A coordinate system for the Teichmüller space of a compact surface and a rational represesentation of the mapping class group

> Toshihiro Nakanishi Shimane University

§1. Teichmüller spaces and mapping class groups. Let $S = S_{g,n}$ denote a compact oriented surface of genus g with n boundary curves $c_1,..., c_n$. We assume that 2g - 2 + n > 0. The fundamental group $\Gamma_{g,n} = \pi_1(S)$ has the presentation:

$$\langle a_1, b_1, ..., a_g, b_g, c_1, ..., c_n : (\prod_{j=1}^g [a_j, b_j]) c_1 \cdots c_n = 1 \rangle,$$

where $[a,b] = aba^{-1}b^{-1}$ is the commutator of a and b, and we denote also by c_j the homotopy class of c_j . Let $L = (L_1, ..., L_n) \in \mathbb{R}^n_{\geq 0}$ and $\mathbb{T}_{g,n}(L)$ be the Teichmüller space of isotopy classes of complete hyperbolic metrics on the interior I(S) of S with the length of the geodesic isotopic to c_j is L_j for j = 1, ..., n (c_j corresponds to a puncture if $L_j = 0$.) Let $C = C_{g,n}$ denote the set of isotopy classes of unoriented closed curves in I(S). Each $\gamma \in C$ defines a real analytic function on $\mathbb{T}_{g,n}(L)$ called the geodesic length function associated to γ : For each $X \in \mathbb{T}_{g,n}(L)$

 $\ell_{\gamma}(X)$ = the length of the geodesic representation in γ on X.

We also define $\tau_{\gamma}(X) = 2 \cosh(\ell_{\gamma}(X)/2)$. X defines a Fuchsian representation χ of $\Gamma_{g,n}$ into $PSL(2,\mathbb{R})$ up to conjugacy and we have

$$\tau_{\gamma}(X) = |\operatorname{tr}\chi(\gamma)|.$$

We call τ_{γ} the trace function associated to γ . We can identify $X \in \mathbb{T}_{g,n}(L)$ with the simultaneous conjugacy class $\mathcal{G}(X)$ of a tuple of matrices in $SL(2,\mathbb{R})$

$$(A_1, B_1, ..., A_g, B_g, C_1, ..., C_n) = (\chi(a_1), \chi(b_1), ..., \chi(a_g), \chi(b_g), \chi(c_1), ..., \chi(c_n))$$

with ${\rm tr} A_j>0,\ {\rm tr} B_j>0\ (j=1,...,g)$ and ${\rm tr} C_j=-2\cosh(L_j/2)=-\ell_j<0$ (j=1,...,n), and hence identify $\mathbb{T}_{g,n}(L)$ with

$$\mathcal{T}_{g,n}(\ell_1,...,\ell_n) = \{\mathcal{G}(X) : X \in \mathbb{T}_{g,n}(L)\}.$$

The Teichmüller space $\mathbb{T}_{q,n}(L)$ is homeomorphic to \mathbb{R}^d , where d=6g-6+2n.

Let $\mathcal{MC}_{g,n}$ denote the mapping class group of the surface $S = S_{g,n}$. Each element [f] of $\mathcal{MC}_{g,n}$ is the isotopy class of an orientation preserving diffeomorphism $f: S \to S$ preserving each boundary curve setwise. $\mathcal{MC}_{g,n}$ acts on the Teichmüller space $\mathbb{T}_{g,n}(L)$. If $X = (S,\sigma) \in \mathbb{T}_{g,n}(L)$, where σ is a hyperbolic metric on S, then [f](X) is the isotopy class of $(S, f^*\sigma)$. This group induces a subgroup of outer automorphisms of the surface group $\Gamma_{g,n}$.

The first statement of the following theorem is proved by Schmutz, Okumura, Feng Luo and others. For a proof of the full statement, see [8].

Theorem 1 There are simple closed curves $\gamma_1, ..., \gamma_{d+1}$ on I(S) such that

$$\Phi: \mathbb{T}_{g,n}(L) \to \mathbb{R}^{d+1}$$

defined by $\Phi(X) = (\tau_{\gamma_1}(X), ..., \tau_{\gamma_{d+1}}(X))$ is an embedding. Moreover, the mapping class group $\mathcal{MC}_{g,n}$ acts on $\Phi(\mathbb{T}_{g,n}(L))$ as a group of rational transformations in the coordinates $x_1, ..., x_{d+1}$ of \mathbb{R}^{d+1} and $\ell_1, ..., \ell_n$ over the rational number field.

§2. Finite subgroups of the mapping class group of genus 2 surface. For the rest of this note, \mathbb{T}_g means the Teichmüller space of the closed surface of genus g. By the Nielsen-Kerckhoff realization theorem [5], each finite subgroup G of $\mathcal{MCG}_g = \mathcal{MCG}_{g,0}$ acts on a Riemann surface R of genus g as a group of conformal automorphisms. For each $\varphi \in \mathcal{MCG}_g$, let φ_* denote the rational transformation acting on $\Phi(\mathbb{T}_g)$ obtained by Theorem 1. Let $x_0 = \Phi(X_0)$ be an arbitrary point of $\Phi(\mathbb{T}_g)$. If $\varphi_*^m(x_0) = x_0$ for some m > 0, then φ is an isotopy class of a conformal automorphism (including the identity map) on the Riemann surface X_0 and we can conclude that φ is elliptic or it has a finite order. Since the order of an elliptic element is at most a number Pg depending only on g ($\leq 84(g-1)$) by Riemann-Hurwitz formula), we can detect whether an element of \mathcal{MC}_g is ellptic or not by showing some φ_*^m ($1 \leq m \leq P_g$) fixes x_0 .

Let G be a finite subgroup of \mathcal{MC}_g and assume that all elements of G fix a Riemann surface R of genus g. If the genus of the factor surface R/G is h and the covering map $\pi: R \to R/G$ is branched over n points $p_1, ..., p_n$ with branching orders m_j with $m_1 \leq m_2 \leq \cdots \leq m_n$, then $(h; m_1, ..., m_n)$ is the type of the orbifold R/G. In stead of $(h, m_1, ..., m_n)$, we often write $(h; \nu_1^{r_1}, ..., \nu_p^{r_p})$ $(\nu_1 < \cdots < \nu_p)$ if ν_j appears r_j times in $(m_1, ..., m_n)$.

The mapping class group \mathcal{MCG}_2 of a closed orientable surface of genus 2 is generated by Dehn twists ω_1 , ω_2 , ω_3 , ω_4 and ω_5 with the following defining relations (see [1, p.184]):

$$\omega_i \omega_j = \omega_j \omega_i \quad \text{if } |i - j| \ge 2, \ 1 \le i, j \le 5$$
 (1)

$$\omega_i \omega_{i+1} \omega_i = \omega_{i+1} \omega_i \omega_{i+1} \qquad (1 \le i \le 4) \tag{2}$$

$$(\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^6 = 1 \tag{3}$$

$$(\omega_1 \omega_2 \omega_3 \omega_4 \omega_5^2 \omega_4 \omega_3 \omega_2 \omega_1)^2 = 1 \tag{4}$$

$$\omega_1\omega_2\omega_3\omega_4\omega_5^2\omega_4\omega_3\omega_2\omega_1$$
 and ω_i commute for $i=1,2,3,4,5$ (5)

In [2] S. A. Broughton classified completely the finite subgroups of \mathcal{MCG}_2 , up to topological equivalence. After a lengthy calculations, Nakamura and the author found explicit expressions by the Dehn twists ω_1 , ..., ω_5 for the generator-systems in Broughton's list.

Theorem 2 ([9]). A non-trivial finite subgroup of MCG_2 of a closed orientable surface of genus 2 is conjugate with one of the groups in the table below.

The table shows the group G_* corresponding to (2,*) in [2] with generators expressed in $\omega_1, \ldots, \omega_5$, the order $|G_*|$ and the orbifold type.

(2.a)
$$G_a = \langle x : x^2 = 1 \rangle \cong \mathbb{Z}_2, \ x = \omega_1 \omega_2 \omega_3 \omega_4 \omega_5^2 \omega_4 \omega_3 \omega_2 \omega_1, \ 2, \ \ (0; 2^6)$$
.

(2.b)
$$G_b = \langle x : x^2 = 1 \rangle \cong \mathbb{Z}_2, \ x = (\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^3, \ 2, \ (1; 2^2).$$

(2.c)
$$G_c = \langle x : x^3 = 1 \rangle \cong \mathbb{Z}_3, \ x = (\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^2, \ 3, \ \ (0, 3^4).$$

(2.e)
$$G_e = \langle x : x^4 = 1 \rangle \cong \mathbb{Z}_4, \ x = (\omega_1 \omega_1 \omega_2 \omega_3 \omega_4)^2, \ 4, \ \ (0; 2^2, 4^2).$$

(2.f)
$$G_f = \langle x : x^2 = y^2 = [x, y] = 1 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2, \ x = \omega_1 \omega_2 \omega_3 \omega_4 \omega_5^2 \omega_4 \omega_3 \omega_2 \omega_1.$$

 $y = (\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^3, \ 4, \ (0; 2^5).$

(2.h)
$$G_h = \langle x : x^5 = 1 \rangle \cong \mathbb{Z}_5, \ x = (\omega_1 \omega_2 \omega_3 \omega_4)^2, \ 5, \ (0; 5^3).$$

(2.i)
$$Gi = \langle x : x^6 = 1 \rangle \cong \mathbb{Z}_6, \ x = \omega_1 \omega_2 \omega_3 \omega_4 \omega_5, \ 6, \ (0, 3, 6^2).$$

(2.k.1)
$$G_{k1} = \langle x : x^6 = 1 \rangle \cong \mathbb{Z}_6, \ x = \omega_1 \omega_2 \omega_5^{-1} \omega_4^{-1}, \ 6, \ (0, 2^2, 3^2).$$

- (2.k.2) $G_{k2} = \langle x, y : x^2 = y^3 = 1, xyx^{-1} = y^{-1} \rangle \cong D_3, \ x = (\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^3, \ y = (\omega_1 \omega_2 \omega_5^{-1} \omega_4^{-1})^2, 6, \ (0, 2^2, 3^2).$
 - (2.1) $G_l = \langle x : x^8 = 1 \rangle \cong \mathbb{Z}_8, \ x = \omega_1 \omega_1 \omega_2 \omega_3 \omega_4, \ 8, \ (0; 2, 8, 8).$
- (2.m) $G_m = \langle x, y : x^4 = y^4 = 1, x^2 = y^2, xyx^{-1} = y^{-1} \rangle \cong \tilde{D}_2, x = (\omega_1 \omega_2 \omega_1 \omega_3 \omega_4)^2, y = (\omega_2 \omega_3 \omega_5 \omega_4 \omega_3)^2, 8, (0; 4, 4, 4).$
- (2.n) $G_n = \langle x, y : x^2 = y^4 = 1, xyx^{-1} = y^{-1} \rangle \cong D_4, \ x = (\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^3, \ y = (\omega_1 \omega_2 \omega_4 \omega_3 \omega_2)^2, \ 8, \ (0, 2^3, 4).$
- (2.o) $G_o = \langle x : x^{10} = 1 \rangle \cong \mathbb{Z}_{10}, \ x = \omega_1 \omega_2 \omega_3 \omega_4, \ 10, \ (0, 2, 5, 10).$
- (2.p) $G_p = \langle x, y : x^2 = y^6 = [x, y] = 1 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_6, \ x = \omega_1 \omega_2 \omega_3 \omega_4 \omega_5^2 \omega_4 \omega_3 \omega_2 \omega_1, \ y = \omega_1 \omega_2 \omega_3 \omega_4 \omega_5, \ 12, \ (2, 6, 6).$
- (2.r) $G_r = \langle x : x^4 = y^3 = 1, xyx^{-1} = y^{-1} \rangle \cong D_{4,3,-1}, \ x = (\omega_1 \omega_2 \omega_4 \omega_3 \omega_2)^2,$ $y = (\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^2, \ 12, \ (0,3,4^2).$
- (2.s) $G_s = \langle x, y : x^2 = y^6 = 1, xyx^{-1} = y^{-1} \rangle \cong D_6, x = (\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^3, y = \omega_1 \omega_2 \omega_5^{-1} \omega_4^{-1}, 12, (0, 2^3, 3).$
- (2.u) $G_u = \langle x, y : x^2 = y^8 = 1, xyx^{-1} = y^3 \rangle \cong D_{2,8,3}, x = (\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^3, y = \omega_1 \omega_2 \omega_4 \omega_3 \omega_2, 16, (0, 2, 4, 8).$
- (2.w) $G_w = \left\langle x, y, z, w : \begin{array}{l} x^2 = y^2 = z^2 = w^3 = [y, z] = [y, w] = [z, w] = 1 \\ xyx^{-1} = y, xzx^{-1} = zy, xwx^{-1} = w^{-1} \end{array} \right\rangle \cong \mathbb{Z}_2 \ltimes (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3), x = (\omega_1 \omega_2 \omega_1 \omega_4^{-1} \omega_5^{-1} \omega_4^{-1})(\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^3, y = \omega_1 \omega_2 \omega_3 \omega_4 \omega_5^2 \omega_4 \omega_3 \omega_2 \omega_1, z = (\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^3, w = (\omega_1 \omega_2 \omega_3 \omega_4 \omega_5)^4, 24, (0, 2, 4, 6).$
- (2.x) $G_x = \langle x, y : x^3 = y^4 = 1, xy^2 = y^2x, (xy)^3 = 1 \rangle \cong SL_2(3),$ $x = (\omega_2\omega_1\omega_4^{-1}\omega_5^{-1})(\omega_1\omega_2\omega_3\omega_4\omega_5^2\omega_4\omega_3\omega_2\omega_1), y = (\omega_1\omega_2\omega_1\omega_3\omega_4)^2, 24, (0, 3^2, 4)$
- (2.aa) $G_{xx} = \left\langle x, y, u : \begin{array}{l} x^3 = y^4 = (xy)^3 = 1, xy^2 = y^2x, u^2 = xy^{-1}x^{-1}y^2 \\ uxu^{-1} = y^{-1}x^{-1}y, uyu^{-1} = x^{-1}yx \end{array} \right\rangle \cong GL_2(3),$ $x = (\omega_2\omega_1\omega_4^{-1}\omega_5^{-1}\omega_4^{-1})(\omega_1\omega_2\omega_3\omega_4\omega_5^2\omega_4\omega_3\omega_2\omega_1), \ y = (\omega_1\omega_2\omega_1\omega_3\omega_4)^2, \ u = \omega_2\omega_3\omega_5\omega_4\omega_3, \ 48, \ (0, 2, 3, 8)$

For general g > 1, the mapping class group \mathcal{MC}_g is generated 2g + 1Dehn twists ω_0 , ω_1 ,..., ω_{2g} called *Humphries generators* (See Theorem 4.14 and Figure 4.5 in [3]) such that the same relations as in (1) and (2) hold and $\zeta^{2g+2} = \eta^{4g+2} = 1$, where, with an additional Dehn twist ω_{2g+1} about a curve $c_{2g+1} = m_g$ in Figure 4.5 in [3],

$$\zeta = \omega_1 \omega_2 \cdots \omega_{2g+1}, \quad \eta = \omega_1 \omega_2 \cdots \omega_{2g}.$$

We have by (1) and (2)

$$\omega_2 \zeta = \omega_1 \omega_2 \omega_1 (\omega_3 \cdots \omega_{2g+1})$$

= $(\omega_1 \omega_2 \cdots \omega_{2g+1}) \omega_1 = \zeta \omega_1$

and likewise

$$\omega_{i+1}\zeta = \zeta\omega_i \quad \text{for } i = 1, ..., 2g. \tag{6}$$

By using this we have also that

$$\omega_{1}\zeta = \zeta\zeta^{-1}\omega_{1}\zeta
= \zeta\omega_{2g+1}^{-1}\omega_{2g}^{-1}\cdots\omega_{2}^{-1}\zeta
= \zeta\omega_{2g+1}^{-1}\omega_{2g}^{-1}\cdots\omega_{3}^{-1}\zeta\omega_{1}^{-1}
\vdots
= \zeta^{2}\omega_{2g}^{-1}\omega_{2g-1}^{-1}\cdots\omega_{1}^{-1} = \zeta^{2}\eta^{-1}.$$

and hence $\omega_1 = \zeta^2 \eta^{-1} \zeta^{-1}$. Then by (6)

$$\omega_2 = \zeta^3 \eta^{-1} \zeta^{-2}, \ \omega_3 = \zeta^4 \eta^{-1} \zeta^{-3}, \ \dots, \ \omega_{2g+1} = \zeta^{2g+2} \eta^{-1} \zeta^{-2g-1} = \eta^{-1} \zeta^{-2g-1}.$$

If g=2, then $c_0=c_5$ and hence we obtain Korkmaz's theorem [6] for g=2.

Theorem 3 The mapping class group \mathcal{MC}_2 is generated by $\zeta = \omega_1 \omega_2 \omega_3 \omega_4 \omega_5$ and $\eta = \omega_1 \omega_2 \omega_3 \omega_4$ satisfying $\zeta^6 = \eta^{10} = 1$.

Hirose obtained expressions by Dehn twists of all torsions in the mapping class group \mathcal{MC}_g with $g \leq 4$ in [4].

This note is based on work with Gou Nakamura, Aichi Institute of Technology.

References

- [1] Birman, J. S., *The Braids, Links and Mapping Class Groups*, Ann. of Math. Studies 82, Princeton Univ. Press, 1974.
- [2] Broughton, A. S. Classifying finite group actions on surfaces of low genus, Journal of Pure and Applied Algebra, **69** (1990), 233–270.
- [3] Farb, B. and D. Margalit, A Primer on Mapping Class Groups. Pronceton University Press, 2011.
- [4] Hirose, S., Presentation of periodic maps on oriented closed surfaces of genera up to 4, 0saka J. Math., 47 (20109, 385–421.
- [5] Kerckhoff, S. P., The Nielsen realization problem, Ann. of Math., 117 (1983), 235–265
- [6] Korkmaz, M., Generating the surface mapping class group by two elements, Trans. Amer. Math. Soc., 357, 3299-3310.
- [7] Feng Luo, Geodesic length functions and Teichmüller spaces, J. Differential Geom., 48 (1998), 275–317.
- [8] G. Nakamura and T. Nakanishi, Parametrizations of Teichmüller spaces by trace functions and action of mapping class groups, Conform. Geom. Dyn., 20 (2016), 25–42.
- [9] G. Nakamura and T. Nakanishi, Presentation of finite subgroups of mapping class group of genus 2 surface by Dehn-Lickorish-Humphries generators, Preprint.

DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY, MATSUE, 690-8504, JAPAN

E-mail address: tosihiro@riko.shimane-u.ac.jp