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MAXIMAL REGULARITY FOR A COMPRESSIBLE FLUID
MODEL OF KORTEWEG TYPE ON GENERAL DOMAINS

HIROKAZU SAITO

ABSTRACT. This article reports the maximal regularity for a compressible fluid
model of Korteweg type on general domains of the N-dimensional Euclidean
space for N > 2 (e.g. the whole space; bounded domains; exterior domains;
half-spaces, layers, tubes, and their perturbed domains). The detailed proof
and extended results will be given in [17, 18].

1. INTRODUCTION

The motion of barotropic compressible viscous fluids is governed by
Op + div(pu) =0 (mass conservation),
p(Gpu + (u- V)u) = Div(T — P(p)I) (momentum conservation),

subject to initial conditions and suitable boundary conditions. Here p = p(z,t) and
u =u(z,t) = (u(x,t),...,un(z,t)) ! denote, respectively, the density field of the
fluid and the velocity field of the fluid at z € 2 and t > 0, where Q2 is a domain of
RY for N > 2; P:[0,00) — R is a given function describing the pressure field of
the fluid; T is a stress tensor specified below, while I is the N x N identity matrix.
In this paper, we consider a compressible fluid model of Korteweg type, which
means that the stress tensor has the following form: T = S(u) + K(p) with

S(u) = pD(u) + (v — p) div ul,
K(p) = g (Ap* - VoI*) I-kVp® Vp,

where pu, v denote viscosity coefficients and x denotes a capillary coefficient. Note
that D(u) is the doubled strain tensor, i.e. D(u) = (D;;(u)) with D;j(u) =
dyu;+ ju; for 8; = 8/0dx;, and a®b = (a;b;) for any N-vectors a = (a1,...,an) ",
b = (by,...,bn)T. Here K(p) is called the Korteweg tensor. In 1901, Korteweg
formulated a constitutive equation for T that included density gradients (cf. also
[5, Subsection 2.6]) in order to model fluid capillarity effects. Later on, Dunn and
Serrin [3] derived rigorously K(p) as stated above in view of rational mechanics by
introducing the thermomechanics of interstitial working.

This paper is concerned with the maximal regularity for a time-dependent linear
system arising from the compressible fluid model of Korteweg type as follows:

Op+mdivu=d inQ,t>0,
dyu — 43 ! Div(uD(u) + (v — p)divul + y2kApI) =f in Q, ¢t >0,
n-Vp=g, u=0 onS,t>0,

(pyu)|t=0 = (po,uo) in €.

(1.1)

IMT denotes the transposed M.



Here S is the boundary of Q and n is the outward unit normal vector to S; the
coefficients «; (i = 1,2,3), u, v, and & are given functions with respect to x € RV,
a-b= Ef;l a;b; for any N-vectors a = (a1,...,an)7, b= (b1,...,bx)T; the right
members d, f, g, po, and ug are given data. Here and subsequently, we use the
following notation for differentiations: Let u = u(z), v = (v1(z),...,vn(z))T, and
M = (M;;(z)) be a scalar-, a vector-, and an N x N matrix-valued function defined
on a domain of R", and then

N
Vu=(01u,...,0nu)", Au=Y 8u, Av=(Av,...,Avy)T,

i=1

N
divv=z&-v¢, Vv ={6v; |i,j=1,...,N},

i=1

N N T
V2V= {8,~c‘9jvk I ’i,j,k = 1,...,N}, DivM = (Zalej,...,ZajMNj> .
=1

Jj=1

Kotschote [10] proved an optimal regularity for (1.1) with coefficients depending
also on the time variable ¢. Roughly speaking, he proved in [10] that for a suitable
exponent p € (1,00) the system (1.1) admits a unique solution (p,u) on J = (0,T’),
T > 0, with

p € HY?(J, Ly(@) N Lyp(J, Hy (), € Hy(J, Ly()V) N Ly(J, HY(@)Y),

if and only if the data d, f, g, po, and ug satisfy the compatibility conditions and
the following regularity conditions:

d € HY?(J,L,(Q)) N Ly(J, HNQ)), £ € Ly(J, Ly()N),
g € Hy(J, Lp(@)) N Ly(J, Hy(Q)), (0o, w0) € BY,¥7(Q) x By /PN

On the other hand, the present paper relaxes the regularity of p with respect to
the time variable ¢ under the assumption that d only belongs to Ly(J, H;(Q)) and
extends the function spaces of solutions and date to an Ly-in-time and Lg-in-space
setting (cf. Theorem 2.3 below for more details).

Concerning other boundary conditions, we refer to Kotschote [10, 11, 12, 13].
There are also several results, for the whole space case, such as Hattori and Li
[8, 9], Danchin and Desjardins [1], Haspot [6, 7].

2. NOTATION AND MAIN RESULTS

This section first introduces the notation and function spaces, and then main
results of this paper are stated.

2.1. Notation. Let N be the set of all natural numbers and Ny = NU{0}, and let
R, C be respectively the set of all real numbers and the set of all complex numbers.

Let ¢ € [1,00] and G be a domain of RY. Then L,(G) and H*(G), m € N,
denote the usual K-valued Lebesgue spaces on G and the usual K-valued Sobolev
spaces on G, respectively, where K = R or K = C. We set Hg(G) = Ly(G) and
denote the norm of HZ(G), n € Ny, by || - [|nr(s). In addition, Bj ,(G) is the
Besov spaces on G for further exponents s > 0 and p € (1, 00). For a Banach space
X and R = (0, 00), we denote respectively the X-valued Lebesgue spaces on R,
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and the X-valued Sobolev spaces on R, by L,(R4,X) and H3(R,, X), while we
write the norm of L,(R4, X) as || - ||, (r,.x)- One sets for § >0
Lys(R4, X) = {f € Lpjoc(R+, X) | e7%f(t) € Lp(R+, X)},
Hy5(Ry, X) = {f € Hp1oc(Ry, X) | €78} f(t) € Ly(R4, X), k= 0,1},
oHys(Ry, X) = {f € Hy5(R+, X) | fle=o =0 in X},

and also
H2 (G x Ry) = H: 4(Ry, Ly(G)) N Ly s(Ry, HX(G)N),
oH2) 5(G X Ry) = oH} (R, Lg(G)) N Ly 6(R+, HE(G)).

Let X, Y be Banach spaces. Then £(X,Y") is the Banach space of all bounded
linear operators from X to Y, and £(X) is the abbreviation of £(X,X). For a
subset U of C, Hol (U, £(X,Y")) stands for the set of all £L(X,Y')-valued holomorphic
functions defined on U.

At this point, we introduce an assumption for the coeflicients.

Assumption 2.1. The coefficients v; = v;(z) (1 = 1,2,3), p = p(z), v = v(z),

and k = k(x) are real valued uniformly continuous functions, defined on RN, which

satisfy the following conditions:

(1) Leti=1,2,3. There erist positive constants v;, ¥s, i, B, ¥, ¥, K, and K such
that for any z € RY

IA

Y% <v@) <% p<uz)<m v<viz)<?, k<k((@)<E

(2) For any x € RV,
p@)+v@ \*__ w . p(z)v(z)
(271(96)72(96)&(%)) @@ " O Dm@@

The definition of our general domains is given by

Definition 2.2. Let 1 < r < 0o and G be a domain of RN with boundary 0G.
We say that G is a uniform W,? —ir domain, if there exist positive constants a, 3,
and K such that for any z¢ = (Zo1,...,ZoN) € OG there are a coordinate number

j and a WY function k(') (' = (z1,...,Zj,...,zN)) defined on Bl (xg), with
zo = (%01, - -, 205 - - ,ToN) aNd ”h”Wf_l/’(Ba/(za)) < K, such that

G N Bg(zo) = {z € RN | z; > h(z'), 2’ € B ()} N Bs(xo),
0G N Bg(zo) = {z € RY | z; = h(a'),z’ € Bly(z5)} N Bg(zo)-
2.2. Maximal regularity. The maximal regularity for (1.1) is stated as follows:
Theorem 2.3. Let p,q € (1,00) with 2/p+ 1/q # 2, and let r € (N,o00) with
max(q,q’) <r for ¢ =q/(q —1). Assume that

(a) v (:=1,2,3), pu, v, and & satisfy Assumption 2.1;

(b) Va € LT(RN) fO’l"G € {’71,721#7 v, K’};
(c) Q is a uniform WY domain;

Then there is a constant o > 1 such that the following assertions hold true.
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(1) For right members
d € Lysy(Ry, Hy(Q), £ € Lpso (R, L(@)™), g € 0Hprp 5, (2 x Ry)
and for initial data (po, o) € Dg () with
Dq,»(€)
32;2/”(9) X Bg;,z/p(Q)N when 2/p+1/q > 2,
= 1 {(po, u0) € B3;/7(Q) x BZYP(Q)"N | n-Vpo =0, up =0 on S}
when 2/p+1/q < 2,
the system (1.1) admits a unique solution (p,w), with
(pyu1) € (H} 5 (R, H(R)) N Ly 5, (R, Hy () x Hopp s (2 x Ry),
Jim [[(o, w) — (po, wo)l| g3-2/2 () 25277 (@) = O-
(2) The solution (p,u) satisfies the estimate:

—dot

||e_6°t3tp||Lp(R+,H§(Q)) + “6 p“LP(R.{-,Hg(Q))

+ le™®* Bl L, Ly@)™) + lle™l|L, @, H22)Y)
S C("(Po, uo)“B:;"’/P(Q)XB:‘_PW”(Q)N + “e_JOtd”LP(R,,,,H‘} ()

+ le™% | L, m, L, @n) + lle™0egl|, Ry L, @) + ||€_6°tg"Lp(R+,H3(Q)))
for some positive constant C depending on N, p, q, r, and do.

2.3. R-bounded solution operator families. To show Theorem 2.3, we consider
the following generalized resolvent problem:
Ap+yidivu=d in Q,
(2.1) M — ;3 ! Div(uD(u) + (v — ) divul + y2kApl) =f in Q,
n-Vp=g, u=0 onS.
Here A is the resolvent parameter varying in
Sey={A€C||arg)| <7 —¢,[A| >} (e€(0,7/2),720).

One recalls the definition of the R-boundedness of operator families at this point.
Definition 2.4 (R-boundedness). Let X and Y be Banach spaces. A family of
operators T C L(X,Y) is called R-bounded on L(X,Y), if there ezxist constants
p € [1,00) and C > 0 such that the following assertion holds:

For each natural number m, {T;}7Ly C T, {f;}jx1 C X and for all sequences
{rj(w)}jL, of independent, symmetric, {—1,1}-valued random variables on [0,1],
there holds the inequality

L p e 1, & P
(/0 ||jz=;7‘j(U)7}fj“YdU) 50( /0 Hj:zlrj(u)fjﬂxdu)

The smallest such C is called R-bound of T on L(X,Y’) and denoted by R (x,vy(T)-

Remark 2.5. The constant C in Definition 2.4 depends on p. It is known that 7 is
R-bounded for any p € [1,00), provided that 7 is R-bounded for some p € [1,0).
This fact follows from Kahane’s inequality (cf. e.g. [14, Theorem 2.4]).
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Let G be a domain of R". For the right member (d,f, g) of (2.1), we set
(2.2) Xy(G) = HYG) x Ly(G)N x HX(G), X}(G)=H(G) x Ly(G)N.
Let F = (d,f,g) € X (G) and F! = (d,f) € X, (G), and then the symbols X,(G),
FAF and the symbols X} (G), F3F* (i = 0,1) are defined as follows:

(23) %4(G) = HX(Q) x Ly(G)NHN 4N+ B F = (d,f, V2g, \1/2Vg, Ag);
xg(G) = Lq(G)N+1+N+N2+N+1, ng — (Vd, /\1/2d, f, V2g’/\1/2vg, /\g),
X3(G) = Ly(G)N TN, FIF! = (Vd, A4, £).

One also sets for solutions of (2.1)

(24)  %(G) = Ly(G)VHN' x HYG), Sap=(V3p,\2V?p, Mp);

A(G) = Lo(G)N' NN+ 80p = (V3p, AV/2U2p, AV, A3/ 2p);
B, (G) = Ly(G)N +N*+N | Tau = (V2u, \Y2Vu, Au).
Now we state the existence of R-bounded solution operator families for (2.1).

Theorem 2.6. Let g € (1,00) and r € (N,00), and let max(q,q') < r for ¢ =
q/(qg —1). Assume that

(a) v (:=1,2,3), u, v, and k satisfy Assumption 2.1;

(b) Va € L. (RN) for a € {y1,72, b, ¥, K};

(c) Q is a uniform W2 domain.

Then there exists €9 € (0,m/2) such that for any € € (g0,7/2) there is a constant
Ao > 1 such that the following assertions hold true.

(1) For any X € ., there are operators A(A\) and B(X), with
A(X) € Hol (¢ 5, £(Xq(9), H3 (2))),
B(X) € Hol (Se,x, L(X4 (), HF (™)),
such that, for F = (d,f,9) € A,(Q), (p,u) = (A(XN)F»\F, B(A)F,F) is a unique
solution to the system (2.1).

(2) There is a positive constant C, depending on N, g, r, €, €9, and Ao, such that
forn=0,1

d n
Re(xa@)242) ({ </\d—)‘) (SxAM) [ A € 25,/\0}) <C,

d n
RL(%4(9),84(2) ({ (/\5> (TAB(A)) | A e Ee,,\o}> <C.

Remark 2.7. One can prove Theorem 2.3 by combining Theorem 2.6 with the
operator-valued Fourier multiplier theorem due to Weis [21, Theorem 3.4] and the
theory of analytic semigroups (cf. e.g. [16, 19]). From this viewpoint, we give an
outline of the proof of Theorem 2.6 in the following sections.

3. WHOLE SPACE PROBLEMS

This section is concerned with whole space problems as follows:

3.1) M+mdivu=d in RV,
’ Au — 45 ! Div(uD(u) + (v — p) divul + y2kApl) = f in RY,



M+divu=d inRV,
(3.2)

\u— g, Au— v, Vdivu— k,AVp=f in R,
where p., v, and k, are positive constants. Concerning these systems, one has the

following two theorems (cf. [17, 18] for the details).

Theorem 3.1. Let g € (1,00) and r € (N, 00) with max(g,q') <r for ¢’ =q/(q—
1), and let X} (RN) be given in (2.2) for G = RN. Assume that the assumptions
(a), (b) of Theorem 2.6 hold. Then there erists a constant €. € (0,7/2) such
that for any € € (e.,7/2) there exists a constant A. > 1 such that the following
assertions hold true.

(1) For any X € X, there are operators ®(X), ¥(A), with
®()) € Hol (Se ., £(X] (RY), H}(R™Y))),
¥(X) € Hol (., L(X; (RY), HF(RV)Y)),
such that, for F! = (d,f) € X} (RY), (p,u) = (P(\)F', U(\)F) is a unique
solution to the system (3.1) .

(2) There exists a positive constant C, depending on N, q, 1, €, €«, and A, such
that forn =10,1

d\"
RC(X‘II(RN),Q[(I(RN)) ({ ()\d—)\> (8,\‘1)(/\)) | A€ 25,)\‘ }> <C,

d n
RC(X;(RN),‘Bq(RN)) ({ (Ad—)\> (73\\11()\)) | A€ 25,A,}> <C,
where ARY), B(RY), Sx, and Ty are given in (2.4) for G = RN.

Theorem 3.2. Let g € (1,00), and let X}(R"), X2(RN), and F be given in (2.2)
and (2.3) for G = RN. Assume that pi., Vi, and k. are positive constants. Then
there exists a constant €1 € (0,7/2) such that for any € € (e1,7/2) the following
assertions hold true.

(1) For any \ € £, there are operators A'(\), BY()), with
A'(A) € Hol (S0, L(X3(RY), Hi(RY))),
B'()) € Hol (B0, L(XLRN), HZRM)N)),
such that, for F! = (d,f) € X}(RY), (p,u) = (A'(NFIF, B (A\)FiF!) is a
unique solution to the system (3.2) .

(2) There exists a positive constant C, depending on at most N, q, €, €1, M+, Vs,
and K., such that for n =0,1

d n
Re(x1RN),23(RN)) ({ (A5> (8341 V) [ r e Ee,o}) <C,

d n
Reaymmman ({(A5) (BB 14e Sea}) <G
where A°(RN), BRN), SY, and Ty are given in (2.4) for G=R"N.

In the last part of this section, we introduce some fundamental properties of the
R-boundedness that are used in the following sections (cf. [2, Proposition 3.4]).

Proposition 3.3. Let X, Y, and Z be Banach spaces. Then the following asser-
tions hold true.
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(1) Let T and S be R-bounded families on L(X,Y). Then T +S = {T + S |
T € T,S € 8} is also R-bounded on L(X,Y), and also Rex,y)(T +S) <

Rex,y)(T) + Rex,v)(S)-
(2) Let T and S be R-bounded families on L(X,Y) and on L(Y,Z), respectively.
Then ST = {ST | S € S,T € T} is also R-bounded on L(X,Z), and also

Rex,2)(ST) < Rex,vy(T)Re(y,z)(S)-

4. HALF-SPACE PROBLEM
This section is concerned with the following half-space problem:
Ap+divu=d inRY,
(4.1) Au— g Au -, Vdiva— k,AVp=f inRY,
ng-Vp=g9, u=0 oan,V,
where ng = (0,...,0,—1)T. Set
XFRY) = XRY), xRY)=2x(RY),
FF = RF° (F° = (d.f,9) € ¥ (RY))

for X,(RY), XY(RY), and FY given in (2.2) and (2.3) with G = RY. The aim of
this section is to prove

Theorem 4.1. Let q € (1,00), and let X2(RY), X2(RY), and F} be as above.
Assume that p., Vs, and k. are positive constants satisfying

2
M + Vs 1
(4.2) N = (2—) — — #0, ki F tals.
K K

Then there erists a constant €5 € (€1,7/2), where €1 is the same constant as in
Theorem 3.1, such that for any € € (e2,7/2) the following assertions hold true.

(1) For any X\ € ¢ there are operators A%()\), B%()\), with
A%(X) € Hol (S0, L(X3(RY), H (RY))),
B2(A) € Hol (8.0, L(X5(RY), Hy(RY)™)),
such that, for F? = (d,f, g) € X2(RY), (p,u) = (A2(N)FIF2, B2\ FiF?) is a
unique solution to the system (4.1).

(2) There exists a positive constant C, depending on at most N, q, €, €1, €2, px,
Vs, and Ky, such that for n=0,1

d n
Rezmya9@y) ({ (*g;) (SA%(N) | r e Ee,o}) <¢,

d n
Rex2(mY),B,(RY)) ({ (/\d—)‘) (TAB2(N) | X e Zs,o}> <G,
where AY(RY), Bo(RY), 83, and T are given in (2.4) for G = RY.

Remark 4.2. The uniqueness of solutions for (4.1) follows from the existence of
solutions for a dual problem (cf. e.g. [17]), so that we only discusses the existence
of A%(\), B2()) in what follows.



4.1. Reduction to (d,f) = (0,0). To show Theorem 4.1, we reduce the system
(4.1) to the case where (d,f) = (0,0) in this subsection.

For f = f(z) with z = (¢/,zn) = (21,...,ZN-1,ZN) € Rﬁ_’, let E¢f and E°f
be the even extension of f and the odd extension of f, respectively, i.e.

f@',zn)  (zn >0),
f(@',—zn) (zN <0),
f(av’,wN) (.’L‘N > 0),
- f(&’',—zn) (zN <0).
One then notes that E¢ € L(H}(RY), H}(RY)). In addition, setting for f =
(fi,.--, fn)T defined on RY
Ef = (E°f1,...,E°fn_1,E°fn)T,

we see that E € L(Ly(RY )N, Ly(RM)N).

Let .A()\) and B'()) be the operators constructed in Theorem 3.2, and set for
(d,£) € HA(RY) x L(RY)Y

R = A'(\)Fi(E®%d,Ef), U = BY\)F,(E°d,Ef).

Furthermore, let S = S(2’,zn) and V = V(2/,zn) be defined as

S =R(z,-zn), V= Ui, —2zN),...,Un_1(z',—2zn), —Un(z', —zn))T.

Here and subsequently, U; and V; denote respectively the Jth component of U
and the Jth component of V for J = 1,...,N. It then holds that

(AS +divV)(2', zn)
= (AR +divU)(z/, —zn) = (E®d)(z/, —zN) = (E°d)(z’, zN)
and that for j=1,...,N -1
(AV; — mAV; —1,0; divV — k., A8;S) (2, zn) = (E°f;) (', zN),
(AVN — e AVN — v.0n divV — k., AONS) (', zn) = (E°fn)(2/, zN).

Thus, by the uniqueness of solutions to (3.2), we have U(z',zn) = V(2/,zn).
Setting zny = 0 in the last identity implies Un(z’,0) = 0.
Let p=R+pand u=U+1in (4.1). We then achieve, by Uy = 0 on R{
mentioned above, the following reduced system:
Ap+divi=0 in Rf,
(4.3) M - p Al - 1, Vdivii — 6, AVp =0 in RY,

B*f = (E*)@) = {

E°f = (E°f)(a) = {

n0~V/7=§, ﬂj=i;, 17N=0 onRéV,
forﬁand’lvj (j=1,...,N—1) given by
(44)  F=g-no VAWFUE,ES), I;=—(B'(NFA(E*d,Ef));,
where (v); denotes the jth component of v.
The reduced versions of XZ(RY), X2(RY), and F} are respectively denoted by
i?qz(Rf)L%Z(Rg)’ and .ff, that is, one sets z%;z(Rf) = HZ(RY)N and sets for
F2 = (g’ll" .. ’lN—l) € XqZ(R-JIY)

FIF? = (VPF2, \2UF2 0F?) € B2(RY), RX(RY) = Lo(RY)N+HV N,
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Concerning the system (4.3), we prove

Theorem 4.3. Let ¢ € (1,00), and let fg(Rf ), %Z(Rf ), and ff be as above.
Assume that ., Vi, and k. are positive constants satisfying (4.2). Then there is
an & € (0,7/2) such that for any € € (€2, 7/2) the following assertions hold true.

(1) For any X\ € X, there are operator families A2()), B2(\), with
A%()\) € Hol (Z. 0, L(EX(RY), H3(RY))),
B%()) € Hol (¢ 0, L(XZ(RY), HARY)NY),
such that (p, 1) = (Az( ).7-'2F2 B2(\)F2F?) is a unique solution to the system
(4.3) for F2 = (g,11,...,In-1) € ZXRY).

(2) There ezists a positive constant C, depending on at most N, q, €, €2 [, Vs,
and K., such that for n=10,1
d\" ~
ReE2@y)ao®myy) ({ ()‘d_)\) (S3A2(N) | A e 2e,o}) <G,

n
Re@Emy),3,RY) ({ ()\%\) (B2 (V) | A e 25,0}) <G,
where AYRY), Bo(RY), SY, and T, are given in (2.4) for G=RY.
If we prove Theorem 4.3, then we have Theorem 4.1 immediately with the fol-
lowing observation: Noting VE¢d = EVd, we see that
Fi(E®d, Ef) = (EVd, E°(\'/2d), Ef).
In view of this relation and (4.4), one sets for F2 = (d,f, g) € X2(RY)
AP\ FEF? = AY(\)(EVd, B4 (\/2d), Ef) + A2(\) F2F?,
BX(\)F3F? = B'(\)(EVd, E(\'/2d), Ef) + B2 (\) F3F?,
where F2 is given by
F2 = (g — ng - VA(\)(EVd, E¢(\/2d), Ef),
— (BY(\)(EVd, E*(\Y/?d), Ef))y,.. .,
— (B*(\)(EVd, E{(\Y?d),Ef))n_1) .

It is then clear that (p,u) = (A%(\)F2F2, B2(A)F2F?) is a solution to the system
(4.1), and also A%()), B2()\) satisfy the required inequalities of Theorem 4.1 (2) by
Proposition 3.3 and Theorems 3.2, 4.3. This completes the proof of Theorem 4.1,
so that it suffices to show Theorem 4.3 in the following subsections.

4.2. R-bounded solution operator families for (4.3). This subsection con-
structs R-bounded solution operator families for the system (4.3).

One firsts computes the representation formulas of solutions of (4.3). Here and
subsequently, we denote 7, @ = (%1,...,un)', g, and E (j=1,...,N—=1) by p,
u=(ug,...,un)", g, and l;, respectively, for notational simplicity.

Let us define the partial Fourier transform with respect to z’ = (x1,...,Zn-1)
and its inverse transform by

=d(zn) =8¢, TN) = / e~ u(e an) de’,
R

N-1
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Set ¢ = divu. Applying the partial Fourier transform to the system (4.3) yields
the ordinary differential equations:
(4.5) Ap+=0, zny >0,
(4.6) Xij — e (OF — €185 — v4i&; @ — raibs(By — 1€'17)p =0, zn > 0,
(A7) Aoy — (0% — 1€ 17)aN — v.ONG — raON (8% — |€')P =0, v >0,
with the boundary conditions:
(4.8) Onp(0) = —7(0),
(4.9) @;(0) = 1;(0), an(0)=0.
One inserts (4.5) into (4.6), (4.7), and (4.8), and thus
(410) N85 — A (8% — 1€'*)85 — i&{Avw — £ (8% — €'} =0, N >0,
(411) Ny — M (8% — €' P)an — On{Ave — k. (8% — 1€')}@ =0, zn >0,
(4.12) On®(0) = Ag(0).
Multiplying (4.10) by ¢{; and applying On to (4.11), we sum the resultant equations
in order to obtain

N3 — Ape + 1) (8% — €)@ + £a (3% — €'°)°8 = 0, zn >0,
which implies that
(413)  PA@N)@=0, Pa(t) =X = A +va)(82 = [€'1%) + ma (¢ = €)%

Here we set
A
(4.14) wx =4/€2+ P Rwy >0 for A € Ee 0, € € (0,7/2).

Applying Py(0n) to (4.10) and (4.11) furnishes by (4.13)
(4.15) (8% — w?)P\(dn)iy =0 (J=1,...,N).

One considers the roots of Py (t) at this point. Since

_ 1 o+ (82— € £ — |2\ 2
o2 (522) (547)- ().

we set s = (¢2 — |¢/|2)/) and solve the equation:

JE I LY Y
Ka Kx
By the assumption 7. # 0 in (4.2), we have the solutions s1, s3 (s1 # s2) of (4.16)
such that s; = s_ and sz = s with
U + Vs

Ti\/ﬁ (14 > 0),

Mo + Vg .
2—:t7/\/ |77*| (77* <0)
Kx
Let o = arg sz € [0,7/2), and set for A € X o with € € (o, 7/2)

(4.17) t1 =/ |§/|2 + s1A, to = +/ |€’|2 + 82,

(4.16)

S84 =
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ts = —V|&'2+ 512, ta=—V|¢|?+ s2\.

We then see that tx = tx(&',\) (k =1,2,3,4) are the roots of Py(t) different from
each other and that Rt; > 0, Nt > 0, Nt3 < 0, and Rty < 0.

Remark 4.4. We have in general the following situations concerning roots with
positive real parts for the characteristic equation of (4.15):

(1) Case 1. < 0. It holds that wy # t1, wy # t2, and t1 # 2.

(2) Case n. = 0. There are two cases: wy # t1 and t1 = t2; wy = t1 = t2.

(3) Case n« > 0. There are three cases: wy # t1, wy # t2, and t; # ta; wy = t; and
t1 # to; wy =tz and t; # ta.

The condition (4.2) guarantees that we have the three roots with positive real parts

different from each other.

In view of (4.15) and Remark 4.4, we look for solutions % of the forms:
Uy = qye WrsN 4 IBJ(e—tlil'N — e—w,\a:zv) + ,yj(e—tzzu _ e_“’"z”).

Here and subsequently, J runs from 1 to N, while j runs from 1 to N — 1. It then
holds that

(4.18)  ONTy = (—wras +waBs +wrys)e AN
— t1ByeT TN — tyy e,
(4.19) P= (it o —it' - B — i€ -y —wran + wABN +wryN) e
+ (i¢'-p' - tlﬂN)e_tlxN + (i€ -y = tayn)e 7PN,
where i€’ - a' = Z;V:_ll i€;a; for a € {a,B,7}. By (4.10) and (4.11), we have
BB — W)y + i€ {vh — (O — €2} =0, an >0,
X0 — wR)BN + On{vad — k(8% — 1E€'°)}P =0, an >0,

which, combined with (4.19) and the assumption k. # pVs, furnishes that

(4.20) i€ ol =it - B —it - —wran + wABN +wryn =0,
(4.21) BB (83 — w3) + 35 (i€ - B — t1BN) X — k(2 — |E7)} = 0,
(4.22) pa Xy (5 — W) + 16538’ - — tayn ) {md — ra(t3 — 1€'°)} = 0,
(4.23) BN (82 — w3) — t1 (i€ - B — t1BN){mad — k(83 = |E'17)} = 0,
(424) (8 —w}) — ta(i€ - — trn){mh — ka8 — )} = 0.

By (4.21)-(4.24), we have
uor@ =) (B+ S0 ) =0, d@ =) (35 + 2w ) 0.

As was seen in Remark 4.4, we know that wy # ¢; and w), # t2 under the condition
(4.2), and therefore the last two identities imply

(4.25) =gy =iy
t1 to
These relations, furthermore, yield
(4.26) i€ - ' —t1Bn = —t7 (] - |€'1*)Bw,

(4.27) i€y —toyn = —t5 1 (85 — | P)ww-



On the other hand, we have by (4.19) and (4.20)

(4.28) @= (it - B — t1fn)e™ "N + (i€ -y —tayn)e” =N,
Next we consider the boundary conditions. By (4.9) and (4.12), we have
(4.29) ;= 2}(0), ay =0,
(4.30) t1(i€ - B’ — t1BN) + t2(i€ - v — tayn) = —=Ag(0).
It especially holds by the first identity of (4.29) that
(431) ig o/ =i - 1(0), T(0)=(@(0),.,In1(0)),
and also by (4.26), (4.27), and (4.30)
(4.32) (8] = 1€'1")Bn + (85 = [€'*) 7w = 25(0)-

We now derive simultaneous equations with respect to Sy and yn. By (4.25),
ig' B =t HE By, € =67 P,
which, inserted into (4.20) together with the second identity of (4.29) and (4.31),
furnishes that
ig’ - T(0) - 1 1¢'Bn — t5 1€/ Paw + waBy +wayw = 0.
Hence,
(trwx — [€'P)taBr + (tawx — €' P 1w = —tatai€’ -T(0),
which, combined with (4.32), implies
2g(0 5 — |¢')? t5— €'
(4.33) L (511:11> - (—tltzi{(' )?(O)) » L= ((tuul)‘ —lé'||2)t2 (t2w2>\ —||E§'||2)t1) ’
Finally, we solve (4.33) and the equations (4.5)-(4.8). By direct calculations,
det L = ta(t5 — [€'1*) (tawa — [E'1%) — ta(t] — €1°) (taws — €'])
= (t2 — t1){trtawr(t2 + t1) — |€'[P(83 + tata + ¢] — |€'*)}.
Here one has

Lemma 4.5. Assume that fi., V., and k. are positive constants satisfying (4.2).
Then detL # 0 for any (¢/,\) € RN~ x(C,\{0}), where C; = {2z € C | Rz > 0}.

Proof. See [18] (cf. also [17]) for the proof. O

Let us write L~! as follows:
L= 1 (Lyy Lo
detL \La1 L22)’

Ly =ti(taws — [€%), Lz =—(& - |¢'P),
Lot = —ta(tiwn — [€'%), Loz =1t] - |€'|*.
We thus see that, by solving (4.33),

where

ALy titaLia ., o
4.34 = _ AvaHAZ s
(434) BN = 3an9® ~ gerr, € 1O
_ ALg titaLas ..,
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which, combined with (4.25), gives the exact formulas of 8;, y; for j=1,...,N—1.
Hence we obtain

-~ _ t% - |£I|2 —tizN t% - {Ellz —tozN
plzn) = ( N, )€ Bn + N, )¢ N,

'izj((L'N) = E(O)e_“"\“”" _ %(e—th\r _ e—wxzw)ﬁN
1
_ & —12ZN _ ,—WAZN
to (e e )’YN’

Un(zn) = (e7HN — AN By + (e71IN — eTAIN )y,
where we have used (4.5), (4.26), (4.27), and (4.28) in order to derive the repre-
sentation formula of p. Setting p = fé?l[ﬁ(xN)](:I:’ ) and uy = Fg Yas(zn)](2')
(J=1,...,N), we see that p and u= (uy,...,un)" solve the system (4.3).

One can construct the R-bounded solution operator families for (4.3) by means

of the representation formulas of solutions obtained above in the same manner as
in [17] (cf. also [18]). This completes the proof of Theorem 4.3.

5. PROOF OF THEOREM 2.6

Combining the standard localization technique (cf. e.g. [4], [15]) with Theorem
4.1, we have the following theorem for (2.1).

Theorem 5.1. Let ¢ € (1,00) and r € (N,00) with max(q,q') < r for ¢ =
a/(q — 1), and let Xy(), X(Q), and F be given in (2.2) and (2.3) for G = Q.
Assume that the assumptions (a), (b), and (c) of Theorem 2.6 hold. Then there

exists £y € (0,7/2) such that for any € € (€o,7/2) there is a constant Xo > 1 such
that the following assertions hold true.

(1) For any A € T, 5, there are operators A°(\) and B°()), with
A°(X) € Hol (3, 5,, L(%9(Q), H3 (D)),
B°(\) € Hol (2, 5,, L(X3(®), Hy()V)),

such that, for F = (d,f,9) € X,(Q), (p,u) = (A°(N)FIF,B°(\)FIF) is a
unique solution to the system (2.1).

(2) There is a positive constant C, depending on N, g, r, €, €, and Xo, such that
forn=0,1

d n
Re(xg(9),29(2) ({ (’\d_A> (S3A4°(N) [ A e Ee,)\o}) <C,

n
Re(xg(9),8,@) ({ (f\%) (\B°(V) [ X e Ze,)\o}) <C,
where A°(Q), B(Q), 2, and T, are given in (2.4) for G = Q.
In Theorem 5.1, we note that
8% = (N2, AV, \Y/2V2%p,V3p), FIF = (Vd,\Y/2d, £, A\g,\V/*Vg, \g).

One has to replace A3/2p by Ap and A\'/2d by d to prove Theorem 2.6 from Theorem

5.1. In what follows, we discuss how to obtain Theorem 2.6 from Theorem 5.1.
Let F = (d,f,g) € X,() and (p,u) be the solutions to the system (2.1). Let

E € L(H}(R), H}(RN)) be an extension operator and Eo € L(Lg(Q)", L,(RV)Y)
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be the zero extension operator. One sets &9 = max(e.,&p) with constants €, and
&o obtained respectively in Theorem 3.1 and Theorem 5.1. In addition, for € €
(g0, 7/2), one sets Ao = max(As, A\g) with constants A, and A\ obtained respectively
in Theorem 3.1 and Theorem 5.1.

For A € X, », and for ®(A) and ¥(A) of Theorem 3.1, we define

(5.1) (R, U) = (2(A\)(Ed, Eof), ¥(\)(Ea, Eof)).
Then (R, U) is the solution to
AR+mdivU=Ed inRV,
{ AU — 45! Div(uD(U) + (v — u) div UL 4 7o6ARI) = Eof in RV.
In addition, setting p = R+ o in (2.1), we achieve
Ao+ yidiva = d in Q,
Au — 73 Div(uD(u) + (v — p) divul + v2kA0T) = in Q,
n-Vo=g, u=0 onS,

where we have set

d= 71 divU,
f = AU — 7; ! Div(uD(U) + (v — p) div UI),
N
§=g—n-VR=g—an8jR (n=(n,...,nn)").
j=1

Thus the solution (p, u) of (2.1) can be written as
(5.2) p =R+ 0 =®\(Ed, Ef) + A(NFd,T,5),
u=B"WFLT,9).

In the following calculations, n is extended to R" in a suitable way (cf. [20,
Appendix A)). Recall that

(53) Fd,£,9) = (Vd,\'/2d, T, VG, \/?V§, \g)
and that
(54) Vd = (Vm)divU+yVdivU, A/2d=yAY2divU,
f=)U - 75 (bAU + D(U)Vpu+ vV div U + (div U) V(v - )

N

V%= V29— 3 ((V?n;)8;R + Vn; © VO;R + VO;R ® Vn; +n;V20;R),
j=1
N
N/27G = NV20g = 3™ ((Vn)\/20,R + nj X2V, R),

j=1

N
AG=Xg— ) n;\;R.

j=1

Let F = (Fy,...,Fs5) € X,(Q), i.e.
Fie Hj(Q), Fa,FaeLy@", FaeLy(@)™, FseLy(®)
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In view of (5.1)-(5.4), we define for the density an operator A(A) with
A(X) € Hol (Ze,x0, £(%4(Q), H3 ()
in the following manner:
AAF = &(X)(EFy, EoFs)
+ A°0) (V1) div E(\) (BFy, o) + 1V div ¥(A)(EFy, BoFa),
1 AY2 div @(\)(EFy, EoF3), AU (A)(EF1, EoF2) — 73 *uA¥(N)(EFy, EoF»)
— 3 1wV div O(N)(EF1, EoF2) — 13 'D(¥(N)(EF1, EoF2))Vu
— ~3 L div U(\)(EFy, EoF2)V(v - p),

N N
Fs — > (V2n;)8;®(\)(EF1, EoF2) — Y Vn; ® VO;®(\)(EFy, EoF)
j=1 j=1
N N
— Y V8;8(\)(EF1, EoF2) ® Vn; — > n;V?8;8(X)(EF1, EoFa),
j=1 j=1

N N
Fa— > (Vnj)AY20;8(\)(EF1, EoF2) — Y njA/2V0;®(N)(EFy, EoF2),

j=1 j=1

N
Fs — Z n,-/\aj‘b()\)(EFl, EOFZ)) .

Jj=1

Furthermore, we define an operator B(X) € Hol (¢,x,, £(X4(2), H2(Q)")) for the
velocity in the same manner as A(A). Thus (p,u) = (A(A)F\F,B(A)F\F) is a
solution to the system (2.1), and also A(X), B()) satisfy the required estimates
of Theorem 2.6 (2) by Proposition 3.3 and Theorems 3.1, 5.1 (cf. [18] for more
details). This finishes the outline of the proof of Theorem 2.6.
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