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1 Abstract

Markov interval maps were introduced by S. Holte [5] in 2002 and she showed
that any two inverse limits with Markov interval bonding maps with the same pat-
tern were homeomorphic. In 2013 I. Bani¢ and T. Lunder [1] extended the notation
from continuous maps to set-valued functions, called generalized Markov interval
functions, and applied the theory of generalized inverse limits with set-valued func-
tions. In this note we introduce Markov-like functions as a generalization of gener-
alized Markov interval functions and show that any two generalized inverse limits
with Markov-like bonding functions having same pattern are homeomorphic. Con-
sequently we can give a generalization of [1].

2 Definition and Notation

Definition 2.1. For any n € N, let X,, be a compact space and let 2%~ be the collec-
tion of all nonempty closed sets of X,,. Let f, : Xny1 — 2%". A generalized inverse
system is defined as a sequence of pairs X, and f,, which is denoted by (Xn, fn)nen-
The generalized inverse limit {En {Xn, fa} of an inverse system (X, fn),cy is defined

by

l(lﬂl{xmfn} = {(IIJl,.’L‘z,- . ) € ﬁXn I zn € fn (xn+1) for any n € N}

n=1
In the case that X,, = X and f, = f for each n € N, we write the inverse limit by
lim{X, f}.

lim {X,, f»} is compact if f, is upper-semi continuous for all n € N. Moreover,
—

if fo(z) € C(Xny1) for all z € X,,, where C(X,,41) is the collection of all nonempty
subcontinua of X1, lim {X,,, f,} is a continuum.
—
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Definition 2.2. Fix m € N>,. Let I = [ay,a,,] be the closed interval. Let A :=
a1 < a < -+ < @ be a finite partition of I and put I; = [a},a;41] for each
ji=1,...,m—-1 :

A set-valued function f : I — 2! having a surjective graph is Markov-like with
respect to A if the following statements are satisfied.

(1) For all j = 1,2,...m, there exist %J mutually disjoint closed intervals (they

can be degenerate) [a, (), Gry(5)], - - - [araj_l(j),a,s] ()] such that

%
2

fla;) = U[arzk—1(j)’a’7‘2k(j)]’ and
k=1

ang) € A for each 1€{1,2,...,5;}.

(2) Let define G;(f) :=={(y,z) € G(f) | z € Int (I;)} for each j =1,2,...,m — 1.

Then, there are ny (j) strictly monotone continuous functions fjl, ]-2, cee, f: 1)
having mutually disjoint graphs defined on Int (I;) such that for each 1 <1 <
ns(J)

lilm f;(x) € f(a;) N A, I‘%im f]'(x) € f(aj+1) N A, and
rla, Q341

ns(j)

Gi(H=J G

Definition 2.3. Let I = [ay,a,] and J = (b, b,,] be closed intervals and
A:ay <ay< - ---<apand B:b < b <--- < b, be partitions of I and J
respectively.

A Markov-like function f : I — 2! with respect to A and a Markov-like function
g : J — 23 with respect to B have the same pattern if the following conditions are
satisfied.

(3) Forany j =1,2,...m,
f(@5) 2 [ar Gy aray)] € 9(b5) 2 [bry (), bra(i))-

(4) For any j € {1,2,...,m}, ns(j) = ny(j) and there exists a bijection ¢; :
{1,2,...,n5(5)} = {1,2,...,n4(4)} such that

; k _ X H ‘?J(k) — .
lim fi(z) = ) & lmgP () =bug),

. . k
lim ka(a;) =ay;) © zflrinl gf’ ( )(y) = by, (j)-
¢

zta;41
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3 The Main Theorem

Theorem 3.1. Let I = [a1,a,] and J = [by, by,] be closed intervals and

A:a <ay < --<apand B:b <b <--- < b, be partitions of T and J
where m > 2 respectively. Let {f,}nen and {gn}nen be sequences of Markov-like
functions with respect to A and B respectively. Then if for every n € N, f,, and g,
have the same pattern, two generalized inverse limits l‘iLn {L, f»} and l(in {J, gn} are
homeomorphic.

Here we state an idea of the proof. First we explain the reason why we may
assume that both I and J are the unit interval [0, 1].

Lemma 3.2. Let I = [ay,am| be a closed interval and A : ¢; < --- < ap, be a
partition of I, where m > 2. Let J = [0, 1]. Let f : I — 2! be a Markov-like function
with respect to A. Suppose that A : I — J is a piecewise linear homeomorphism
such that
h{a;) =0, h(an)=1, and
h is non-differentiable at a point x €I = z € A.

Let define b; = h(a;) for each i = 1,...,m and a partition B : b < --- < by, of J.

Then there is a Markov-like function g : J — 2! with respect to B such that
2"of=goh,

where 2" : 21 — 27 is the induced homeomorphism by A, and

f and g have the same pattern.

Lemma 3.3. Let I and J be closed intervals. Let {f, : I — 2!} and {g, : J —
29} be sequences of set-valued functions and let {h, : I — J} be a sequence of
homeomorphisms such that

2hn o fo=gnohny1 foreachn €N,

where 2 : 21 — 2J js the induced homeomorphism by h,. Then the generalized
inverse limits l(n_n {L, f,} and l(gn {J, 9.} are homeomorphic.

Theorem 3.4. Let I = [a1,a,,] be a closed interval and A : a; < -+ < a,, be a
partition of I, where m > 2. Let f : I — 2! be a Markov-like function with respect
to A. Suppose that A : I — J = [0, 1] be a piecewise linear homeomorphism such
that

h(a;) =0, h(am) =1, and
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h is non-differentiable at a point z €l = z € A.

Let define b; = h(a;) for each ¢ = 1,...,m and a partition B : b; < --- < by, of J.

Then there exists a sequence {g,} of Markov-like functions with respect to B such

that the generalized inverse limits lim {I, f,} and lim {J, g, } are homeomorphic.
— —

Outline of the proof of Theorem 3.1.
Step1. From Theorem 3.4, we can assume both I and J are the unit interval [0, 1].

Let h : T — J be a piecewise linear homeomorphism such that h (I;) = J; for all
j=1,2,....m—1.
Step2. For any point x = (z1,%2,...) € im{L, f,}, there exists exactly one point
—
y = (¥1,%2,-..) € im{J, g,} with y; = h(z;) and satisfying the following properties
for each i € N:
(U-() €Tt () & e lnt (3y),
2)-0) zi=0a; & yi=b;,
B)-0) zi = fE @) & wa =gl P w).

For any x € lim {, f,}, choosing the point y € lim {J, g, } of Step 2, we can define
— —

the function
H:lim{L f,} — lim {J,9.}-

Step 3. We show that H is continuous.

We will provide some notations and lemmas to show that H is continuous.
Fix i € N. For any j € {1,2,...,m—1},k € {1,2,...,n4())}, let

. k . _ .
:}:ll,rg i () if w=aqj

FEw) = ¢ f¥ J(w) if we Int (I;)
lim fF (z) if w=aj.
atagqr” 7

Similarly, for any j € {1,2,...,m —1},k € {1,2,...,n4(5)}, let

. k . _
L 31113]1 g () if z=0;
gzlf i(2) = gf, i(2) if z € Int (J;)

lim ¢F . if 2=0b;,,.
by 41 gz, ](y) J+1
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Then E is a homeomorphism from J; to a closed interval having endpoints in B.

Lemma 3.5. For any x € lim{I, f,} and ¢ € N, there exists J; > 0 such that
if X' € lim{L, f,}, d(x,%) < §;, then

Tip1,Zipq € I; for some je{1,...,m—1}
and one of the following statements hold.
(1) zip1 =iy, Tipr,Tiy € A,
(2) (zi,zi41), (2}, 2},,) €G (fl J) for some k; € {1,...,ny, ()},

(3) (i, Tiy1), (7}, 7,,) €G (fz i 1) for some k; € {1,...,n4 (7 — 1)}

Lemma 3.6. Choose x,x’ € l(iEl{]I, fn} and let y = H (x),y’ = H (x’). Suppose
Tit1,Zq €1; for some j € {1,...,m — 1}. Then we have the following.

(1) if Ty = 2y and Tigq, Thyy € A, Yis1 = Vs,
() if (3, 2iy1) , (), 7}4,) € G (E) for some k; € {1,...,ny (5)},
)
(W) (W vhn) € G (657,

(3) if (zs, zir1) , (2}, T}yq) € G (fz . 1) for some ky € {1,...,n4 (j — 1)},

i, 5 (k
(yi7yi+l) ) (y1l,7y7’,+1) € G (g':75 _7](1 2)) .

Definition 3.7. Fix ¢ € N. For any (y;,¥i+1) € G (g:), the subset Gy, 4.,,) (9i) of
G (g;) is defined to satisfy the following condition

(yz{’ y£+l) € Gy (9)
if (v},9.,1) € G(g:) and one of the following statements hold.
L Yit1 = Y,

2. (Yi, Yis1), (y;,ng) €G (E) for some j € {1,...,m — 1} and
ki € {1’ sy (.7)}7

3. (yivyi+1) (yuyz+1) € G(gz j- l) for Somej € {2)'--,m_ 1} and
k2 € {17 -5 T, (.7 - 1)}
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Lemma 3.8. Fix 7 € N. For any (v;,¥i+1) € G (g;), and € > 0, there exists a § > 0
such that

(¥ Y1) € Gluworn) (), Wi — ¥l <8 = |gim1 — Y| <e

Lemma 3.9. Fix n € N and (y1,2,...) € IN with (y;,%i41) € G(g) for 1 <i <
n—1. For any € > 0 , there exists 6, > 0 such that for any (¢},...,9,,...) € IV
with (3, ¥/11) € Gyury) (i) for 1 <4 < n — 1, the following statement is true.

ly — 94l <6 = |pis1— Y| <€ for 1<i<n-—1.

We return to the proof that H is continuous.
Fix x € l(iln{ll, fn} and let y = H (x). Fix any ¢ > 0 and choose n, € N with

p e 27t < 3. From Lemma 3.5 and Lemma 3.6, there exists d,, > 0 such that

T=N¢

d(%,%x') < 8y, = (mo H(X'),mp1 0 H(X')) € Gy puyr) (9:) for1<i<n, -1
Moreover, from Lemma 3.9, there exists 7,, > 0 such that for any (y},...,95.,...) €
IN with (y;, yz{+1) € Gyiyi) () for 1 <i<m.— 1,

€

1wl <. = |y —gin| <g— forl<i<n -1
€

Since h : T — T is continuous, there exists 4;, > 0 such that

€

d(x,x') <6, = |y1—moHX)|=|h(z1)—h(z})| < min{%, nnc}.

Let 6 = min {4,,,4,, }. Then

d(xx) <6 = 1y,.-7r,.oH(x')|<§;— for 1 <i<n..

€

Therefore

d(y, H (x)) = 22"‘ lys — mi 0 H (x')]

Ne o0

=Y 27y —mo H(X)|+ Y 27|y —moH(X)|
=1 1=ne+1
€ €

< ‘2— + ‘2'

= €.

Thus, H is continuous. The same proof can be applied to the inverse map of H.
Therefore we have that H is a homeomorphism.
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4 Some examples

In this section we show that some examples of Markov-like functions and their
generalized inverse limits. Here we suppose that I means the unit interval [0, 1].

Example 4.1. For f : 1 — 2!, assume that there is a strictly monotone continuous
function g : I — I such that (0,0),(1,1) € G(g9) and G(f) = G(g). Then,
l<i£1 {L, f} is an arc.

Proof. Letm : h(_r_n {L, f} — I be the projection map to the first coordinate. Then m;
is a homeomorphism. Therefore, 14131 {L, f} is an arc having endpoints {(0,0,...),
(1,1,...)}. a

Example 4.2. For f : 1 — 2!, assume that there is a strictly monotone continuous
function g : I — I such that (0,1),(1,0) € G(g) and G(f) = G(g). Then, by the
same proof of Example 4.1, l:r_n {L, f} is an arc having endpoints (0,1,0,1,...) and
(1,0,1,0,...).

Example 4.3. Fix n € N>o. Suppose that fi,..., f, : [0,1] — [0,1] are strictly
monotone continuous functions such that

Let f: 1 — 2! be defined by
G(H=UJa).
=1
Then, lim {I, f} is a union of uncountable arcs. All arcs have same endpoints and

they are pairwise disjoint on each point without their endpoints.

Example 4.4. Fix n € N>,. Suppose that gq,...,g, : [0,1] — [0,1] are strictly
monotone continuous functions such that

i#J = G(g)NG(g)={(0,1),(1,0)}.
Let g : 1 — 2 be defined by .
Gl =Jc ).

Then, lim {I, g} is a union of uncountable arcs. All arcs have same endpoints and
—
they are pairwise disjoint on each point without their endpoints.
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The next example show that there are two Markov-like functions f and g such
that they do not have the same pattern but their generalized inverse limits are
homeomorphic.

Example 4.5. Let I, m be distinct natural numbers greater than two. Suppose
that fi,..., f1,91,---,9m : [0,1] = [0,1] are strictly monotone continuous functions
such that

i’ 74 jl = G(gz') nG (gj’) = {(07 0) ) (1> 1)} .

Let define set-valued functions f,g : I — 2! by
!
G(f) = UG(fi)>
i=1

G(9)=JG(9)-
j=1
Then f and g do not have the same pattern but their generalized inverse limits
lim {I, f} and lim {I, g} are homeomorphic.
— —

Proof. Let Ay := [[;en{1,..-,{} and Ay == [L;en{1,...,m}. Take a homeomor-
phism ¢ : A; & A,,. For each s = (s1, s2,...) € A let denote

L, = {xeﬁ]l

k=1

Ny(sy i= {y eIr

(zk, Zkt+1) € G (fs,) for each k € N} ,

Yk, Yr41) € G (9¢(s>k) for each k € N} .

k=1
Since L, Ny(s) are arcs having endpoints {(0,0,...),(1,1,...)}, there is a homeo-
morphism A, : Ly — Ny(s) such that
hs ((0,0,...)) =(0,0,...),
he ((1,1,...))=(1,1,...).

As seen in Example 4.3,

lim {1, /} = |J L,

SEA;
lim {Ig} = |J M
- teAm

= |J Nyo)-

SEN;
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Hence we can define H : lim {I, f} — lim {I, g} by
H(x)=hs(x) if x€ L, s€A.

Since ¢ is a homeomorphism, H is continuous and bijective. Therefore H is a
homeomorphism. O

In the end we give an example of a generalized inverse limit with a Markov-like
function which have interesting topological properties (c.f.[2], [3] and [6]). We need
the following known fact.

Definition 4.6. a continuum X is a triod if there is a subcontinuum A C X such
that X'\ A have no less than three components.

Theorem 4.7. ([4]) Plane cannot include uncountable mutually disjoint triods.

Example 4.8. ([2],[3], [6]) Let g : I — I be a strictly monotone continuous function
with g (0) = 1,g (1) = 0. Let define the Markov-like function f : 1 — 2! by

[l ifz=0
f()_{{g(a:)} if ze(0,1].

Then the generalized inverse limit lim {I, f} is a one-dimensional non-planer con-
—
tinuum.
Proof. We note that lim {I, f} is a continuum.
—

From Theorem 3.1, we may assume that g (z) =1 — z. Let

A:={er]I

zj=1—x;,; foreachje N}.
jeN

For each ¢ € N put

B; = {er]I

Tiv1 =0, j=1—1z41 (j <i), 25 € f(zj11) G =i+ 1)}-
jeN

Then we can see that -
lim {I, f} = A U ,L-JlBi'
First we show that l‘n_n {L, f} is one-dimensional. By Example 4.2, A is an arc
with endpoints p = (0,1,0,1,...),q=(1,0,1,0,...) € [[2; {0,1}. Foreachi € N
put

zj=1—-z;1 forlgjgi—l},

T(1,3) (Bl) = {(xlvwi’a" '?xi) € HH
j=1
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Tiv1 =0, z; € f(zj41) forj2i+1}.

Tiit1,00) (Bi) = {($i+17wi+27---) € H I

j=it1
Then 7,4 (B;) is an arc having endpoints p; = (0,1,0,1,...),¢; = (1,0,1,0,...) €
[I}-; L. On the other hand, since f~* (0) = {0,1} and f~' (1) = {0}, 711,00 (Bi) €
[1;2;,1{0,1}. Moreover, it is seen easily that 7(;41,.) (B;) is perfect. Hence 711,00y (Bi)
is a Cantor set. Therefore B; is a one-dimensional compact set as a product space
of an arc and a Cantor set. Since A is also a one-dimensional compact set, by the
countable sum theorem, lim {L, f} is one-dimensional.
Next we show that l(ln {L, f} is not planar. For the proof we precisely describe
the subset B; C l(i_Ill {L, f}. For each i € N, we denote the Cantor set 71 ) (Bi)

by C;. Put the endpoints p;, g; of 715 (B;) and let
D; = {p} x C; c [[{0,1} x C;,
j=1
i
Ei = {qz} X Oi C H {0, 1} X Ci.
j=1
By B; we denote the collection of arc-components of B;. Then
(1) Each element of B; is an arc having one endpoint in D; and the other endpoint
in Ei,
(2) For each ¢ € C;, there exists an element of B; joining (p;,c) € D; and (gi,¢) €
E,.
(3) Dai = Dyi1 U Daiya, Eni—y = En; U Ey;y for each i € N.
(4) Let
z1 =0, z; € f(xj41) for each j € N},

Y = {xe ﬁll
j=1
Ci = {xe ﬁ]l

j=1

z1 =1, z; € f(xj41) for each j € N} .

Then CO = .D1 U.D2 and C& = E].

(5) D;ND; =0 for any distinct odd numbers 3, j.
E;NE; =0 for any distinct even numbers i, j.

(6) Mnen D2n = {P}; Npen E2n1 = {q}-
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(1) D2 = (UneN D2n+1) U{p}, E1 = (UneN E2n) U{q}.

Let v be a point of F4 and let a be an arc in By from v to a point of D,. Because
E, C E3 C E;, there are arcs 8 and v in B3 and B; respectively, having v as an
endpoint. Let T, = aU S U~. Since Dy, D3 and D, are pairwise mutually exclusive,
T, is a triod. If v and w are two different points of E4, Ty, N Ty, = (. Because
E, is uncountable, l(ln {L, f} contains uncountably many mutually disjoint triods.

Therefore l(_lll-l {I, f} is non-planer by Theorem 4.7. a
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