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On some free boundary problems for the Navier-Stokes equations
in unbounded domains

Yoshihiro SHIBATA*
Department of Mathematics, Waseda University

This note deals with the global wellposedness of some free boundary problems for the Navier-Stokes
equations in unbounded domains. A technical issue is how to combine the maximal regularity estimates
for the highest order terms with the decay estimates for the lower order terms of solutions to the linearized
equations. It does not seem to be popular enough compared with the Navier-Stokes equations with non-
slip boundary conditions. In the later case, the Navier-Stokes equations are just parabolic ones, and so
the decay properties for the Stokes equations with non-slip boundary conditions are enough. On the other
hand, in the free boundary conditions case, after transforming an unknown time dependent domain to
some known fixed one, the problem becomes a system of quasilinear parabolic equations with nonlinear
boundary conditions, and so some combinations of the maximal regularity estimates for the highest order
terms with the decay estimates for the lower order terms are necessary to prove the global well-posedness
at least for small initial data, which is not well-known compared with the non-slip boundary conditions.
In this note, I would like to show some combinations, which does not seem to be optimal/best possible,
but is enough to prove the global well-posedness for small initial data. Notice that in the bounded
domain case, exponentially stable maximal regularity estimates are obtained, and so it is not necessary
to consider combinations mentioned above.

1 One Phase Problem in an Exterior Domain

1.1 Problem and Global in Time Unique Existence Theorem

We first consider the following free boundary problem for the Navier-Stokes equations:

Ov+ (v-V)v —Div(uD(v) —pI) =0, divv=0 forze, 0<t<T,
(uD(v) —pI)n; =0, Vo=v-n,=0 forzel;, 0<t<T, (1)
V|t=0 = Vo for xz € Q.

Unknowns are the domain € with the boundary Ty, and the functions v(z,t) = (vi,...,vn)T, where
MT denotes the transposed M, and p(z,t), z € Q. The domain y = Q is an exterior domain in the
N-dimensional Euclidean space RN (N > 2) with the C? boundary I. By n; = (n4,--- ,nm)T we mean
the exterior normal to Ty, and V,, is the velocity of the evolution of I'; in the normal direction. D(v) =
Vv + (Vv)T is the doubled rate-of-strain tensor whose (i, /) component is 8;v; + 8;v;, 8; = 8/8z;.
1 is a positive constant describing the viscosity coefficient. We assume that the mass density is one.
Moreover, I is the N x N identity matrix, and
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where K is the N x N matrix of functions whose (4, j)*® component is K;;.

If we use the Hanazawa transform to transform Q; to some fixed domain, we have to require Wg’
regularity of the height function p representing I';. However, this regularity is obtained by surface
tension, that is the Laplace-Beltrami operator on I';. In this section, we consider the case where the
surface tension is not taken into account. Thus, we can not obtain Wf ~1/a regularity of the height
function, and so the Hanzawa transform can not be used in the present case. Another method is to
use the Lagrange transform. However, we can not expect the exponential decay for the solutions of the
Stokes equations with free boundary conditions, because 2 is an unbounded domain. We will have only
polynomial decay properties of solutions of the Stokes equatlons with free boundary conditions, which
is not sufficient to controle the term: first derivatives of fo u(y, s) ds times the second derivatives of u,
where u is the velocity field in the Lagrange coordinates {y}.

To overcome this difficulty, the idea here is to use the Lagrange transform only near the boundary.
Let R be a positive number for which O = RV \ Q C Bg /2. Here and in the following, By, denotes the
ball with radius L. Let x € C§°(B2r) equal one in Bg. Let u(y,t) be the velocity field in the Lagrange
coordinates {y}. We consider a partial Lagrange transform:

-1/q

r=Xalw) =yt [ KOulurs)d. 2)

Assume that r
/0 ls(-)a(s s)ll L, (@) ds < 6. (3)
As symbols, here and in the following, for any domain G in RY, L,(G), H*(G), and B; ,(G) denote the
standard Lebesgue, Sobolev, and Besov spaces on G, and || - |z (q), || - | (c)» 2nd || - [|B; ,(c) denote

their respective norms.

In the assumpion (3), § > 0 is a small number that will be chosen in such a way that several conditions
hold. For example, we choose 0 < § < 1/2, so that the map z = Xy(y,t) is injective for each ¢t € (0,T).
Let

¥, = [ w0)u(or9)ds = (B0 Uart)

Let y = X7 !(z,t) be the inverse of the transformation: z = X,(y, t) given in (2). Setting
={z=Xu,t) |y €Q}, Ti={z=Xu(yt)|yerl},

v(z,t) = u(X7(z,t),t), and p(z,t) = q(X3'(z,t),t), we then see that Eq. (1) is transformed to

Oyu — Div (uD(u) — gI) = f(u), in @ x (0,T),
divu = g(u) = div g(u) in Q x (0,T), @
(uD(u) — gI)n = h(u) onT x (0,T),
Vl|t=0 = uo in Q.

Here, up = vy, n is the unit outer normal to I, and f(u), g(u), g(u) and h(u) are nonlinear terms, the
exact formulas of which will be given below.

As symbols, we use bold lowercase letters to denote N-vectors and bold capital letters to denote N x N
matrices. For an N vector a, a; denotes the i*! component of a and for an N x N matrix A, A;; denotes
the (i, j)* component of A, and moreover, the N x N matrix whose (i, j)** component is Kj;; is written
as (K;;). For any two N x N matrices A and B, A : B is defined by A : B = zf,’jﬂ A;;B;;. For any

N-vector of functions, w = (w1, ...,wy)T, VW is the N x N matrix of functions with (Vw);; = 9;w;,
that is
Oiwy Owy .-+ Onwr
Oiwy  Owz -+ ONwa
Vw = . . .

oiwy OGown -+ ONwn
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Let 8z/8y be the Jacobi matrix of the transformation (2). We choose 6 > 0 so small that the inverse
matrix of 8z/dy exists, and therefore there exists an N x N matrix Vo(k) of C* functions defined on

|k| < é such that V(0) =0 and

(5) =1+ VoV, ®)

Here and in the following, k = (k;;) and k;; are the variables corresponding to 9;¥; = fot O;(ku;)ds. Let
Voij (k) = Vo(k)i; and V, = (8/8z1,...,8/8zn)T for z =z and y. We then have

— T+ Vo()Vy, 5= = 364+ Voug09) o ®

j=1
Thus, D(v) = D(u) + Dp(k)Vu with

N

Bu Ou; ou
D(u);; = 24 - 30 PV Z(Vo]k(k L 4 Voir (k) :) )
k=1
We next consider divv. By (6), we have
N o0 N ;
divev =Y Eﬂ =Y O+ voj,c(k))— = div u+ Vo(k) : Vu.
j=1 k=1

Let J be the Jacobian of the transformation (2). Choosing § > 0 small enough, we may assume that
J = J(k) =1+ Jo(k), where Jo(k) is a C* function defined for [k| < o such that Jo(0) = 0. To obtain
another representation formula of div v, we use the inner product (-,-)q,. As symbols, here and in the
following for any domain G ¢ RY and its boundary 8G, (u,v)¢ and (u,v)sg denote inner products on
G and OG, respectively, that is

(u,v)G=/u-vd:c, (u,v);;g:/ u-vds,
G aG

where ds denotes the surface element on the boundary 9G.
For any test function ¢ € C§°(:), we set ¥(y) = ¢(x). We then have

(divov, 9)a, = —(v, V@)a, = —(Ju, (I+ Vo) Vy9h)e = (div (T + Vg ) Ju), ¥)a
= (J7div ((T+ V3)Ju), ¢)a,.
Summing up, we have obtained
div ;v = divyu + Vo(k) : Va = J~}(div yu + div , (J Vo (k) Tu)), (8)

and so
Jdiv yu+ JVo(k) : Vu = div yu + div , (JVo(k) "u).

In particular,
Jodivu + JVo(k) : Vu = div (JVo(k) ). 9)

To derive the transformation of the momentum equation in (1), we first observe that

N
Z (ﬂD(V)u pdi;) = z w(djk + %jk)%(D(u)ij + (Pp(k)Vu);) Z(‘sm + VOtJ) - (10)

Jk=1

where we have used (7). Since

2 ity + %8, = 2, t)+2~(y)u1(y,t) 5z, =)
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we have N
Bvi _ au1 6u1
e B S o o
and therefore,
avZ N 61), Bu,
Zv] =%t 2(1 @u,(a,,,m,k(k))_. (11)
J k=1

Putting (10) and (11) together gives

0
0="31+ Z (1 = K)us(dsm + vaﬂc(k))

Jk=1
N N
— M Z (i + VOJk(k))a (D(uw);; + (Pp(k)Vu);) — Z(‘su + VOzJ(k))a_q
7k=1 j=1

Since (I + V¥)(I+ Vo) = (0z/8y)(0y/0z) =1,
N

Y (Bmi + Om¥s)(8s5 + Vosj (k) = bmj,
i=1
and so we have
N Ou; ou.
5o+ 009243 (1= B+ Vo) )
i=1 3 k=1
- Mi,_'j,zkil(émi + 0m ) (0jk + V()jk(k))'a_y;(D(“)ij + (Dp(k)Vu);;) — B 0.

Thus, changing i to £ and m to ¢, we define an N-vector of functions f(u) by

N
f(u); = z (1 = &)u;(&5x + ‘/OJk(k))a
Ji,k=1
O, 9
Za w, (S +,§ (1 — R)u; (83 + %]k(k))a—;‘:)
N
(Z (Do Vu)s + S otk ,2 5o (D(w)s + (P (k) V)
i=1 7 k=1
N
Z 03 (831 + Vs (1)) 5, - < (We; + (Do (k) Va)yy))- (12)
And also, from (8) and (9) we have
g(u) = —(Jo(k)divu + (1 + Jo(k))Vo(k) : Va), g(u) = (1 + Jo(k))Vo(k) Tu. (13)
Recall that
={e=y+¥(yt)+{@) |y €T} (t€(0,T)).
Since

0=n-dy=n- (Z_Z dz) =n- (14 Vo(k))dz) = (I+ Vo(k) )n) - d

on I', we have .
(14 Vo()T)n
Rt = (T Vo) Tal ()



Putting (7) and (14) together gives
0 = (uD(v) - pI)n|(I+ Vo (k) ")n]
= p(D(u) + Dp(k)Vu)(I + Vo(k))n — g(I + Vo(k) " )n.
Since (I+ (V) T)(I+ Vo(k)") =1, we have
I+ (V®)T)u(D(u) + Do (k)Vu)(I + Vo(k) )n — qn = 0.
Thus,
h(u) = —u{D(u)Vo(k) "n + (Dp(k)Vu)(I + Vo(k) ")n (15)
+ (VT) T (D(u) + Pp(k)Vu)(I+ Vo(k) " )n}.

The main result of this section is the following theorem that showes the unique existence theorem of
global in time solutions of Eq.(4) and asymptotics as ¢t — o.

Theorem 1. Let N > 3 and let 1 and g2 be exponents such that maz(N,%) < @2 < 00 and

1/g1 =1/g2+1/N. Let b and p be numbers defined by

3N 1 2¢o(1
p=N 1, _20(+o)
@2—-N

16
2t 5 (16)

with some very small positive number o. Then, there exists an € > 0 such that if initial data uy €
BXL YD @)N 0 Bﬁf};,;/ PQ)N satisfies the compatibility condition:
divug=0 inQ, D(u)n—<D(unn>n=0 onT, 17)

and the smallness condition:
||110|!BZ§§;1/») + ||110||B:§1/;‘;/p) <€ (18)

then Eq. (4) admits unique solutions u and q with
u € Ly((0,00), HZ (Q)N) N Hp((0,00), Ly (DN), 4 € Ly((0,00), Hy, () + Hy, 0(R)),

possessing the estimate [u]o, < Ce with
T
e = { [ (<55 )l )7
r (b-73) 7y P
+/ (<> Jlu(, s)llmy, @) ds+ ( sup < s >%1 [lu(-,8)]|L,, @)
1] 0<s<T
T 1/p
b— D
+ /0 (<5 >C75 (u, )z, @ + 1009, 8)llz,, ) ds}

Here, < s >=(1+ sz)% and C is a constant that is independent of e.
Remark 2. Let p' = p/(p— 1), that is 1/p’ =1 — 1/p. And then,
1 _(1420)¢:+N

4 2¢2(1 + o)

We choose o > 0 small enough in such a way that the following relations hold:

1<q1 <2, %>b>$, (qﬁl—b)p>1, (b—%)p>1, bz%
bzév—z, (%+%)p’<l, by >1, (b-—%)p’>l, %+%<1.

(19)
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Remark 3. The exponent g2 is used to control the nonlinear terms, and so g2 is chosen in such a way

that N < g2 < 00. Let
1 1 1 1

1 1
— , —+—. 20
a N ¢ @& a ¢ (20)
We require that ¢; > 2 and g3 > 1 in the proof of Theorem 1, so that ¢ > 13—11'2 Thus, we have assumed
that

2N
max(N, m) < g2 < o00.

Remark 4. If we choose § > 0 in (3), then £ = Xy(y,t) becomes a diffeomorphism with suitable
regularity from Q onto €2, and so the original problem (1) is globally well-posed.

Further Notation
We further use the following symbols throughout the paper. For any N-vectors a and b, let

N
a-b=<a,b >=Zajb_.,-, a,=a—<an>n.
j=1

Given 1 < g < 00, let ¢’ = g/(q—1). For a Banach space X with norm ||-||x, let X% = {(f1,...,fa) | fi €
X (i =1,...,d)}, and write the norm of X¢ as simply | - ||x, which is defined by ||| x = Zj:l I1£;1x
for f = (f1,-..,fa) € X% Let

H} () = {0 € Laoc(Q) | VO € Ly()N,6lr = 0},  Hgo(®) = {u € Hy(Q) | ulr = 0}.

For 1 < p < o0, Ly((a,b), X) and Hp*((a,b), X) denote the standard Lebesgue and Sobolev spaces of
X-valued functions defined on an interval (a,b), and ||-[|z, ((a,6), %), | | 7+ ((a,5),%) denote their respective
norms. For 8 € (0,1), Hg (R, X) denotes the standard X-valued Bessel potential space defined by

H)(R,X) = {f € Ly(R, X) | |fllzm, x) < 00},

Iz = ( /R 172+ P22 F AN dt)

where F and F~! denote the Fourier transform and the inverse Fourier transform, respectively. Let
C§°(G) be the set of all C* functions whose supports are compact and contained in G. The letter C
denotes a generic constant and Cg p,c,... denotes that the constant Cy, p,... depends on a, b, c,---. The
value of C and C, p,c,... may change from line to line.

1.2 Maximal L,-L, regularity theorem and local well-posedness

In this subsection, we state the maximal L,-L, regularity of solutions to the Stokes equations with free
boundary condition:

Opu —Div (uD(u) — gqI) =f, divu=g=divg in @ x (0,7),
(uD(u) —gI)In=h  onT x (0,T), (21)
Ult=0 = ug in Q.

We start with the following proposition which was proved in Shibata [9].
Proposition 5. Let 1 < ¢ < co. Ifu € Hy(9) satisfies diva = 0 in Q, then u € J,(Q).

We next consider the weak Dirichlet problem:
(Vu, Vp)a = (f, Vp)a for any ¢ € Hy o(). (22)

Then, we know the following fact.
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Proposition 6. Let 1 < g < 0o and let Q be an exterior domain in RN (N > 2) with C? boundary.
Then, the weak Dirichlet problem is uniquely solvable. Namely, for any £ € Ly(Q)N, problem (22) admits
a unique solution u € H} o() possessing the estimate: [[Vu| L (0) < C|fllL,@)-

Remark 7. (1) This proposition was proved by Pruess and Simonett [6, Section 7.4] and by Shibata
[9, Theorem 18] independently.
(2) Let @ = R\ S; and I' = Sy, where S; denotes the unit sphere in RV. Let

_ | Injz| N =2,
f(z)_{[zr(N—?)—l N >3.

Then, f(z) satisfies the strong Dirichlet problem: Af = 0 in Q and f|r = 0. Moreover, f € H} (%)
provided that ¢ > N/(N — 1). However, f does not satisfy the weak Dirichlet problem:

(V£,Vp)a=0 forany ¢ € Hy ().

In fact, C§°(Q2) is not dense in ﬁ(},yo(ﬂ) when 1 < ¢’ < N. The detailed is discussed in Shibata [9,
Appendix A].

Since the weak Dirichlet problem is uniquely solvable, by the result obtained in Shibata [8], we have
the following theorem (cf. also Shibata [9]).

Theorem 8. Let 1 < p,q < 0o with 2/p+1/q# 1 and 0 < T < co. Then, there exists a constant Yo
such that the following assertion holds: Let

up € BXIVP(Q)N, £ e Ly((0,T), Le()N), e g € Lp(R, H(Q)) N HY*(R, Ly(R)),

23
e Mg € HXR,Ly()"), e "h e HYA (R, Ly()N) N LR, H} (V) (28)
for any v > ~o, which satisfy the compatibility condition:
div ug = g|t=0 in Q (24)
and, in addition,
(uD(up)n — h|i=0)r =0 onT (25)
provided that 2/p+ 1/q < 1. Then, problem (21) admits unique solutions u and p with
ue LP((OaT)ng(Q)N) an}((Ov T)7LQ(Q)N)1 (26)

p € Lp((0,T), Hy() + Hyo())

satisfying the estimates

lallz, (0,1, H2()) + 19eullz, (0,7),L, @) < C’veﬂ’T[||uo||Bgl(;-1/p)(Q) + Ifll,(0,1).Lq()

+le™" (g, b)|| L, 130 + ™" (g, B)| 2R Ly@) T le™ " gllmzm Lop]  (27)
for any v > o and for some positive constant C depending on vy but independent of v > ~o.

Remark 9. In the case where 2/p+ 1/q < 1, D(up) € B.},;")/"(Q) and 1 —2/p > 1/q, and so D(up)|r
exists. However, 1/p <1/2 and h € H;/ 2(R, Ly(Q)N) implies that h is continuous with respect to ¢ € R
in the Ly(€2) topology, and so h|s=¢ exists as an element in Ly(£2), but we do not know whether the trace

of h|;=o to I exists. Thus, we implicitly assume the existence of the trace of h|;—o to I' in (25).

Using Theorem 8 and Banach’s fixed point theorem, Shibata [9] proved the following local in time
unique existence theorem for Eq. (1).
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Theorem 10. Let 2 < p < 00, N < g < 00 and S > 0. Let Q be an exterior domain in RN (N > 2)

whose boundary T is a C? compact hypersurface. Assume that 2/p+ N/q < 1. Then, there exists a time

T > 0 depending on S such that if initial data ug € B2,(1_1/”)(Q)N satisfies ||ug|| g2ci-1/) oy < S and the
P Ba.p @

compatibility condition:
divuy =0 in Q, (D(ug)n); =0 onT, (28)

then problem (4) admits a unique solution (u,q) with
u € Ly((0,T), Hy(@)N) N Hy((0,T), L"), a € Ly((0,T), Hy(R) + Hyo())

possessing the estimate:

T
lallz, o.7).12(2)) + 1821l 2, (0,1), L,y < CS, /0 GV (s 8) | @) ds < 6
for some constant C > 0 independent of T and S. Here, § is the constant appearing in (3).

1.3 A new formulation of Eq. (4)
Let T > 0 and let
u€ Hy((0,T), Lo(@)™) N Ly((0,T), Hy()"), g€ Ly((0,T), Hy () + H; () (29)

be solutions of Eq. (4) satisfying the condition (3). We then prove the global in time unique existence
theorem by prolonging this local solution to any time interval. To prolong u beyond (0,T), we need
some decay estimates of u. For this purpose, we rewrite Eq. (4) in order that the nonlinear terms have
suitable decay properties.

In the following, we repeat the argument in Subsec: 1.1. Let

aij(t) = 85 + asi(t), J(t) =1+ J(t), &;(t) =6+ Li;(t) (30)

with

t t
i3 (1) = Vo /0 Vir()v(y, 8))ds),  J(t) = Jo / V(s(@)v(5)) ds),

~ t t o (31)
Biy®) = iy (| Vst)viw o) ds) = [ - (x(w)uso: ) do.
0 0o OYj
By (6) and (14), we have
8 8 N
B2 = Zaﬁ(t)yy ne = d(t) Y azi(t)ny,
7= v = 32
o, O N o S 2
v | 0Y _ (1) 9% ()% = .. ). .
5z, + B, ;(ak,(t) gu T 550 = Dis(w) + Diy(6)Vu
where d(t) = |A(t)"n| = |(I+ Vo(k)")n|, and
T B N PPN .7
Dy(w) = G+ Gy D®Vu =Y (a0t +au(5.)).
Moreover, by (8) we have
N duj <~ 0
divv= 3 JWer(t)31 = D 5 -(J(tar(Buy)- (33)

Ji.k=1 Jik=1
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And then, Eq. (4) is written as follows:

4
Zje,s(t)(atul +(1-x J; ujak;(t) 3yk)
—u Z Lis(t)ari(t) 5— "g(u)—@—=0 in Q x (0,T)
e %8 7 a ‘L]‘ ays ) )
N
) . (34)
Z J(t)ak,(t)—— =Y 5o (T Bak; (t)uy) =0 inQ x (0,T),
k=1 k=1 Yk
J» 7
N
B Y lis(t)a;(t)Dija(w)ni — qng =0 onT x (0,T),
i,jk=1
L ul;—o = up in ,
where s runs from 1 through N. Here, we have used the fact that (¢;;) = A~L.
In order to get some decay properties of the nonlinear terms, we write
t T T
[ vewnw s = [ Viwu.ds- [ Viswuw,o)ds
In (31), by the Taylor formula we write
ai5(t) = ai5(T) + A(t), £5(t) = £i(T) + Li;(2),
D,'j't(ll) = Dij,T(l.l) + Dij(t)Vu, J(t) = J(T) + j(t) (35)
with
Aslt) = - / i / V(x(y)uly, s)) ds — 6 / V(k(y)u(y, s)) ds) df / V(s(y)u(y, s)) ds
T auj
Ly(t)y=— A a—y(n(y)ui(y,s))ds, D;;(t)Vu = Z(-Akj(t) + Aui(t) 5 ),
j
1 T
g0 == [ B[ Viwum)ds-o / V(k@)u(y,s)) ds) do / V(s(v)uly, 5)) ds,
where ‘/()Iij and Jj are derivatives of Vp;; and Jo with respect to k. By the relation:
N
> i T)agm(T) = 84 (36)
s=1
the first equation in (34) is rewritten as follows:
N P 5
Ogtt — z Akj (T) (NDm;,T(u) Omjq) = Fm(u)
Jok=1
with
F Ou;
fu(w) = Zasm {Z Lio(t)Byu; + Z (1= maa(tars (s 5}
i,5,k=1
+ yZamm{ Z ia(T)ars(T) 5 — ( Dyj(t)Vu) + Z £ia(T) Ay (8) gy Die®) (D)
s=1 i,5,k=1 i,5,k=1

+ z Lis(t) ak,(t) ij,t(u)}'

4,J,k=1



The second equation in (34) is rewritten as
divu= g(u) = divg(u)
with

N
Fu= 3 JDay()28 ) %(J(T)akjmuj),

J,k 1 k=

§(u) = Z (J(T)Axs(t) + T (t)a’kj(t)) 3y (38)

J,k—
= Z(J(T)Ak,-m + T Bar;(#)ug, &) = @1(w),-..,an (W)
i=1
And the boundary condition in (34) is rewritten as

N

> ks (T)(uDmj,r(w) = 8mja)ni = hum(w)
Gk=1
with
. N N
hm(0) = =1 (ak;(T)Dpmj (1) VUt Ak () Dmjr())nk—p Y aom(T)Lis(t)ar;(8) Diga(w)ne. (39)
Jik=1 i,3,k,s=1
By (33),
N N P
> aki(T quJ, () = 6mjq) = J(T) Y 3o /(D)aki (T)(uDj,r (4) = 61nja))-
k=1 =1 OYk

Thus, letting

N
Smk(,0) = D J(T)ars(T)(Drmjr(0) = Smga),  S(u,q) = (Sij(u, 9)),
j=1

) (fl(u)7 ,fN(u))T7 fl(u) = (El(u)f"wﬁN(u))T’
and using (33), we see that u and q satisfy the following equations:
du— J(T) 'DivS(u,q) =f(u) in Qx(0,T),
diva= g(u) = div g(u) in Q x (0,7T),

S(u,q)n = J(T)h(u) onT x (0,7),
uli=0 = o in .

(40)

This is the new formula of the equations which local in time solutions u and q of Eq. (4) satisfy. We
call Eq. (40) slightly perturbed Stokes equations.

1.4 Slightly perturbed Stokes equations

In this subsection we summarize some results obtained by Shibata [10] concerning the slightly perturbed
Stokes equations. Let r be an exponent such that N < r < oo. Let a;;(T), 4:;(T), J(T) and J(T) be
functions defined in (30). We assume that

1@ (T), J(T) o) + IV (@35 (T), J(T)) L) S @ (41)



with some small constant o > 0. In the following, we write a;;(T), a:;(T), J(T) and J(T) simply by a;;,
a5, J and J, respectively. And also, we write A(T) = (a:;(T)) by A. We want to state the maximal
L,-L, regularity and some decay properties of solutions of Eq. (40). To define the solenoidal space for
(40), we introduce the weak Dirichlet problem:

(Vu, JVp)a = (£,JVp)a for any ¢ € H) o(Q). (42)

Here,
N B N By
S oy 9P\T _ AT,
V“’_(Z“"‘az,,""’za"’vazk) A Vp
k=1 k=1

Since a;; and J vanish outside of Bsg, divu = divu and Vo = Vg in RY \ B2g. Thus, by Proposition
6 and (41) with small o > 0, we have the following result.

Proposition 11. Let 1 < g < r. Then, for any f € Ly(Q)N problem (42) admits a unique solution
u € H] () possessing the estimate: [|Vul L, ) < CllfliL -

Let J (2) be the space defined by
J(Q) = {ueLyQ) | (u,JVp)e=0 forany ¢ € Hy o(Q)}.
Given f € Lo()V, let u € A} () be a unique solution of the weak Dirichlet problem (42), and then

f — Vu € J,(Q), and so the projection P : L, ()N — J(Q) is defined by Pf = f — Vu. Obviously,

I1PEllz, @) < ClfllL, (-
We consider the initial problem:

Bu— J(T) 'DivE(u,q) =0, divu=0 inQx(0,T), S(u,q)nr=0, ulmo=F  (43)
Shibata [10] proved the following theorem.

Theorem 12. Assume that N > 3. Then, there exists a o > 0 such that if the assumption (41) holds,
then for any q € (1,7], there exists a C° analytic semigroup {Ts(t)}s>0 such that for any f € Ly(R), a
unique solution u of Eq. (43) is represented by u = Ts(t)Pf .

Moreover, for any p € [g,00], f € J4(), and t > 0 we have the following estimates:

= —i(i_1
IZs () PEllL, @) < Cont 2 D)) L),
(44)
If we consider the equations:

du—J DivS(u,q)=f, divu=0 inQx(0,T),
S(u,g)n=0 onT, (45)
u|t=o =0 in Q.

Let ¢ € fl,;'o () be a solution of the weak Dirichlet problem:
(Vi, JV@)a = (f,JVp)a for any ¢ € HL o(Q).
Let g = f — V), and then g € J;(R) and
gl o) + VYL, < ClifllL,o)-
Using this decomposition, we can rewrite Eq. (45) as

du-J 'DivS(u,q-¢)=g, divu=0 inQ2x(0,T),
§(u,q —-Y)n=0 onT,
uf;=o =0 in Q.



where we have used the fact that ¢|r = 0. By Duhamel’s principle, we have

u= /0 t Ts(t — s)g(s)ds = /0 t Ts(t — s)Pf(s) ds. (46)
This is a solution formula of Eq. (45).
Finally, we consider the equations:
du+ dou—J(T) 'DivS(u,q) =f  in Q x(0,7),
divu=g=divg in Q@ x (0,T),
S(u,g)n=h  onT x (0,T),
uli=0 = g in Q.

(47

Let

A™n

|ATn|’

Using these symbols, the boundary conditions in (47) is written as follows:
(D(u) — gl)ia = (J(T)]A™n))"th on T x (0,T).

For any N-vector d, let d; = d— < d,ii > fi. The following theorem was proved in Shibata [10].

n=

D(u) = (Dyjr(w).

Theorem 13. Let 1 < p,q < oo and assume that 2/p+ N/q # 1. Then, there exist constants c > 0 and

Xo > 0 such that if the assumption (41) holds, then the following assertion holds: Let ug € B4~ /P ()N
be initial data for Eq. (47) and let £, g, g, d, h be given functions in the right side of Eq. (47) with

fe LR L(QN), g€ Hy(R,H(Q)NHY*(R,Lo(Br)), &€ Hy(R,Lg()V),
h e HX(R, HY(Q)N) N HYA(R, Ly(@)N).
Assume that the compatibility condition: div Uy = glt=0 in Q holds. In addition, the compatibility

condition: (uD(uo))z = (J(T)|AT|)"*h|i=o)z on T holds provided 2/p+ 1/q < 1. Then, problem (47)
admits unique solutions u and q with

u e HY(0,T), Le()N) N Lp((0,T), HX(Q)N),  q € Lp((0,T), Hy () + Hy o())
possessing the estimate:
lallz,o.1).822)) + 10l 0.9, Le()) < Clllvoll g2a-1/m ) + IEll L, R, Lo(52)) )
+ (9, D)l 272 1, () + 19 DL, 130 + 110:8 ] 2, R, Lo (20)
for some constant C.

Since d(< t >® u) =< t >® fu+b <t >>"! vy, if u and q satisfy Eq. (47), then < ¢t >® u and
< t >? q satisfy the equations:

(<t > u) + Ao(< t >0 u) — J(T) 'DivS(<t >0 u, < t >b q)
=<t>f+b<t>"1u inQx(0,T),
div<t>Pu=<t>Pg=div(<t>’g) inQx(0,T),
S(<t>*u,<t>*qn=<t>h onT x(0,T),
<t>bulig=up inQ.
Thus, repeated use of Theorem 13 yields that
I <t >*ullz, o, m20 + | <t >° Bz, 0.1),L,(2)
< C(fjuoll g2g-170 gy + 1 < > fllL, @ o) + (<t >0 g, <t > b2, @) — (49)
+ll(<t > g, < t >P B)|l L, @ m300)) + 18:(< t >° )|, Lo @),
provided that the right hand side is finite.
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1.5 The estimate of the nonlinear terms

We state the estimate of f(u), §(u), g(u), and fl(u), which are defined in Subsec. 1.3. To use the
estimate (49), we have to extend g(u), g(u) and h(u) to R. Notice that j(u), g(u) and h(u) vanish at
t=T. Given f defined on (0,T) vanishing at ¢t = T, we define er[f] by

0 fort > T,
f@® for0<t<T,
t) =
er[f](t) f(=t) for-T<t<0,
0 for t < -T.

Notice that er[f] = f on 0,T). Then, for ¢ = ¢1/2 and g = g2 we have

I <t > F)llz, o, z.@) + Il <t >° (er[d(u)], < t > 6T[j(T)h(“)])||H;/2(R,Lq(n))
+ (< t > er[§(w)], < t >° er[J(Th()|| L, @ #1(0)) + | <t >° Bi(er[b@)])llz, @ L)  (50)
< C(Z + [ulf),

where 7 = ||u0||32§3;1/p>(9)) + ||u0]|B::1/;’;/p)(Q). The proof of (50) is given in Shibata [11].

1.6 A proof of Theorem 1

Let T be a positive number > 2. Then, there exists an g > 0 depending on 7T such that if initial
data up satisfies ||uol| g21-1/r @ < € then problem (4) admits unique solutions u and q satisfying the
q92,P

regularity condition (29) and the condition (3). We prolong u and q to any time interval beyond T'. For

this purpose, it suffices to prove that
[ulr < C(Z + [wF) (51)

for some constant C > 0. Once obtaining (51), we can show that there exists a small constant € € (0, €)
such that if Z < € then [u]r < Ce for some constant C' > 0 independent of ¢, and so we can prolong u
to any time interval beyond (0,T). In the following, we use the results stated in Subsec. 1.4 with r = g2
and Subsec. 1.5.

As was seen in Subsec. 1.3, u and q satisfy Eq. (40). To estimate u, we divide u and q into two parts
asu=w+ v, and q=t+ p, where w and t are solutions of the equations:

8w + Aow — J(T)~'Div §(w, t) = f(u) in Q x (0,T),
divw = eq:[g(u)] =div eT[g(~u)] in @ x (0,T), (52)
S(w,t) = er[J(T)h(u)] onT x (0,T),
Wltzo =g in Q,
and v and p are solutions of the equations:
8v — J(T)"DivS(v,p) = —dgw  in 2 x (0,7T),
divv=0 in Q@ x (0,7), (53)
S(v,p) =0 onT x (0,T),
V|t=0 =0 in Q.
Concerning the estimate of w, applying (49) and using estimate (50), we have
[Wlr < C(Z + [ulf). (54)

We next consider v. By (46), we have

v(,t)=—=Xo /ot Ts(t — s)Pw(-,s) ds. (55)



Using the estimate (44) yields that

. t—1 _2_N(1 _1
IV, )o@y < Cne /0 (t— o 3 FE D) w(, 9)l,, @ ds

t
—2_N(1
+Cr [ (= EE D (e gy oy ds
t_

(56)

for j = 0,1, for any ¢ > 1 and for any indices r, §; and ¢z such that 1 < §1,32 <7 < 00 and §1, ¢2 < g2,

where Vv = v and Vlv = Vv.
Recall that T > 2. In what follows, we prove that

T
([ (<t>* IvColmmpar) ” <@+ i),

N
sup (<t > |[v(-t)||L, @) < CZ+ [u7),
2<t<T

T 1/p

([ <t v Ol @ ) 7 < T+ (),
T

_ 1/p

([ (<" % WOl de) < O+ ulf).
By (56) with r = 00, §1 = ¢1/2 and §> = ¢q,

t
IV, Dy @ < C/O [ Ts(t — 8)Pw(-, 8)|| a1 (@) ds = CIoo(t) + oo (t) + I11(t))

with
t/2 N
Io(t) = A (t=s) " w|w(-,8)llL,, 2(0) s
t—1 N
Heo®) = [ (=) FIWC15) g i 8,
t/2
t _N _1
[ITo(t) = / (t= 9w, )1y o .
t—
Since

_x g [¥? N e 1/p
L@ < /275 ([ <o5 a) 7 ([ (<05 1w, 9y, o))
0 0
< Oty —1)"VP (T + [wf)t

as follows from the condition: bp’ > 1 in (19), by the condition: (qﬂ1 —b)p > 1in (19), we have

T T Ny N
/2 (<t>* L) dt < C /2 <t> (&) AT +[ol})? < C((—bp = )7 (T + [}

By Holder’s inequality,

t—1
<t>PIIo(t)<C i (t—s) "5 <s> [W(,9)llz,, @ ds
t
t—1

IA

I\

N -1/p' , 1 _N 1/p
(g =1)"" ([, €9 E o e P d0)

t-1 N \U/P N 1p
—8)"m —s) b (lw(-
c( /t/2 (t-s)"ds) " ( /t/2 (8= 8) 75 (< 5 >° [W(,8)lln,, a(0)” d5)

(67

(58)

(59)

(60)
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because N/q; = N/q2 + 1 > 1. By the change of integration order and (54),

T b N _ﬁ T t—1 N b
/2 (<t>* o)y de< (- -1) /2 dt/t/z (t—5)" % (< s W, 8)lz,, o) ds

N _ﬁ T-1 5 23 N
< o(q—1 - 1) /1 (<5 > IWCslzyya@)Pds | (¢ 8)7H db
N

-p
<C(=-1) (T+[u})".
(1) @+l
Since % + % < 1 as follows from g, > N, by Hoélder’s inequality,

t
<t > III(t) gc/ (t—s) "% <550 |W(-, )L, (@) ds
t-1

¢ N1 N\t N1 1/
gc(/ (t—s)" %ds) (/ (t—s) T 3(<s>b ||w(-,s)||Lq2(g))”ds> ’
t—1 t—1
N 1\-ur, [t N1 b 1/p
[ — —_ 297 2 . y4
gc(zq2 >) (/H(t 5) (< 8> W)l (@)7ds) -

By the change of integration order, we have

T N —= T t N 1
/ (<t > ITI,(£))Pdt < 0(1 - —) ? / dt/ (t—s)"2 "2 (< s 3P |w(-, 8)l|z,, @) ds
2 2¢2 2 -1 2

N\-& T b s+1 N1
SC(I_E;) 7 /1 (<s> ||w(~,s)||L‘m(g))”ds/s (t—s) 22724t
= E r 2\p
_0(1—2q2) T+ w3y

Summing up, we have obtained (57).
We next prove (58). By (56) with r = ¢1, §1 = ¢1/2 and ¢> = ¢1,

V(s )lLg, @ < Clay,0(t) + Tgy 1 (2) + I11g 1(2))

with
t/2 N
Taa® = [ (6= 9 w1 9)l, oo b
t—1 N
I, 1(t) = /t/z (t - ) [w(,8)llz,. oty d,
t
Iy s®) = [ 16,9z, (o1 ds.
t—1
By (54)

g Y2 o\ T 1/p
Tna® < /275 ([ <57 a5) 7 ([ (<552 w9l i) )
0 0
< Ct™T (T + [uf}).
Analogously, by Holder’s inequality and (54),

t—1
Hoa@ SO [ (6= <5 >70<s > WC,9)l1y, a8
t/2

t—1 _ Ny 1/p’ T 1/p
<C<t>? (/t/2 (t-s)7 3% ds) (/0 (< 532 [W(8)llz,, a(0)” d5)
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'\ 1/7
-N—”) <t>" Tty (T4 [u)2)

2q
Np/\ /7 N 2
< C(l - E) <t> 24 (I+ [l.l]T),

=C(1

because b > 1%. Finally, by (54),

t
ITT,,4(t) < Gt~ / < I8l e

t

<or([as)" ([ <55t Il e as)
< Ct (T + [u]3).

Summing up, we have obtained (58).
We next prove (59). By (56),

V(s Dl @) < Cllay,2(8) + Lg 2(2) + I11g, 2(2))

with
t/2 N
Lua(t) = / (t— )5 Wi, 8) . ) d5
t—1
N
I, 2(t) = /m (- )% [W(,)lla,, a(e) 45,
t
1
IIIql,z(t)=/t 1(t—s) 3[w(-, 8)|L,, () ds-
By (54),

g T2 N 1/p
Ioua(8) < (t/2) %5 ( / <s>7 ds) " ( / (< 5 >° [W(, 8)llz,, a(0)” ds)
) 0
< Ot % (T+ [u}),
and so, by the condition: (qﬂ1 —b)p>1in (19)
T 1/p N -1/p
(/ (<> 8 La@ya)  <O((-bp-1) @+ ).
2 q
By Hélder’s inequality,

b N qt? N ,
<t>"T Il o) S C<t> 2 (t—s)"21 <5>7 [[w(:,8)l|z,, 2() ds
t

/2
N t—1 Np’ 1/p T 1/p
<C<t>m (/ (t—s)" 5 ds) (/ (< s> ||w(’,s)||L“/2(g))"ds)
t/2 0

<o+ EH) @+ up).

Since (;f — 2;)p > 1 as follows from [ =14+ 2 >1= 1+ 1, we have
T N 1/p N -1/p
([ <>t mpawpa)” <o -bp-1)"" @+ )

Since ¢1/2 < ¢1 < g2, we have

A’Tﬁ— A';r-:zq
W gy @) < IWC, I o W ()
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Let a = F%E and 8 = —K}%‘%, and then a + 3 =1, and so, by (54) and Holder’s inequality

I <t>° Wiz, 01), L, @)
T b b 5 1/p
< ([ (<> I ay @) (< > I Dl )

T o T
<( /0 (<t >* W, D)llzy, )P dt) /p(/o (< 3% Wl D)llz,, @) dt)
< O(Z + [uff). (61)

B/p

Since

N t _ N
<t>PI [T o) < | (—5)7F <5525 |w(.,8)|lz,, (@ ds
t—1
t

t /9’ 1/p
< (/ (t-s)—%ds) ( t-s)t(<s>b |[w(-,s)||Ln(Q))pds) ,

t—1 t—1
by the change of integration order, we have

T Y s t . ,
[ (<o g apa<e? [ a [ -smH< s> Wl o)l @) ds
2 2 t-1
» T b s+1 1 b
<2 /0 (< 8> [w(:,8)llL,, @))F ds / (t=s)"2dt =27 <t >" WllL,(0,1),Lq, (@)
$
which, combined with (61), leads to
T 1/p
([ o> % mn a0y a)” <@+ wh).
2

Summing up, we have obtained (59).
We finally prove (60). By (56) with r = g2, §1 = ¢1/2 and g2 = ¢z,

IVCs O, @) < Cgy (8) + gy () + I, (2))
with

i/2 _N({2 _ 1
In® = [t ¥ (&8 Iw(,8)lle,, oy ds,

t-1 _Nf2_1
I1,,(t) = /m (t— 5 ¥ (&5 w9z, ac0 45,

t
I, (1) = / )l

By Holder’s inequality,

N(2_1 t/2 , 1/ t/2 1/p
In® < @27 G ([T <ox as)"" ([ (<o 5 1w o)y, )P )
0 [}

<c<t>¥@EH) @4 up)

for ¢t > 2. Since

by the condition: (& —b)p > 1 in (19),

( /2 Tctsr Lwyd)” <o /2 ’ @0 a) (@4 i)



<o(@-ow-1)" @+ b

si
ince g(z_l)=%<ql_2+1%)>__.2_];+l>l,

by Holder’s inequality

t—1
<t>¢E 0 <0 [ (-9 <o w9, ao ds

t/2
t-1 ;i1
< C(/ (t- s)_(%ﬂ) ds)l/p (/ (t— s)_(%+1)(< ) ||W("3)||Lq1,2(g))”ds)l/p
t/2 t/2
N \-V# ot (& 1/p
< C(E) (/t/2 (t—s) (& +1)(< s>? ”w(.’s)”qu/z(Q))pds) i

and so, by the change of integration order and (54)

T N N\-»/p [T -1 _
/ (<t > % Iqu(t))"dtSC(z——) / dt / (t— ) (Ft) (< 5 >0 W (-, $)liz,, 2(2)P ds
2 q2 2 t/2

N\-»/? [T b 2s (1 N \-» 2
SC(E) /0 (<s> ||w(-,s)||Lq1/2(Q))pds/s+1(t—s) (% )dtSC(E) (Z + [ul3).

Analogously, by Holder’s inequality

b—AL t b—o
<t>"T2a JII,(t) < C/ <§>" 2 |\w(, )L, @) ds
t—1

t 9, [t 1/p
SC/ ds / <s>b|w(,s Pds
([, do) ™ (] (<> Il 5)lagy o) ds)
t 1/p
—o([ (<53 IWC. Dz ds)
t—1

and so, by the change of integration order and (54)
T v T t
/ (<t>b2a I, (t)Pdt < C/ dt/ (<s>? IW(-, 8)lL,(0))" ds
2 2 t—1

T s+1
< [ (<o W, 9zg@Pds [ db <O+ [y
0 s

Summing up, we have obtained (60).
Recalling that T > 2, applying the maximal L,-L, regularity theorem due to Shibata [9] to Eq. (53)
and using (54) give that

VL, (0.2, H2(2)) + 189 L, ((0.2),Lo(@)) < CallNoWllL,(0,2),L4@)) < C(Z + [uF) (62)
for any g € [g1/2, g2). Thus, by real interpolation, we have

Sup, V(o Ol g2a-1m ) < CUIIV Il (0.2, 200 + 18e¥ [l L, (0,20, Late) < CalT + 7))  (63)

for any q € [q1/2,g2]. Combining (57), (58), (59), (60), (62), (63) and the Sobolev imbedding theorem,
we have

N
I <t >* Vi, om.an@) + | <t > ViiLg(0.1),Lq, @) (64)

b— N b—
1 <> iz, 0m,a @) + I <> Vi, 01 Lo @) S O + [u]?).
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From (53), v satisfies the equations:

8,v+ Av — J(T)"DivS(v,p) = —dow + Aov  in 2 x (0,T),

divv=0 in Q x (0,7),
S(v,p)=0 onT x (0,T),
V!t=0 =0 in Q,

and so by (49) we have

— N — N
I < t>""% V|, o.my.m2, @) + | <t > 8L, 07,y @)
— N
<C| <t >" % (v, W)l|Ly(0,1), Loy ()5
which, combined with (64), leads to
Vir < C(T + [u]f). (65)

Since u = w + v, by (54) and (65), we see that u satisfies the inequality (51), which completes the proof
of Theorem 1.

2 Two Phase Problem

Let 2, be a bounded domain in RY and T its boundary that is a smooth compact hypersurface. Let
Q_ =RY\ Q and two different incompressible viscous fluids occupy Q.+, respectively. Let 4, and I';
be the time evolution of Q4 and T for ¢ > 0. Let n; be the unit outer normal to I';. Problem is to find
domains Q4,, velocities v4+ = (vi4,...,v+n) and pressures py satisfying the Navier-Stokes equations:

8v+ (v-V)v—Div(uD(v) —pI) =0, divv=0 inQforte(0,T),
[uD(v) —pIllns = cH(Ty)ne, [[v]]=0, Vr,=v-n; onT;forte(0,T), (66)
Vi|t=0 = vo in Qo = Q.

Here, Q; = Q, UQ_;, Q=Q, UQ_, h = hy for z € Qt, p = py for z € 44, ps being positive
constants representing viscosity coefficients, o positive constant (coefficient of surface tension), H(T';)
N —1x the mean curvature of I';, Vr, the evolution speed of I'; in the n; direction, I the N x N identity
matrix, D(v) = Vv + (Vv)7 the doubled deformation tensor whose (i, ) component is d;v; + 9;v;,
and [[f]](zo) = lim f(z) — lim f(z), which is the jump quantity of f at zo € I'z.

€N z€N_

This problem has been studied by the following authors:
e V. Denisova, V. A. Solonnikov [1], [2] in the L, frame work and the Holder space framework.

e J. Pruess et al (3], [4], [5], [6], L, maximal regularity and Local well-posedness. Global well-
posedness in the container by the combination of L,-maximal regularity with Spectral analysis for
the Laplace- Bertrami operator.

But, the global well-posedness in unbounded domains has not yet been studied well. In this note, the
global well-posedness results are announced in the case that ¢ =0 and o > 0.

First of all, we mention that Maximal L,-L, regularity for the two phase problem for the Stokes
equations does hold in a uniformly C? (o = 0 case) or C2 (¢ > 0 case) domain under the assumption
that weak Neumann problem is uniquely solvable (cf. Pruess et al [3, 4, 5, 6], Shibata and Shimizu [12],
and Maryani and Saito [7]). Thus, Local well-posedness holds. Here, it is important that p and ¢
can be chosen differently to prove Global well-posedness for free boundary problem in an unbounded
domain. In fact as was seen in Sect. 1, in the unbounded domain case, we can get only polynomial decay
properties for suitable L, space norm of solutions, and so we have to choose p rather large to guarantee
the L, summability in time.
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2.1 Global wellposedness, o > 0 case

Let Br = {z € RV | |z| < R} and Sk = {z € RV | |z| = r}. We assume that
Assumption 1 |Q| = |Bg|= RNwn/N, where | - | denotes the Lebesgue measure and wy is the area
of the unit sphere.

Assumption 2 / zdz =0.

Q
Assumption 3 T' = {z = (R + po(Rw))w | w € S1} with given small function pp defined on Sg.
‘Let
Ty ={z = (R+ p(Rw, t))w +&(t) | w € 51}

where p is an unknown function and £(t) is the barycenter point of the domain €, defined by
1

rdz.
12+] Ja,.,

£(t) =

Assume that Q. C Bg with a large constant R > 0. Let L > 3R. Given p € Wg_l/q(SR), let H(¢,t) €
H3(BL) be a function such that H|s, = R™p, IHllg2(5,) < Cllellyyz-172(s,,y and 1Hl g3 8,y <

C||p||qu_1/q(sn), where By, = By, \ Sg.

Let ¢ € C$°(RY) such that ¢(z) = 1 for |z| < L — 2 and ¢p(z) = 0 for |z| > L — 1. We use the
Hanzawa transform defined by

z=en(y,t) =y +o@)H(y,t)y +£(t) fory € Br.

Let

N-1
u(y,t) =voen, q(y,t)=poen— %.

Q={z=y+oWH(yt)y+£@) |y € Br}, Ti={z=(R+p(Rw,t))w|we S}

And then, problem (66) is transformed to

0yu — Div (uD(u) — gI) = F(u, H) in 2 x (0,T),
diva = Fy(u, H) = divF4(u, H) in Q x (0,7,
[4D(w) - qlw - o(Bron = Glu,p),  [[u]] =0 in Sex(0T),  (67)
Op —n- Pu= D(u,p) on Sg x (0,T),
(u, p)|¢=0 = (1o, po) on  x Sg.

Here, = B U BR with B = {z ¢ RV | |z| > R}, RN = QU S,
1
Bro=R%(As;, +N—-1)p, Pu=u- —/ u(y) dy.
|Br| JBg

Ag, is the Laplace-Beltrami operator on Sy, and F(u, H), Fy(u, H), Fq(u, H), D(u,p) are nonlinear
functions. Then, we have the following theorem that is our global well-posedness theorem in the case
that o > 0.

Theorem 14. Let N > 3. Let g1 and g2 be exponents such that N < g2 < 0 and 1/g; = 1/g> + 1/N.

Let b be a number such that N/g1 > b > N/(2q2). Then, there exists an € > 0 such that if initial data

u € Boup /P 0 B:S; :,/p) = Dp g1.00 and po € By p/P /% (Sp) satisfy the smallness condition:

”uo”Dp,ql,qz + ”pOHB:;’:,/P-””(Sg) S €

and the compatibility condition:

divug =0 i Q, [[pD(ug)|lw— < [[pD(ug)]jw,w >=0 on Sg,
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then problem (67) admits unique solutions u and p with
u € Ly((0,00), HZ ()N N HZ, /(™) 0 Hy ((0,00), L, ()N N L, 2(D)Y),
p € Ly((0,00), W1/ (Sr)) N Hy ((0, 00), Weo /% (SR))
possessing the estimate: E(u, p)(0,00) < Ce. Here,
b— AL
E(u,p)(0,T) = || < t > (W, H)ll1_ (0.1, 11 @<z (B + | <t >"7 %7 ullL, 0,75, ()
N -
I <t >0 (@01 Ly @) + | <> 8(w, H)ll 1, (0,19, L, (2)x B2, (Br))
b— L
+ <t > (B, 0,m), 12, (@) x 2, (1))

Here, < t >= (14 t2)1/2.

2.2 Global wellposedness, ¢ = 0 case

In this case, we can not use the Hanzawa transform, because of the lack of regularity for the height
function p. Thus, we use the partial Lagrange transform like Sect. 1. Let ¢ € C$*(RYM) such that
p(xr) =1for |z| < L —2 and ¢(z) =0 for |z| > L — 1 for L > 3R. Let u(¢,s) = ux(§,s) for £ € Qz be
the Lagrange velocity fields, and the partial Lagrange transform is defined by

t
w=£+go(£)/0 u(¢,s)ds = Xu(§,t) for £ € Qq.

There exists a small constant o > 0 such that if

T
/0 IV (e()u(, 3))||Lw(g) ds<o

then, the partial Lagrange transform is a diffeomorphism from Q@ = Q, UQ, =RM \T onto Q; = {z =
Xu(§,t) | £ €}

By the partial Lagrange transform, problem (66) is transformed to
8:u — Div (uD(u) — ¢I) = F(u), divv = f(u)=divf(u) in @ x (0,T),
(4D (w)  qlln = g(w), [[u]] = 0 onTx(0T),  (63)
uli—o = Vo, $hft=0=21,
with suitable nonlinear functions F(u), f(u), f(u) and g(u). Then, we have the following theorem.

Theorem 15. Let N > 3 and let g1 and g2 be exponents such that N < g < 00 and 1/g1 =1/g2+1/N
and g1 > 2. Let b, p and p’' = p/(p — 1) be numbers satisfying the conditions:

(%+%)p’<1, bp' > 1, (b—%)p’>l, ;V—2+§<1.

Then, there exists an € > 0 such that if initial data vo satisfies the compatibility condition and the
smallness condition: ||vo|l g2a-1/» @t Ivoll gza-1/2) gy < €, then problem (68) admits a unigque solution
q92:P q1/2,p

u € Ly((0,00), HZ, (2)N)N H}((0,00), Lg, (R)), possessing the estimate: [u]o, < Ce with some constant
C > 0 independent of €. Here

T
ke ={ [ (1 + Pt ) o)
T
_ N Prs
+/ (1 +9)7 % u(, 8) |3, (2))P ds + (_sup_(1+ 8)%7 [u(-, 8)llL,, ()7
0 0<s<T

T (b—5) 1/p
+ [ (@ 9 ED () g e + 10l )P )

Remark 16. We can prove Theorem 15 by using the similar argument to that in Sect. 1.
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