A FORMULA FOR THE CASSON INVARIANT BY KAUFFMAN BRACKET SKEIN ALGEBRAS

SHUNSUKE TSUJI (GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO)

ABSTRACT. We give a formula for the Casson invariant using $\zeta':\mathcal{I}(\Sigma_{g,1})\to (F^3\mathcal{S}(\Sigma_{g,1})/F^5\mathcal{S}(\Sigma_{g,1}),$ bch), where $(\mathcal{S}(\Sigma),\{F^n\mathcal{S}(\Sigma_{g,1})\}_{n\geq 0})$ is the filtered Kauffman bracket skein algebra of a surface $\Sigma_{g,1}$ of genus g with nonempty connected boundary defined in [2]. Here Let $\mathcal{I}(\Sigma_{g,1})$ be the Torelli group of $\Sigma_{g,1}$.

1. Introduction

Recently it has come to light that the Kauffman bracket skein algebra plays an important role in the study of the relationship between 2-dimensional topology and 3-dimensional topology. We actually define an embedding from the Torelli group of a surface of genus g with nonempty connected boundary into the completed Kauffman bracket skein algebra of the surface in [3]. Furthermore, using this embedding, we construct an invariant for integral homology 3-spheres. In this paper, we give a formula for the Casson invariant, using this construction.

2. Review

We first review some facts about Kauffman bracket skein algebras; for a more detailed treatment, see [1], [2], [3] and [4].

Let Σ be a compact connected oriented surface and I the closed interval [0,1].

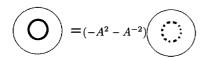
2.1. **Definition.** We denote by $\mathcal{T}(\Sigma)$ the set of unoriented framed tangles in $\Sigma \times I$. Let $\mathcal{S}(\Sigma)$ be the Kauffman bracket algebra of Σ , which is the quotient of $\mathbb{Q}[A^{\pm 1}]\mathcal{T}(\Sigma)$ by the skein relation and the trivial knot relation defined by Figure

1. We denote by [L] the element of $\mathcal{S}(\Sigma)$ represented by $L \in \mathcal{T}(\Sigma)$. The product of $\mathcal{S}(\Sigma)$ is defined by Figure 2. Furthermore, the Lie bracket $[\ ,\]$ of $\mathcal{S}(\Sigma)$ is defined by

$$[x,y] = \frac{1}{-A + A^{-1}}(xy - yx).$$

the skein relation

the trivial knot relation



$$xy \stackrel{\text{def.}}{=} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\Sigma$$

$$\text{for } x, y \in \mathcal{S}(\Sigma)$$

FIG 2. The product

FIG 1. The definition of the skein algebra

The augmentation map $\epsilon: \mathcal{S}(\Sigma) \to \mathbb{Q}$ is defined by $A \mapsto -1$ and $L \mapsto (-2)^{|L|}$, where |L| is the number of $\pi_0(L)$. For $x \in \pi_1(\Sigma)$, we define $\langle x \rangle \in (\ker \epsilon)/(\ker \epsilon)^2$ by $\langle x \rangle \stackrel{\text{def.}}{=} [L_x] + 2 - 3w(L_x)(A - A^{-1})$ using L_x with the homotopy class of L_x the conjugacy class of $x \in \pi_1(\Sigma) \simeq \pi_1(\Sigma \times I)$, where $w(L_x)$ is the self linking number. The \mathbb{Q} -linear map $\lambda: H \wedge H \to (\ker \epsilon)/(\ker \epsilon)^2$

$$[a] \wedge [b] \wedge [c] \mapsto \langle abc \rangle - \langle ab \rangle - \langle bc \rangle - \langle ca \rangle + \langle a \rangle + \langle b \rangle + \langle c \rangle$$

is injective where $H \stackrel{\text{def.}}{=} H_1(\Sigma, \mathbb{Q}) = \mathbb{Q} \otimes \pi/[\pi, \pi]$. Let ϖ be the quotient map $\ker \epsilon \to \ker \epsilon/\text{im}\lambda$. We set the filtration $\{F^n\mathcal{S}(\Sigma)\}_{n\geq 0}$ by $F^0\mathcal{S}(\Sigma) \stackrel{\text{def.}}{=} \mathcal{S}(\Sigma)$, $F^1\mathcal{S}(\Sigma) \stackrel{\text{def.}}{=} \ker \epsilon$ and $F^{2n}\mathcal{S}(\Sigma) = (\ker \epsilon)^n$,

$$F^{2n+1}\mathcal{S}(\Sigma) = \ker \varpi(\ker \epsilon)^{n-1}.$$

A FORMULA FOR THE CASSON INVARIANT BY KAUFFMAN BRACKET SKEIN ALGEBRAS3

We remark that

$$[F^{n}\mathcal{S}(\Sigma), F^{m}\mathcal{S}(\Sigma)] \subset F^{n+m-2}\mathcal{S}(\Sigma),$$

$$F^{n}\mathcal{S}(\Sigma)F^{m}\mathcal{S}(\Sigma) \subset F^{n+m}\mathcal{S}(\Sigma).$$

2.2. Completion and Torelli group. We defined the completed skein algebra by

$$\widehat{\mathcal{S}}(\Sigma) \stackrel{\text{def.}}{=} \varprojlim_{n \to \infty} \mathcal{S}(\Sigma) / (\ker \epsilon)^n.$$

We remark that the natural homomorphism $S(\Sigma) \to \widehat{S}(\Sigma)$ is injective if $\partial \Sigma \neq \emptyset$. We denote

$$L(c) \stackrel{\text{def.}}{=} \frac{-A + A^{-1}}{4 \log(-A)} (\operatorname{arccosh}(-\frac{c}{2}))^2 - (-A + A^{-1}) \log(-A).$$

Let $\Sigma_{g,1}$ be a surface of genus g with nonempty connected boundary.

Theorem 2.1 ([3]). The group homomorphism $\zeta : \mathcal{I}(\Sigma_{g,1}) \to (F^3\widehat{\mathcal{S}}(\Sigma_{g,1}), \operatorname{bch})$ defined by $t_c t_{c'}^{-1} \mapsto L(c) - L(c')$ for any bounding pair (c, c') is well-defined and injective. Here $\operatorname{bch} : \widehat{\mathcal{S}}(\Sigma) \times \widehat{\mathcal{S}}(\Sigma) \to \widehat{\mathcal{S}}(\Sigma)$ is the Baker Campbell Hausdorff series as the Lie algebra $\widehat{\mathcal{S}}(\Sigma)$. Furthermore, we have $\zeta(t_c) = L(c)$ for any null-homologous simple closed curve c.

2.3. An invariant for integral homology 3-spheres. We fix an Heegaard spliting of $S^3 = H_g^+ \cup_{\iota} H_g^-$ where H_g^+ and H_g^- are handle bodies of genus g and $\iota : \partial H_g^+ \to H_g^-$ is a diffeomorphism. We fix an embedding $\Sigma_{g,1} \hookrightarrow \partial H_g^+$. We denote $H_g^+ \cup_{\iota \circ \xi} H_g^-$ by $M(\xi)$ for an element ξ of the mapping class group of $\Sigma_{g,1}$. Let $e : \Sigma_{g,1} \times I \to S^3$ be the orientation preserving embedding satisfying $e_{|\Sigma_{g,1} \times \{0\}} : \Sigma_{g,1} \times \{0\} \to \Sigma_{g,1}, (t,0) \mapsto t$.

Theorem 2.2. The map $Z: \mathcal{I}(\Sigma_{g,1}) \to \mathbb{Q}[[A+1]]$ defined by

$$Z(\xi) \stackrel{\text{def.}}{=} \sum_{i=0}^{\infty} \frac{1}{i!(-A+A^{-1})^i} e((\zeta(\xi))^i)$$

SHUNSUKE TSUJI (GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO)

induces

$$z: \mathcal{H}(3) \to \mathbb{Q}[[A+1]], M(\xi) \mapsto Z(\xi)$$

where we denote by $\mathcal{H}(3)$ the set of integral homology 3-spheres.

Proposition 2.3. For $M \in \mathcal{H}(3)$, $z(M) \mod ((A+1)^{n+1})$ is a finite type invariant of order n.

Proposition 2.4. For $M \in \mathcal{H}(3)$, the coefficient of (A+1) in z(M) is (-24) times the Casson invariant of M.

3. The Casson invariant and the Kauffman bracket skein algebra

We fix elements $\alpha_1, \beta_1, \dots, \alpha_g, \beta_g \in \pi_1(\Sigma_{g,1}, *)$ as shown in Figure 3, where $* \in \partial \Sigma_{g,1}$. We denote the closed curve represented by the conjugacy class of $x \in \pi_1(\Sigma_{g,1}, *)$ by |x|. We define a \mathbb{Q} -linear map $\rho: S^2(H_1(\Sigma_{g,1}, \mathbb{Q})) \to F^2S(\Sigma_{g,1})/F^3S(\Sigma_{g,1})$ by $[x] \cdot [y] \to \langle xy \rangle - \langle x \rangle - \langle y \rangle$ for $x, y \in \pi_1(\Sigma)$, where we denote by $S^2(V)$ the second symmetric tensor of \mathbb{Q} -linear space V. We also denote by $\rho: S^2(S^2(H_1(\Sigma_{g,1}, \mathbb{Q}))) \to F^4S(\Sigma_{g,1})/F^5S(\Sigma_{g,1})$ define by $\rho(s \cdot t) = \frac{1}{2}(\rho(s)\rho(t) + \rho(s)\rho(t))$ for $s, t \in S^2(H_1(\Sigma_{g,1}, \mathbb{Q}))$. We define the elements of $F^3S(\Sigma_{g,1})/F^5S(\Sigma_{g,1})$ as following.

• For
$$i \neq j$$
, we set
$$u(i,j) \stackrel{\text{def.}}{=} |\alpha_i \beta_i \alpha_i^{-1} \beta_i^{-1} \alpha_j| - |\beta_j|,$$

$$u'(i,j) \stackrel{\text{def.}}{=} |\alpha_i \beta_i \alpha_i^{-1} \beta_i^{-1} \beta_i| - |\alpha_j|.$$

• For
$$1 \leq i < j < k \leq g$$
 and $\epsilon_i, \epsilon_j, \epsilon_k \in \{1, -1\}$, we set $u(\epsilon_i, \epsilon_j, \epsilon_k, i, j, k) = |\alpha_k^{\epsilon_k} \beta_k \alpha_i^{\epsilon_i} \beta_i| - |\alpha_k^{\epsilon_k} \beta_k \alpha_j^{\epsilon_j} \beta_j \alpha_i^{\epsilon_i} \beta_i (\alpha_j^{\epsilon_j} \beta_j)^{-1}|$. The group homomorphism $\zeta : \mathcal{I}(\Sigma_{g,1}) \to (F^3 \widehat{\mathcal{S}}(\Sigma), \text{bch})$ induces $\zeta' : \mathcal{I}(\Sigma_{g,1}) \to (F^3 \mathcal{S}(\Sigma_{g,1})/F^5 \mathcal{S}(\Sigma_{g,1}), \text{bch})$. We remark that $\text{bch}(x, y) = x + y + \frac{1}{2}[x, y]$ for $x, y \in F^3 \mathcal{S}(\Sigma_{g,1})/F^5 \mathcal{S}(\Sigma_{g,1})$.

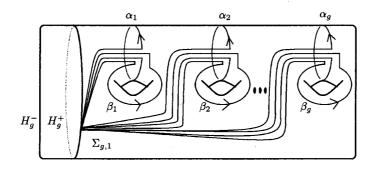


FIG 3. $\alpha_1, \beta_2, \cdots, \alpha_q, \beta_q$

Proposition 3.1. We have

$$\zeta'(\mathcal{I}(\Sigma_{g,1})) \subset \mathbb{Q}(\{u(i,j), u'(i,j), u(\epsilon_i, \epsilon_j, \epsilon_k, i, j, k)\}) + \rho(S^2(S^2(H_1(\Sigma_{g,1}, \mathbb{Q})))) + \mathbb{Q}(A+1)^2.$$

Theorem 3.2. Let ξ be an element of $\mathcal{I}(\Sigma_{g,1})$. If

$$\zeta'(\xi) = \sum_{i < j < k, \epsilon_i, \epsilon_j, \epsilon_k \in \{\pm 1\}} m(\epsilon_i, \epsilon_j, \epsilon_k, i, j, k) u(\epsilon_i, \epsilon_j, \epsilon_k, i, j, k)$$

$$+ \sum_{i < j} n_{i,j} \rho(([\alpha_i] \cdot [\alpha_j]) \cdot ([\beta_i] \cdot [\beta_j]))$$

$$+ \sum_i n_i' \rho(([\alpha_i] \cdot [\alpha_i]) \cdot ([\beta_i] \cdot [\beta_i]))$$

$$+ \sum_i n_i'' \rho(([\alpha_i] \cdot [\beta_i]) \cdot ([\alpha_i] \cdot [\beta_i]))$$

$$+ n''' (A + 1)^2 + X.$$

6HUNSUKE TSUJI (GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO)

where X is an element of the subspace of $F^3\mathcal{S}(\Sigma_{g,1})/F^5\mathcal{S}(\Sigma_{g,1})$ generated by

$$\{u(i,j), u'(i,j)\} \cup$$

$$\{\rho((x_1 \cdot x_2) \cdot (x_3 \cdot x_4)) | x_1, x_2, x_3, x_4 \in \{[\alpha_1], \cdots, [\alpha_g], [\beta_1], \cdots, [\beta_g]\}\}$$

$$\setminus \rho(\{([\alpha_i] \cdot [\alpha_j]) \cdot ([\beta_i] \cdot [\beta_j]), ([\alpha_i] \cdot [\alpha_i]) \cdot ([\beta_i] \cdot [\beta_i]), ([\alpha_i] \cdot [\beta_i]) \cdot , ([\alpha_i] \cdot [\beta_i])\}),$$

$$then the Casson invariant of $M(\xi)$ is$$

$$\sum_{i < j < k, \epsilon_i, \epsilon_j, \epsilon_k \in \{\pm 1\}} \epsilon_i \epsilon_j \epsilon_j (m(\epsilon_i, \epsilon_j, \epsilon_k, i, j, k))^2 + \sum_{i < j} \frac{1}{2} n_{i,j} + \sum_i \frac{3}{4} n'_i + \sum_i n''_i + \frac{1}{48} n'''.$$

Outline of proof. By definition, we have

$$Z(\xi) = 1 + \frac{1}{-A + A^{-1}} e(\zeta(\xi)) + \frac{1}{2(-A + A^{-1})^2} e((\zeta(\xi))^2) \mod ((A+1)^2).$$

By straightforward computation, we obtain

$$\frac{1}{-A+A^{-1}}e(\zeta(\xi))
= (\sum_{i< j} (-12)n_{i,j} + \sum_{i} (-18)n'_{i}
+ \sum_{i} (-24)n''_{i} + (-\frac{1}{2}n'''))(A+1) \mod ((A+1)^{2}),
\frac{1}{2(-A+A^{-1})^{2}}e((\zeta(\xi))^{2})
= -24 \sum_{i< j< k,\epsilon_{i},\epsilon_{j},\epsilon_{k}\in\{\pm 1\}} \epsilon_{i}\epsilon_{j}\epsilon_{j}(m(\epsilon_{i},\epsilon_{j},\epsilon_{k},i,j,k))^{2}(A+1)
\mod ((A+1)^{2}).$$

This proves the theorem.

Ш

REFERENCES

- [1] S. Tsuji, Dehn twists on Kauffman bracket skein algebras, preprint, arXiv:1510.05139(2015).
- [2] S. Tsuji, The quotient of a Kauffman bracket skein algebra by the square of an augmentation ideal, preprint, arXiv:1606.01096(2016).
- [3] S. Tsuji, The Torelli group and the Kauffman bracket skein module, preprint, arXiv:1606.01114(2016).
- [4] S. Tsuji, Construction of an invariant for integral homology 3-spheres via completed Kauffman bracket skein algebras, preprint, arXiv:1607.01580.

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8941, Japan

E-mail address: tsujish@ms.u-tokyo.ac.jp