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1 Introduction

In the present article, we consider the asymptotic behavior of radially symmetric
solutions of the multi-dimensional Burgers equation. Burgers equation in multi-
dimensional space is written as

ou

E—i—(u-V)u:pAu, t>0, zeR" (1.1)
where u = (u1(t,z), -+ ,un(t,z)) is a vector valued unknown function of t > 0 and
z=(x1, - ,Zy), and p is a given positive constant.

In previous papers [1, 2], we investigated an initial boundary value problem
for radially symmetric solutions of (1.1) on the exterior domain |z| > 7o for some
positive constant ry, where the initial data, and the boundary and far-field conditions
are prescribed. Introducing a new unknown variable v(¢,7) by u = (z/r)v(t,r) with
r = |z|, our problem for (1.1) can be rewritten with respect to r as follows:

v + v, = (v + (n—1)(2),), r>m0, t>0,

v(t,ro) =v_, lim v(t,7)=vy, t>0, (1.2)
r—+00

U(O, T) = UO(T), T > To,

where the initial data vy is assumed to satisfy the compatibility conditions v(rg) =
v_ and lim vo(r) = vy.
r—00

In a previous article [1], we considered the initial boundary value problem (1.2)
for n > 2 for the cases in which the boundary and far field conditions satisfy (a):
v. <wvy =0, (b): v- <0 < vy, and (¢c): 0 = v_ < vy, and we showed that
the asymptotic states of the time-global solution are given by a monotonically in-
creasing stationary wave in case (a), a superposition of a monotonically increasing



stationary wave and a rarefaction wave in case (b), and a rarefaction wave in case
(c). These results are similar to those for the 1-D Burgers equation investigated
by Liu-Matsumura-Nishihara [5]. Note that in all cases the corresponding 1-D Rie-
mann problem admits a single rarefaction wave. Here the monotonically increasing
property of the stationary wave played an important role.

In [2], we considered case (d), in which 0 < v_ < v,, which was excluded in
[1]. We first showed that if and only if 0 < v_ < 2(n — 2)u/ry and v, = 0, there
exists a stationary wave, “ that decreases monotonically” to zero as r — oo, which
never occurs for the 1-D Burgers equation. Based on this result, we considered
the initial boundary value problem (1.2) for n > 3 in case (d), and showed that
the asymptotic state of the time-global solution is given by a superposition of a
monotonically decreasing stationary wave and a rarefaction wave under the condition
0 < v- < p/(2rp). Note that in this case the corresponding 1-D Riemann problem
still admits a single rarefaction wave, and the asymptotic state for the solution of 1-D
Burgers equation is proved to be the rarefaction wave by Liu-Matsumura-Nishihara
[5] and Nakamura. [8].

In [3], we further investigate cases (e): 0 = v, < v_, (f): 0 < vy < wv_ and (g):
v- < vy < 0. We show that the asymptotic states of the time-global solutions are
still given by a monotonically decreasing stationary wave in case (e), and a linear
superposition of a monotonically decreasing stationary wave and a rarefaction wave
in case (f) under the assumption 0 < v_ < 2u/(ro(1++/(n — 3)/(n — 1))). For case
(g), we first show the existence of a non-monotonic stationary wave, which neither
increases nor decreases monotonically. This never occurs in the case of the 1-D Burg-
ers equation, and we show that this non-monotonic stationary wave is asymptotically
stable. Here, we use the spatial weighted energy method because of the difficulty
arising from the non-monotonic property of the stationary wave. Note that in case
(g), the asymptotic state for the solution of the 1-D Burgers equation is known to
be a monotonically increasing stationary wave (see Liu-Matsumura-Nishihara [5]).
This suggests that, the 1-D Riemann problem for the non-viscous part can never
classify all of the asymptotic states of the multi-dimensional Burgers equation. In
particular, the remaining case (h): 0 > v, < v_ is open in general. Nevertheless,
for the case in which n = 3, due to the specific structure of the 3-D equation, we
can reduce the problem (1.2) to that for the plain 1-D Burgers equation, and we
eventually succeed in obtaining the complete classification of asymptotic states, in-
cluding a linear superposition of stationary wave and a viscous shock wave. Thus,
we can exactly clarify the multi-dimensional effects on the asymptotic behaviors for
the case in which n = 3.

Some Notation. We denote the usual Lebesgue space of square integrable func-
tions over (rp,00) by L? = L%((ry,0)), and denote the corresponding kth-order
Sobolev space by H*,k = 1,2,.... Further, we denote the space of functions
f € H! with f(ro) = 0 by H} = H}((ro,00)). For 8 > 0, we also denote the
first-order weighted Sobolev space, that is, the space of functions (1 +r)%/2f € H*,
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by H*? = H*?((ry,00)). For an interval I C R' and a Banach space X, C*(I; X)
denotes the space of k-times continuously differentiable X-valued functions on I,
and L?(I; X) denotes the space of square integrable X-valued functions on I.

2 Main theorems

Before we state the main theorems, let us recall the stationary and rarefaction waves
of (1.2). We call ¢(r) the stationary wave of (1.2) if ¢ satisfies the stationary problem
corresponding to (1.2):

(%¢2)r =p (¢7‘r + (’I’L - 1) (3‘2)7‘) , T > To,

" ) B (2.1)

$(ro) = v_, Jim ¢(r) = v,
In what follows, we write the solution of (2.1) as ¢,_,, (r) when we emphasize the
boundary value of the stationary solution v_ and the far-field state v,. The basic
properties of the stationary wave are given as follows.

Proposition 2.1 (Case v, = 0). Supposen > 3,0 < v_ < 2u(n—2)/ry, andv; = 0.

Then the stationary problem (2.1) has a unique smooth solution ¢(r) satisfying the

following.

(i) If v— = 2u(n — 2)/ro, then ¢(r) =2u(n —2)/r, 7 > 1o.

(ii) If 0 < v < 2u(n — 2)/ro, then 0 < ¢(r) < v_ and ¢.(r) <0, r > 7o.
Moreover, ¢ satisfies |p(r)| ~ (r +1)"", r - .

The proof of Proposition 2.1 is clear because the solution of (2.1) is exactly given
by the formula

V-

(1= gz (/o)™ + 5=z (r/m0)

(1) = do_p(r) = (2.2)

Next, we state the non-monotonic stationary wave which is used in Section 3.

Proposition 2.2 (Case vy < 0). Suppose n > 3, v_ < v, < 0. Then the stationary
problem (2.1) has a unique smooth solution ¢ satisfying the following.
(i) There exists a negative constant vy € (v4,0) such that

¢(T) <w, T > To- (23)

(ii) It holds that
< vy, T >To, (2.4)

n—1
o(r) — pn—1)
T
and ¢ — pu(n — 1)%/(2r) is monotonically increasing, that is,

n—1)?
—%, T 2>To. (25)

or(r) >
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(iii) It holds that

|(r) — vy — M| <O(r™?), r— oo (2.6)

Next, for 0 < v_ < vy, we define the rarefaction wave v,_,, of (1.2) which
connects constant states v_ to vy by ¥y_,, = Yy_u, ((r — r0)/t) for t > 0, where

v—, £<v,
"Z’v_,v.;.@) = &, v <§< vy, (2'7)
Uty Uy < g

Now we are ready to state our first main theorem.

Theorem 2.3. Suppose n > 3, 0 < v_ < 2u/(ro(l + \/(n —3)/(n—1))), and

0 < v;. Then we have the following results.

(1) (Asymptotic stability) Assume that vo — vy € H*. Then the initial-boundary
value problem (1.2) has a unique time-global solution v satisfying

v—wv, € C%([0,00); HY), v, € L*(0,T;H'), T >0,

and the asymptotic behavior

=0.

lim sup |v(t,7) — @y_o(r) — ’1,2;0’1,+ <r — TO)

=00 r> 1 t

(2) (Decay rate) Further assume that vo — v, € H' N L*. Then the solution v
satisfies the following decay rate estimates: if vy > 0, it holds that

1 = Po_0 — Yo, ) )l < C(L+)"Tlog?2+1), t>1, (2.8)
and if v, =0, it holds that
1w = ¢o_o)®)llm < CA+)75, t>0. (2.9)

As for the asymptotic stability of the non-monotonic stationary solution ¢, we have
the following:

Theorem 2.4. Suppose thatn >3, v_ <vy <0andvo—¢p € H 125 Then there
exists a positive constant €y such that if ||vo—¢|| gt S €os then the initial-boundary

value problem (1.2) has a unique time-global solution v satisfying
v € C%[0,00); HY), wv, € L*0,T;H"), T >0,
and the asymptotic behavior

lim sup |v(t,7) — &(r)| = 0.

t—00 T>70



Next, we state the theorem for the complete classification of asymptotic states
for the space dimension n = 3. In this case, if we introduce a new unknown valuable
V by

ot r) = %# V), (2.10)

then our original problem (1.2) for the 3-D Burgers equation is surprisingly reduced
to the 1-D Burgers equation:

‘/t+V‘/r=;uV;‘1‘7 t>0)T>T0,

V(t,mo) = v_ — 2u/ro =: V_, t>0,
, (2.11)
lim V(t,r) = vy =V, t>0,

T—>+00

V(0,7) = Vo(r) := vo(r) — 2u/r, T >ro.

Once the problem is reduced to the 1-D Burgers equation, all of the asymptotic
behaviors have been classified in terms of the boundary and far field values V. by
Liu-Matsumura-Nishihara [5], Nakamura [8], Liu-Nishihara [6], Nishihara [9], and
Liu-Yu [7]. To state the results precisely, let us first recall the stationary wave
solution @ to the problem (2.11):

{ q)(I>1' = ,uq)'rra T > To,

®(ro) = V., TETOO@(’") =V,. (2.12)

An elementary calculation shows the following properties.

Proposition 2.5. If and only if V, <0 and V_ < |V, |, a solution of (2.12), except
the trivial solution ® = 0, uniquely ezists and satisfies the following.

(i) For V_ =V, the solution is given by the constant state ®(r) =V_ =V,.

(ii) For V_ <V, =0, the solution is monotonically increasing and, given by

V_

O(r) = —I—Z—;(r—ro).

(2.13)

(iii) For Vy <0 and V_ <V, (resp. V, < V_ < |Vy|), the solution is monotonically
increasing (resp. decreasing), and is given in both cases by

V_+V.
14 B eVatrro

1A (1 - KLV—eV+(T—To)/M)

o(r) = (2.14)

We write the stationary wave ® of (2.12) also as ®y_y, when the boundary
and the far field states are emphasized. Based on the result of Proposition 2.5, it
is easy to see that, for the original stationary problem (2.1) with n = 3, except the
trivial solution ¢ = 0, the necessary and sufficient condition for the existence of the
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nontrivial stationary solution is v, < 0 and v_ —2u/7ry < |v4|, and then the solution
is given by the formula

¢’v_,v+ (T) - + (I)v——2u/ro v+( ) (2-15)

Next, let us recall the viscous shock wave for the 1-D Burgers equation on the
whole space R! with the far field states V.:

Vi+VV,—uV,,, t>0, reR}
hm Vt,r)y=Vy, t>0.

r—+o00

(2.16)

We refer to a traveling wave solution of (2.16) with the form V = V(¢), € = r — st,
as a viscous shock wave of (2.16), where s € R! is the shock speed. The viscous
shock wave is known to exist uniquely up to the shift under the entropy condition
V_ >V, and the Rankine-Hugoniot condition —s(V; —V_) + (V2 /2 —V?/2) =0,
that is, s = (V_+V,)/2, and has the properties V, < V() <V, Vi(€) <0, £ € R
In fact, the viscous shock wave with V(0) = (V_ + V,.)/2 is concretely given by

- V.-V,
V++V_+V+ V_ tanh(—( +)
2 2 2u

V=V(r—st)= (r — st)). (2.17)
In the case s > 0, that is V_ + V, > 0, note that the viscous shock wave V is
expected to be a good approximation of (2.11) because V(ro — st) exponentially
tends toward V_ as t — co. We write the viscous shock wave V in (2.17) also as
W._ v, when the far field states are emphasized

Now we are ready to state our second main theorem.

Theorem 2.6. Suppose that n = 3. Then we have the following classification of the
asymptotic states.

(I) Case v_ —2u/ro <wvy <0:
Assume that vo — vy € H'. Then the initial-boundary value problem (1.2) has a
unique time-global solution v satisfying

v —w; € C°([0,00); HY), v, € L*(0,T; HY), T >0,
and the asymptotic behavior

lim sup |v(t, 7) — Gu_, (1) = 0.

=00 >

(II) Case v_ — 2u/ro <0 < wy :
Assume that vo — v, € H'. Then the initial-boundary value problem (1.2) has a
unique time-global solution v satisfying

v —vy € C%[0,00); HY), v, € L*(0,T; HY), T >0,
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and the asymptotic behavior

= 0.

lim sup [v(¢,7) — ¢y_o(r) — 1210,,,+ (T — TO)

100 p>pg t

Here note that lﬁo,v + =0 forv, =0.
(III) Case 0 < v_ — 2u/rg < vy @

Assume that vy — vy € H'. Then the initial-boundary value problem (1.2) has a
unique time-global solution v satisfying

v—uvy €CY[0,00); HY),  w,€ L*0,T;H"), T >0,

and the asymptotic behavior

= 0.

. 2p T —To
}ﬂggmﬂ—7“%:%w(t)

(IV) Case v_ — 2u/ro > vy, v_ + v <2pfro 2

Assume that vo — 2u/r — v, € H' N L. Then there exists a positive constant €
such that if ||xol|g2 < €o then the initial-boundary value problem (1.2) has a unique
time-global solution v satisfying

v—uv, € C%[0,00);HY), v € L*0,T;H'), T>0,
and the asymptotic behavior

lim sup |v(t, ) — o_ v, (7")| =0,

t—o0 r>r0

where the function xo is defined by

XWF/medmh%w@w%er

(V) Case v_ —2u/ro > vy, v— + vy > 2u/ro ¢

Assume that vo — 2p/T — vy € H> N L' and [ (vo(r) — 2p/r — vy)dr > 0. Then
there exist positive constants €y and By such that if (1/do) + ||Wol|g2.60 < €0, then the
initial-boundary value problem (1.2) has a unique time-global solution v satisfying

v — vy € C°[0,00); H?), v, € L*(0,T;H*), T >0,
and the asymptotic behavior

lim sup
t—o0 r>10

o(t,1) = (20 + Vo g, (r = st — d(®)))| = 0,
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for a function d(t) € C°([0,00)) which has a finite limit do, = lim; o, d(t). Here
s=(vy +v_—2u/re)/2 >0, and dy and, Wy are defined as

/ (50(r) = 27 — V3o (r — do))dr = 0,

To

Wa(r) = / (90(¥) = 20/y — Vo —sumoms (v — do)) dy, T = 7o,

(VI) Case v_ —2u/ro > v4, v- +vy =2u/ro ¢

Assume that vy — 2u/r — vy € H* N L' and [>(vo(r) — 2u/r —vy)dr > 0. Then
there ezist positive constants €y and By such that if (1/do) + ||Wo|| ga.s0 < €0, then the
initial-boundary value problem (1.2) has a unique time-global solution v satisfying

v —vy € C°([0,00); H?), v, € L*(0,T; H?), T >0,

and the asymptotic behavior

o(t,r) = (/1 + Voo (r = d))) | = 0,

lim sup
t—o0 r>790

for a function d(t) € C°([0,00)) which has the property d(t) ~ logt, t — co.

The proofs for cases (I) and (II) are based on the arguments in Liu-Matsumura-
Nishihara [5]. The proof for case (III) is based on the arguments in Nakamura [8],
and the proofs for cases (IV) and (V) are based on the arguments in Liu-Nishihara
[6]. The proof for case (VI), which is the most subtle case, is based on the arguments
in Nishihara [9] and Liu-Yu [7]. Note that the arguments in [7] are made in a classical
function space by using the maximum principle.

Because Theorem 2.3 is proved by combining the results of [1] and [4], we only
show the rough sketch of the proof of Theorem 2.4.

3 Asymptotic stability of stationary wave in the
case v, <0

3.1 Reformulation of the problem

Recall the non-monotonic stationary wave which satisafies (2.1) with v_ < v, < 0.
Integrating the equation in (2.1) with respect to r once, we have

p + 20 2 a), v,

¢(T0) =7, ¢(OO) = Uyt

(3.1)



Letting us introduce the perturbation w(t,) from ¢(r) by
v(t,r) = é(r) + w(t, ),

we rewrite our original problem (1.2) in terms of w as

wy + 3(w? +20w), = p (wrr + (n— 1) (¥),), T>70, t>0,

w(t,mo) =0, t>0, (3.2)

w(0,7) = wo(r) := vo(r) — P(r), T > To.
Now we further define a new unknown function z by

2(t,r) = rz';_lw(t, 7).

Then the problem (3.2) is again rewritten in terms of z as in the form

’

n—1, pn*-1)
z+ (¢2), + (- o o+ o )2 — pzer
— _n-1, L
) = R(2) == 2r"—zﬂz = (2%)r, r>ry, t>0, (3.3)
z(t,m0) =0, t>0,
| 2(0,7) = 20(r) == "% (vo(r) — (), T > 70.

The theorem corresponding to Theorem 2.4 for the reformulated problem (3.3) is
written as follows.

Theorem 3.1. Suppose that n > 3, v_ < v, <0 and 2o € H*. Then there ezists a
positive constant €y such that if || 20|l < €0, then the initial-boundary value problem
(3.3) has a unique time-global solution z satisfying

z € C%([0,00); HY), 2 € L*(0,T;HY), T >0,
and the asymptotic behavior

lim sup |z(r,t)] = 0.

t—00 p>pg

Proof. We only show a desired a priori estimate for the solution. First, put
N(T) = sup [[v(t)lm,
0<t<T

and then we suppose N(T') < 1 in what follows. Multiplying the equation in (3.3)
by z and integrating the resultant equality in terms of r over [rg, o), we get

1d [*, 1 [*® n—1_ pun®-1) ,
2dt J,, zdr+2/,.0 (¢ - T o+ 2r? )" dr
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+u /oo |22 dr = /oo zR(z) dr. (3.4)

To o

Hence, due to Proposition 2.2, we have

1d 9 1 [* n-1 pn—1) ,
2dt/ d7'+2/m( ot )Z*dr

+u/ Izr|2dr§/ zR(z)dr,
T0

o

which implies

@i+ [ ([ 2+ i) ar

e 2(r. 1) (3.5)
Clalls + N [ ([0 dr 1l ().

Next we proceed to the higher order estimate. Multiplying the equation in (3.3)
by —z,, and integrating the resultant equality in terms of r and ¢ over [ro, 00) x [0, ],
we get

t
a2 + / e () |2 dr

r) (3.6)
< O(llzag 3 + N (¥ / / "0 gy (IR dr),

where we used the equation in (3.1) and basic estimate (3.5). Combining (3.5) and
(3.6) and taking N(t) suitably small, we have the desired estimate

l28) +/0 (Hf(f)llia + [z (r)lIFn) dr < Cllo|l- 3.7)

Once the a priori estimate (3.7) is established, we can show the existence of time-
global solution and its asymptotic behavior as in the same way as the previous
papers. Thus the proof of the Theorem 3.1 is completed. O
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