K,S(K)) & L.

7. DECOMPOSITION OF R(res$) FOR G = Cym X Cpn

Throughout this section, let G = Cpm x Cpn with m > n > 2 for a prime p. Let a
and b be generators of the cyclic groups Cpm and Cpn, respectively. Let N denote the
subgroup generated by a?™ " and " "'. Thus N is isomorphic to C, x Cp. Let Hy
denote the subgroup generated by a?™~'. We can regard Hy as the subgroup C, x E

of Cpm x Cpn, where E is the trivial group. The group G also contains subgroups

H; (i =1, ..., p) of order p generated by a™®" 'b»"~". We can regard H, as the
subgroup E x C, of Cym X Cpn. Let
G =38(G),

G={H e€S(G)| HD N},
gg,l‘ = {H c S(G) <G I HD>D HZ},
where i = 0, ..., p. Then the equality

(7.1) G =G Gyl (H gu) I {E}
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holds, which gives the decomposition formula

(7.2) A(G,G) = A(G,G1) ® A(G, Ga0) ® é A(G, G2i) ® A(G,{E})
i=1

of the Burnside module. In addition, we have the canonical identifications

G = S(G/N),

G1 UGy = S(G/Hy),

G/N = Cym-1 X Cpn-1, and

G/Hy = Cym-1 X Cpn.
Set Xpmn = A(G,G1), Ymmni = A(G,Gs;) (¢ =0, ..., p), and Z,,, = A(G,{E}). By
(7.2) we get

(7.3)

(7.4) A(Cym X Ciyn) = Xn @ @’,’_Oymm ® Zmm.
It follows from (7.3) that
A(Cyns X Cynt) = X,

(7.5)
A(Cym-1 X Cpn) = Xy @ Yoo

In addition, we have

(7.6) Yini & Yoni € Yono (1=1,...,p).
Let F=S(G)N{G}, i={He€F|HON}, Fyy={H e F|H>H} (i=0,
..y p), and let frn, Gmns Pmnis kmn De the restriction homomorphisms
res? : A(G) — Lz(G,S(G)),
res]G:1 : Xmn = Lr (G, Gy),
res%,  : Ymni = Lz, (G, Gay),
res¢ : Zmn — Lr(G,{E}),

respectively.

Theorem 7.1. Under the situation above, the direct sum decomposition formula

p
R(fm,n) = R(gm,n) 2] R(hm,n,O) S2) @ R(hm,n,i) S2) R(km,n)

i=1

holds.
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Proof. Similarly to the diagram (6.1), we have diagrams

gm,n

an - L.Fl (G gl) - meax(G7 gl)

l | l
(

A(G) Ly(G,G) — Pr,..(G,G)

fm,n
X

T

A(G, gll) m L}‘(G, gll) - meax( ,gll),

h/m,n,O

Ym,n,O sz'o (G7 g2,0) > P}'max (Ga g2,0)

Lo |

AG,G) > Lx(G,GY') Pr,...(G,G)

| | |

A(G,Gap') — Lz (G,Gs0') — Pr,..(G,G20'),

and so on, where G;" = G\ G and Go o' = G1' \ Ga . The theorem above is obtained

by iteration of use of Theorem 6.1. O

Concerning with Theorem 7.1, we remark

Proposition 7.2.

(1) (fm—l n—l) = R(gm,n)-
(2 fm 1 n) =R (gm n) 2] R(hm,n,o)-
(3) R(finn) = R(gmn) © R(himno) © R(hn,nyo)eap & Zyp.

Proof. The claims (1) and (2) follow from (7.5). Since R(kmn) = Z,, the claim (3)
follows from Theorem 7.1 and (7.6). O

The next fact immediately follows from the proposition above.

Corollary 7.3.
(1) R(fn—l,n) = R(fn—l,n—l) @D R(hn,n,o)'
(2) R(fm,n) = R(fm—l,n) &b R(hmn,o)e}p D Zy.

Now recall Lemma 3.1 and Sugimura’s theorem described in the introduction. By

induction arguments on m and n with the corollary above, we can readily prove



Proposition 7.4. Any element z € Qx,(G,S(G)) has exponent p, i.e. px =0,
and hence Qr,(G,S(G)) is isomorphic to a direct sum of copies of Z,.
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