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A coordinate system for the Teichmiiller space of a compact
surface and a rational represesentation of the mapping class group
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§1. Teichmiiller spaces and mapping class groups. Let S = S, denote
a compact oriented surface of genus g with n boundary curves c,..., ¢,. We
assume that 2g — 2 +n > 0. The fundamental group I'y, = m1(S) has the
presentation:

: g
(@1,b1, ..., aq,bg,C1, .0y Cp (H[aj,bj])cl cep = 1),
j=1

where [a,b] = aba~!b7! is the commutator of a and b, and we denote also
by ¢; the homotopy class of ¢;. Let L = (Ly,...,L,) € R%; and Ty,(L) be
the Teichmiiller space of isotopy classes of complete hyperbolic metrics on
the interior I(.S) of S with the length of the geodesic isotopic to c; is L; for
j=1,...,n (c; corresponds to a puncture if L; = 0.) Let C = C,,, denote the
set of isotopy classes of unoriented closed curves in I(S). Each v € C defines a
real analytic function on Ty, (L) called the geodesic length function associated
to v: For each X € T, ,(L)

£,(X) = the length of the geodesic representation in y on X.

We also define 7.,(X) = 2 cosh(£,(X)/2). X defines a Fuchsian representation
x of T'y, into PSL(2,R) up to conjugacy and we have

(X)) = [trx(7)]-

We call 7, the trace function associated to v. We can identify X € Ty,(L)
with the simultaneous conjugacy class G(X) of a tuple of matrices in SL(2,R)

(Al? Bl7 ey Ag? Bg7 Cl? ey Cﬂ) = (X(al)v X(b1)7 cey X(a’g)7X(bg)7 X(Cl)’ EEE) X(Cn))

with trA; > 0, trB; > 0 (j = 1,...,g) and trC; = —2cosh(L;/2) = —¢; < 0
(j =1,...,n), and hence identify T, ,(L) with

Ton(l1, - ln) ={G(X): X € Tyn(L)}.



The Teichmiiller space T, ,,(L) is homeomorphic to R?, where d = 6g — 6 + 2n.

Let MC,,, denote the mapping class group of the surface S = S, ,. Each
element [f] of MC,, is the isotopy class of an orientation preserving diffeomor-
phism f : S — S preserving each boundary curve setwise. MC,, acts on the
Teiichmiiller space Ty ,(L). If X = (S,0) € Ty,(L), where o is a hyperbolic
metric on S, then [f](X) is the isotopy class of (S, f*¢). This group induces a
subgroup of outer automorphisms of the surface group I'y .

The first statement of the following theorem is proved by Schmutz, Oku-
mura, Feng Luo and others. For a proof of the full statement, see [8].

Theorem 1 There are simple closed curves Y1, ..., Yar1 on I (S) such that
®:T,,(L) » R

defined by ®(X) = (79,(X), ..., Tyyy1 (X)) is an embedding. Moreover, the map-
ping class group MC,, acts on ®(Ty,(L)) as a group of rational transfor-
mations in the coordinates x,...., 4r1 of R and 4y,...,¢, over the rational
number field. :

§2. Finite subgroups of the mapping class group of genus 2 surface.
For the rest of this note, T, means the Teichmiiller space of the closed surface of
genus g. By the Nielsen-Kerckhoff realization theorem [5], each finite subgroup
G of MCG, = MCG,, acts on a Riemann surface R of genus g as a group
of conformal automorphisms. For each ¢ € MCG,, let ¢, denote the rational
transformation acting on ®(T,) obtained by Theorem 1. Let zo = ®(X,) be
an arbitrary point of ®(T,). If ¢7*(z¢) = zo for some m > 0, then ¢ is an
isotopy class of a conformal automorphism (including the identity map) on the
Riemann surface X, and we can conclude that ¢ is elliptic or it has a finite
order. Since the order of an elliptic element is at most a number Pg depending
only on g (< 84(g — 1) by Riemann-Hurwitz formula), we can detect whether
an element of MC, is ellptic or not by showing some ¢7* (1 < m < P,) fixes
Tg.

Let G be a finite subgroup of MC, and assume that all elements of G fix
a Riemann surface R of genus g. If the genus of the factor surface R/G is h
and the covering map m : R — R/G is branched over n points p;,..., p, with
branching orders m; with m; < my < -+ < my, then (h;my, ..., m,) is the type
of the orbifold R/G. In stead of (h,m;,...,m,), we often write (h;v{*, ..., v5")
(h < --- <) if v; appears r; times in (my, ..., my,).
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The mapping class group MCG, of a closed orientable surface of genus 2
is generated by Dehn twists wy, ws, ws, wy and ws with the following defining
relations (see [1, p.184]):

wiwj =wjw; if|i—37>21<4,j<5 (1)

Wil 41W; = Wi 1Wilit1 (1<i<4) (2)
(wiwowswaws)® = 1 3)

(w1 wawswswawswawow: ) = 1 (4)

W1 Wawawawiwawswew, and w; commute for 1 =1,2,3,4,5 (5)

In [2] S. A. Broughton classified completely the finite subgroups of MCG,,
up to topological equivalence. After a lengthy calculations, Nakamura and
the author found explicit expressions by the Dehn twists w,, ..., ws for the
generator-systems in Broughton’s list.

Theorem 2 ([9]). A non-trivial finite subgroup of MCG, of a closed ori-
entable surface of genus 2 is conjugate with one of the groups in the table
below. :

The table shows the group G, corresponding to (2,%) in [2] with generators
expressed in wy, ... , ws, the order |G,| and the orbifold type.

(23.) Ga = <.’L’ B .’1)2 1> = Z2, T = w1w2w3w4w§w4W3w2w1, 2, (0, 26) .

(2b) Gy = (z: 32 =1) ¥ Zy, T = (wwowawaws)?, 2, (1;22).

(2.¢) Ge={(z: 23 = 1) X Z3, T = (wiwowawaws)?, 3, (0;3%).
(26) Ge = (.’1) H I4 = 1> = Z4, T = (W1W1W2LU3UJ4)2, 4, (0, 22,42).
(

2f) Gy =(z: 22 =y = [1,y] = 1) = Zy X Zy, T = WiWow3swWiwawswowi.
y= (w1w2w3w4w5)3, 4, (0; 25)-

(2h) Gh = (a: : .1:5 = 1> = Z5, T = (w1w2w3w4)2, 5, (O, 53)
1

(2i) Gi= (z: z8 & 7, T = wiwowswyws, 6, (0,3,62).
'z

)
(2k1) Gy = (z: 25 =1) 2 Zg, T = wywow; 'wi ', 6, (0,22,32).
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(2k.2) Gy = (z,y : 22 = y_3 = lLzyr™! = y71) & D3, 7 = (wiwowswsws)?,
y = (wiwaws wy "), 6, (0,2%3%).

(2)) Gy = (z: 28 = 1) & Zsg, T = wywiwowsws, 8, (0;2,8,8).

(2111) Gm = <$7 y: 1:4 = y4 = 1a = y2>$y$_l = y_1> = Dg, T = (w1w2wlw3w4)2,
Y= (WQCU3w5CU4(AJ3)2, 87 (07 47 47 4)

(2n) G = (z,y : 2® = y* = Layz™' = y7!) = Dy, 7 = (wwswswaws)?,
y = (wiwawawsws)?, 8, (0,23,4).

(2.0) G, = (z: 219 = 1) & Zjp, = wywawswy, 10, (0,2,5,10).

(2.p) Gp={z,y: 22 =98 = [z,y] = 1) = Zy X Zs, T = w1wowswawarwswswsws,
Y = WiWwaowzwyls, 12, (2,6, 6) )

(21) G, = (z: 2t = 3® = Loyz ™! = y7 1) & Dy3_1, T = (wiwawawswy)?,
y= (w1w2w3w4w5)2, 12, (0,3,42).

(28) Gs = (z,y : a® = 3® = Layz™' = y7') = Ds, ¢ = (wiwpwawaws)?,
y = wwawy 'wit, 12, (0,23,3).

(2-‘1) G. = (a:,y ca? = ys = l,xyac_l = y3) = Dyg3, T = (w1w2w3w4w5)3,

Y = wiwawswsws, 16, (0,2,4,8).
P=y=22=w=[y, 2 =[yv]=[w]=1\ o
(2.w) Gy = <x,y,z,w Cayrl =y, r2zz7) = 2y, zwzrTt = wt -
ZoX (ZoxZiyXZ3), T = (wywowywy 1w§ Yot (wiwawswsws)?, ¥ = wiwswawawiwgwswaws ,
z = (Wiwawswaws)®, w = (wiwawswws)?, 24, (0,2,4,6).

(2x) G = (z,y:2° =y* = 1L, zy® =z, (zy)® = 1) = SL,(3),
T = (wowwj  wi ) (Wi wewswawiwswzwow: ), ¥ = (wiwawiwswy)?, 24, (0,3%,4)

2=yt = (zy)’ =Ly’ =y’n,u? =ay~lzTh? \
(2.2a) Gy = <z,y,u D urul = ylely gt = oy
GLy(3),

T = (wowrwy 'wi twy ) (wwewswawiwswawews ), ¥ = (Wiwawiwswy)?, u =
Waw3wswaws, 48, (07 2,3, 8)

For general g > 1, the mapping class group MC, is generated 2g + 1
Dehn twists wo, wi,..., wyg called Humphries generators (See Theorem 4.14



and Figure 4.5 in [3]) such that the same relations as in (1) and (2) hold and
(%912 = %92 = 1, where, with an additional Dehn twist wy,41 about a curve
C2g+1 = My in Figure 4.5 in (3],

C:w1w2"'w2g,+17 n=w1w2...w2‘q'
We have by (1) and (2)

wo( = w1w2w1(w3"'w2g+1)

= (w1w2 . 'wzg+1)w1 = (w;

and likewise
wi+1C = Cwi for i = ]., ,2g (6)

By using this we have also that
wl = ¢¢lwg
= Cungwyy Wy €

-1 -1 -1, -1
= Cw2g+1w2g w3y Cwy

= Cupwpy et =t
and hence wy = (?p~1¢(~!. Then by (6)
wr =PI ws =M TICTR, L wager = (BFETICTRT = i

If g = 2, then ¢y = ¢5 and hence we obtain Korkmaz's theorem [6] for g = 2.

Theorem 3 The mapping class group MCs is generated by ( = wiwawswaws
and n = wiwawswy satisfying & =7 = 1.

Hirose obtained eXpressions by Dehn twists of all torsions in the mapping class
group MC, with g < 4 in [4].

This note is based on work with Gou Nakamura, Aichi Institute of Technology.
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