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1 Introduction

This article gives a summary of [5]. We consider the artificial compressible
system

€0p+dive = 0, (1.1)
Ov—-vAv+v-Vo+Vp = g. (1.2)

on a bounded domain Q of R? with smooth boundary Q. Here v =
T(vi(z,t),v*(z,t),v%(z,t)) and p = p(z,t) denote the unknown velocity field
and pressure, respectively, at time ¢ > 0 and position z € Q; g = g(z) is
a given external force; and ¢ > 0 is a small parameter, called the artificial
Mach number.

We consider the system (1.1)—(1.2) under the boundary condition

’v|aQ = Vx. (1.3)

Here v, = v,() is a given velocity field satisfying | aq Vs - dS = 0, where
n denotes the unit outward normal to 0f2.

A. Chorin proposed the system (1.1)—(1.2) in numerical computation to
find a stationary solution of the incompressible Navier-Stokes equations:

dive = 0, (1.4)
ov—vAv+v-Vo+Vp = g (1.5)
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with the boundary condition (1.3). The idea of the method proposed by
Chorin is stated as follows. Obviously, the sets of stationary solutions of
(1.1)—(1.2) and (1.4)—(1.5) are the same ones. If solutions of the artificial
compressible system (1.1)—(1.2) converge to a function u, = T(ps,vs) as
t — oo, then the limit u, is a stationary solution of (1.1)—(1.2), and thus,
us is a stationary solution of (1.4)—(1.5). By using this method, Chorin
numerically obtained stationary cellular convection patterns of the Bénard
convection problem described by the Oberbeck-Boussinesq equation.

A mathematical basis for Chorin’s method was given by Kagei and Nishida
([3, 4]). The limit function u, in Chorin’s method is a large time limit of
solutions of (1.1)—(1.2), and so, us is stable as a solution of (1.1)-(1.2). In
[3], it was shown that if u, is stable as a solution of (1.1)—(1.2), then it is
also stable as a solution of (1.4)—(1.5). This means that stationary solutions
obtained by Chorin’s method represents observable flows in the real world.

It was also shown in [3] that, conversely, if stable stationary solutions of
(1.4)—(1.5) are also stable as a solution of (1.1)—(1.2) when 0 < € < 1, then
one can conclude that (1.1)-(1.2) give a good approximation of (1.4)—(1.5)
in the stability view point. Furthermore, a sufficient condition for a stable
stationary solution of (1.4)—(1.5) to be stable as a solution of (1.1)—(1.2) was
obtained in [3]. The condition was then improved in in [4].

We briefly explain the result in [4]. Let us introduce the linearized oper-
ators around a stationary solution u, = T (p,, v,) for the systems (1.1)—(1.2)
and (1.4)—(1.5) with (1.3). Here and in what follows ' - stands for the trans-
position. Let L : L2(Q) — L2(2) be the operator defined by

L = —vPA +P(v, - V + " (V,))

with domain D(L) = [H2(Q) N H3(Q)]> N L2(2). Here H*(£2) denotes the k
th order L2-Sobolev space on 2, H} () is the set of all functions f satisfying
flaa = 0, P is the orthogonal projection, called the Helmholtz projection
from L*(Q)% to L2(f2), and L2(2) denotes the set of all L-vector fields
w on § satisfying divw = 0 and w - n|sg = 0. We define the operator
Le: HY(Q) x L*(Q)® = HX(Q) x L*(Q)?, acting on u = " (p, w), by

[ = 0 ;%div
€TV —vA+v,-V+ (Vo)

with domain D(L.) = H}(Q) x [H%(Q) N H}(Q)]®. Here H}(2) denotes the
set of all H! functions on 2 that have zero mean value over €.
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The result of [4] is stated as follows: if p(—L) D {A € C;Re A > —bo} for
some positive constant by, then there exist positive constants €y, ko and b;
such that p(—L¢) D {\ € C;Re )\ > —b;} for 0 < € < ¢, provided that

inf Re (Qw - Vv, Qw) 2
‘wEH&(Q)E’,‘w#O ”VQW”%Q Z —ko.

(1.6)

Here Q = I—P is the orthogonal projection from L?(2)? to the space G?(2) =
{Vp;p € H:(Q)} which is the orthogonal complement of L2(£2). In general,
€0 depends on by, and so it may occur ¢¢ — 0 as by — 0. This implies that
if by approaches to zero, we have to take the range of ¢ smaller and smaller.
This situation can happen when a stationary bifurcation occurs. Therefore,
when one considers the stability of a bifurcating stationary solution near
the bifurcation point, the range of € shrinks when the bifurcation parameter
approaches its critical value.

In this article we will investigate the spectrum of —L, near the origin
when a stationary bifurcation occurs, following [5]. We will show that the
range of € in the result of [4] can be taken uniformly near the bifurcation
point in the case of the stability of a bifurcating solution from a simple
eigenvalue. Our result is applicable to the Taylor and Bénard problems, i.e.,
a bifurcation of the Taylor vortex from the Couette flow and a bifurcation of
spatially periodic convective patterns from the motionless state, respectively.

2 Main Results

In this section we summarize the results in [5]. For 1 < p < co we denote
by LP(Q) the usual Lebesgue space over  and its norm is denoted by || - ||,
The mth order L? Sobolev space over 2 is denoted by H™(2), and its norm
is denoted by | - |gm. The inner product of L?(f) is denoted by (-, ), i.e.,

Here Z denotes the complex conjugate of z € C. We also defined the weighted
inner product ((-,-)), by

((u1,un)), = (p1, p2) + (w1, wn)

for u; = T(pj,w;), j = 1,2. The functions spaces LZ(2), Hj(f2), and H} ()
are the ones defined in section 1.



We are interested in the stability of a stationary solution bifurcating from
a basic stationary flow. Let R be the Reynolds number and let vz be a basic
stationary flow. We consider the following situation.

(AO) There exists a positive number R, such that if R is smaller than R,
then vy is stable; and if R is larger than R., then vz is unstable and
a stationary bifurcation occurs at R = R..

Let us introduce a bifurcation parameter n = R — R, and write vz as v,.
The linearized operator L, around v, then takes the form,

L, = —PA+(R.+n)P(v,-V+("Vvy,))
= A+ (R.+n)PMv,],

with domain D(L,) = D(A) = [H2(Q) N H}(Q)]® N L2(Q), where
A =-PA Mpw=v - Vw+w - Vo.
The adjoint operator of L, is defined by L:
Ly = A+ (R +n)PM*[v,)]
with domain D(L,) = D(A), where
M*[v]w = —v - Vw + (Vv)w.

The following assumptions are made in this article.
(Al) v, is a smooth stationary solution.
(A2) v, is analytic in n in (H2 N H)(Q)3.

(A3) 0 is a simple eigenvalue of —Ly with Ker(Lo) = span{wo}. The eigen-
projection P, for the eigenvalue 0 is

Pow = (w)wy.
Here and in what follows the symbol (w) for w € L?(2)3 is defined by
(w) = (w, wp),

where w}§ is the eigenfunction for the eigenvalue 0 of Lj satisfying
('lDo) =1.
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(A4) (M[voJwo + R-Mv;|wo) # 0, where v = 0,vp|n=0-
(A5) There exists a positive constant b > 0 such that

{A € C; ReA > —bo}\{0} C p(—Lo)

Our interest is concerned with a nontrivial solution branch {n, w,}, w, #
0, of

(NS), L,w, + (R + n)PN(w,, w,) =0

near {n,w} = {0,0}. Here N(w,, w,) = w, - Vw,. We note that w, =0 is
a solution of (NS),, for all . Under (A1)—(A4) we have a nontrivial solution
branch. In fact, by applying the standard bifurcation theory ([2]), one can
prove the following proposition.

Proposition 2.1. Assume (A1)-(A4). There exist a positive constant dy
and a solution branch {n(3), wy(6)} of (NS), with n=mn(6) of the form

n(8) = 60(9),

wy(0) = 6(wp + dw, (6)),

where o(6) is analytic in § (|6] < &), and w,(6) is analytic in & in H*(Q) (|6] <
o).

Our next issue is the stability of ©(8) = wvy) + wy(d). The linearized
operator around ¥(9) is denoted by

L(6) = —PA + (R, + n(6))M[5(9)).
The spectrum of —LL(4) has the following properties.

Proposition 2.2. Assume (A1)-(A5). There exists a positive number &
such that

~ b
p(-L(5)) 5 (€ C; Re A > —3h0, A > 2},

o(-LE) N A eC N < 2 = DO,
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for all § € (—do,00). Here \(§) is a simple eigenvalue given by

- dn
A®) = ~a()s51(6),

where a(8) is an analytic function of § € (=8, o) satisfying
a(0) = —(M[vo]wo + R-M[v;]wo)(# 0).

Proposition 2.2 was obtained by Crandall-Rabinowitz [2] (See also [1,
Theorem 27.2]).

Assuming (A0), we have «(0) > 0. Therefore, we have the following
proposition.

Proposition 2.3. Assume (A0)-(AS5).
(i) a(0) = —(Mlwo]wp + R Mlwv;]wo) > 0.

(i) M) = N\d*+O(6%1) if and only if n(8) = md*+O(6%1). In this case,
it follows that A\, = —ka(0)ng. Therefore, sgn(A(d)) = —sgn(n(6)) for
0< |8 < 1.

We next consider relations between A®) and n). We can prove the fol-
lowing proposition by induction on £.

Proposition 2.4. The following (a)-(c) are equivalent:
(a) \D(0)=0 forl=1,--- k.
(6) n®¥0) =0 forl=1,--- k.
(c) o&D(0)=0 forl=1,--- k.

Under the above situation we consider the stability of the bifurcating
solution ¥(8) as a solution of the artificial compressible system (1.4)—(1.5).
The linearized operator around 9(d) is defined by L(e, d) which is an operator
on H!(Q) x L*(Q)3 given by

0 1 div
L(e, 6) = ( ‘ )
V. —A+ (R +n(6))M[5(0)]
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with domain D(L(e, §)) = D := H}(Q)x [H2(Q)NHE(2)]®. We also introduce
K(d) and K(§) defined by

K(8) = (Re +n(8))M[0(6)] — RcM[wvy],

0 O
K() = ( ) |
0 K(9)

Proposition 2.1 implies that M(§) and M (d) can be expanded as

K(6) = ) 6"Ky,
k=1

o0 0 0
K(6) =Y 6K, K= ( )

=1 0 Ki

Here K, satisfies the estimate
|Krwlle < cil|w||m (2.1)

uniformly for w € H'() with positive constant ¢ satisfying > po, cx0* < 00
for 6] < 4;.
We now state the result on the spectrum of —L(e,d) near the origin.

Theorem 2.5. ([5]) Let A(6) = A\ed* + O(6%*!) with A # 0 for some k > 1.
Then there exist positive constants §; = &, (bo,'uo) and €, = € (bo,'vo) such
that

o(~L(e ) N A € C; N 2 2} = (X6, 0),
e, 8) = 6F((1 4 c1(e2) Mk + Ax(e, 6))
with some Ag(€,8) = O(8) uniformly for 0 < € < €, 0 < |0] < é,. Here
c1(€?) satisfies |c1(€%)] < 5 for 0 < € < .

Theorem 2.5, together with the argument of the proof of [4, Theorem 2.1],
yields the following result on the stability of the bifurcating solution ©(4) as
a solution of the artificial compressible system (1.4)—(1.5).
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Theorem 2.6. ([5]) Assume that (A0)-(A5). Then there exist positive con-
stants €, = el(l%,'vo) and 6; = 51(13;,,v0) such that the following assertions
hold true for 0 < |§] < 6;.

(i) If ©(d) is unstable as a solution of (1.1)—(1.2) then so is ©(8) as a solution
of (1.4)~(1.5) for 0 < € < €;.

(ii) Let ©(8) be stable as a solution of (1.1)~(1.2). Then there exist positive
constants € = €a(bo, Vo) and Kk such that if

. Re (Qw - Vo(6), Qw
lnwaHé(Q)s,w;éO ( ”va(Hz) ) Z Ty (22)

then ©(4) is stable as a solution of (1.4)—(1.5) for 0 < € < €.

Similarly to the proof of Theorems 2.5 and 2.6, one can prove the stability
and instability of the basic flow v,. In fact, it is possible to show that the
spectrum of the linearized operator L, satisfies

3.
o(-L,) ={ € C; ReA > —Zbo} U {M}, 7 € [=10, 0]

for some positive constant no. Here ), is a simple eigenvalue of —IL, and
satisfies

My = a(0)n + O(n?).
Let L., be the linearized operator around u, = T(p,,v,) of the artificial
compressible system. Here p, is the pressure corresponding to v,. We have
the following result.

Theorem 2.7. ([5]) There ezist positive constants fj = 7ir(bo, vo) and €3 =
€3(bo, vo) such that

b
o(=Ley)N{A€C; [N < Z‘l} = {Xen}

Aen = n(c1(€)a(0) + Ac )
with some A, = O(n) uniformly for 0 < € < €3 and 0 < |n| < 1.

Theorems 2.5 and 2.7 imply that the same exchange of stability as in
the case of (1.1)—(1.2) holds for the case of (1.4)—(1.5) uniformly for small e.
For definiteness, we consider the case where k is even and 7y is positive in
Proposition 2.3 (ii). In this case one can prove the following result.
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Theorem 2.8. ([5]) Let k be even and my, be positive in Proposition 2.3 (ii).
Then there exist positive constants €4 and 0y such that

(i) The basic flow vy is unstable for 0 < |6] < b2 and 0 < € < €.
(11) There exist positive constants €s, 03, o and & such that if

) Re (Qw - Vvy, Q) .
lnf‘wEH&(Q)a,‘w#O ”va“2 2 —k,

then v, is stable for —ilp < n < 0 and 0 < € < €5 and ¥(J) is stable for
0< 6| <63 and 0 < e <¢s.

The other cases where k is odd or 7 is negative, we have similar results.

Remark 2.9. Theorem 2.8 is applicable to the Taylor and Bénard problems,
i.e., a bifurcation of the Taylor vortex from the Couette flow and a bifurca-
tion of spatially periodic convective patterns from the motionless state, re-
spectively.
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