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ON REFLEXIVITY OF C-SYMMETRIC OR
SKEW-C-SYMMETRIC OPERATORS

KAMILA KLIS-GARLICKA AND MAREK PTAK

ABSTRACT. We present results concerning reflexivity and hyper-
reflexivity of a subspace of all C—symmetric operators from [6] and
a subspace of all skew—C—symmetric operators from [2] with a given
conjugation C. We also give a description of theirs preanihilators.

1. INTRODUCTION

Let H denote a complex separable Hilbert space with an inner prod-
uct (.,.) and let B(H) be the Banach algebra of all bounded linear
operators on H.

Recall that C is a conjugation on H if C : H — H is an antilinear,
isometric involution, i.e., (Cz,Cy) = (y,z) forallz,y € H and C* = I.
An operator T in B(H) is said to be C-symmetric if CTC = T*.
Denote by C = {T € B(H) : CTC = T*} the subspace of all C—
symmetric operators. Operators which are C—-symmetric have been
lately studied by many authors (see [3], [4], [5]). In this class there
are for example Jordan blocs, truncated Toeplitz operators and Hankel
operators. An operator T € B(H) is called to be skew-C-symmetric
if CTC = —T*. Denote by C* = {T € B(H) : CTC = —T*} the
subspace of all skew—C-symmetric operators. It follows directly from
the definition that C and C*® are weak* closed. It is worth to note that
any operator T € B(H) can be written as a sum of a C-symmetric
operator and a skew—-C-symmetric operator. Indeed, T' = A + B,
where A = (T 4+ CT*C) and B = (T — CT*C).

Recall that the predual to B(#) is the space of trace class operators
denoted by 7c with the dual action (T, f) = tr(Tf), where T' € B(H)
and f € rc. The norm in 7¢ is denoted by || - ||; and called the trace
norm. Denote by Fj the set of all operators which have rank at most
k. Rank one operators are usually written as * ® y, where z, y € H,
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and (z ® y)z = (z,y)x for z € H. Moreover, tr(T(z ®@ y)) = (T'z,y).
For a closed subspace S C B(H) denote by S, the preanihilator of S
defined by S| = {t € 7c: tr(St) = 0 for all S € S}.

Recall that the reflezive closure of a subspace S C B(H) is given by

Ref S ={T € B(H) : Tz € [Sz] for all z € H},

here [] is the norm-closure. A subspace S is called reflezive, if S =
Ref S and S is called transitive, if Ref S = B(H). A subspace S C
B(H) is called k-reflezive if S®) = {S®) : § € S} isreflexive in B(H®)),
where S®) = S@---® S and H® = H @ --- & H. Recall after [10, 8]
that a weak* closed subspace S is k-reflexive if and only if operators
of rank at most k are linearly dense in S;, i.e., §; =[S, N Fi]. On
the other hand, transitivity means that there are no rank-1 operators
in the preanihilator of S, i.e., S, N F; = {0}.

 The definition of k-hyperreflexivity was introduced in [1, 7] and "

is a stronger property than k-reflexivity, which means that each k-
hyperreflexive subspace is k-reflexive. A subspace S is called k-hyper-
reflezive if there is a constant ¢ > 0 such that

1) dist(T,8) < c-sup{[tr(Tt)| : t € Fe NSy, |It|h < 1},

for all T € B(H). Note that dist(7,S) = inf{||T— S||: S € S} and the
supremum on the right hand side of (1) we denote by ax(T,S). The
smallest constant for which the inequality (1) is satisfied is called the
k-hyperreflexivity constant and is denoted k(S). If k = 1, the letter k
will be omitted. '

In this paper we present results concerning reflexivity and hyper-
reflexivity of subspaces C and C* proved in [6] and [2]. It is shown that
the subspace of all C-symmetric operators is transitive (hence far from
being reflexive) and 2-reflexive or even 2-hyperreflexive. It means that
the preanihilator of C does not contain any rank-one operators and
rank-two operators are linearly dense in the preanihilator. Moreover,
we describe all rank-two operators in this preanihilator. However, the
subspace of all skew—C—symmetric operators have much better proper-
ties: it is reflexive (so very far from being transitive) and hyperreflexive.

2. PREANIHILATOR

Let H be a complex separable Hilbert space with an antilinear in-
volution C. Now we will present results describing the structure of
preanihilator of the subspace C. First theorem says that there are no
rank-1 operators in the preanihilator.

Theorem 2.1 (Theorem 2.1 [6]). Let C be the set of C'-symmetric
operators. The subspace C s transitive.
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The next theorem gives a full description of rank-2 operators in C; .

Theorem 2.2 (Theorem 3.1 [6]). Let C be the set of all C'-symmetric
operators. Then

FENC,={h®g—Cg®Ch:h,ge H}.

Let now consider some examples of conjugations given in [3] in the
context of Theorem 2.2.

Example 2.3. A natural example of a conjugation in {>(N) is given by
C(zo,zi,zz, )= (20,2122, .- )
In this case '
| CoNFy={h®g—goh:hgel®(N)}
Example 2.4. Consider the classical Hardy space H 2 and take a non-
constant inner function . Denote by K2 = H? © aH?. For f € K?

and h € H? the formula .
Cof =azf
defines a conjugation C' = C, on K2. Then
CoNF,= {h®g—af§®a'z_ﬁ:h,g € K2}
Example 2.5. Let ¢ be a bounded, positive continuous weight on the

interval [—1, 1], symmetric with respect to the midpoint of the interval:
o(t) = o(—t) for t € [0,1]. Then the formula

Cf(t) = f(-1)
defines a conjugation on L?([—1,1], odt). In this case
CLNFy={h()®g(") = 9(=()) ® h(=()) : h,g € L*([~1,1],0dt)}.
Example 2.6. Consider the isometric antilinear operator

C(Zl, Zz) = (22,21)

on C2. Then
C-LmF2 = {(hl’h‘2)®(ghg2)—’(-g—21?1)®(E2aﬁl) : (hlth)v (9179‘2) € C2}

Now we will consider the preanihilator of the subspace of all skew—
C-symmetric operators.

Lemma 2.7. Let C be a conjugation in a complex Hilbert space H and
h,g € H. Then

(1) C(h® g)C'=Ch®Cy,

(2) h@g—Cg@CheC® .
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In [3, Lemma 2] it was shown that
CNFr={a-h®Ch:heH,aeC}
The next proposition shows that it is also a description of the rank-one

operators in the preanihilator of C°.

Proposition 2.8 (Proposition 2.2 [2]). Let C be a conjugation in a
complex Hilbert space H. Then

CiNFi=CnFi={a-h®Ch:heH,acC}
Lemma 2.9. Let C be a conjﬂgatz’on . a complex Hilbert space H.
Then
CiNE,D{h®g+Cg®Ch:h,gcH}

The following examples illustrate the result presented in Proposition
2.8.

Example 2.10. Note that for different conjugations we obtain different
subspaces. Let Cy(z1,72,73) = (Z3,72,%;) be a conjugation on C3.
Then

a b 0
C = c 0 =b |:abceC
0 —¢ —a
and
a b x
C, = c x b |:abceC
*x C a

Rank-one operators in C; and in (C{). are of the form a(z,, 2, 73) ®
) (f3,§32,§?1) fora € C.

If we now consider another conjugation Cy(zy, z2,%3) = (Z2,Z1,Z3)
on C3, then

a 0 b
Cs = 0 —-a c |:a,bceC}),
—c =b 0

and

b
Co = ¢ |:abceC
*

O ¥

*
a
b
Similarly, rank-one operators in C; and also in (C3), are of the form
a(x].)xQ) IE3) ® ("i27 :_i'.la :f3) .
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Example 2.11. Let C be a conjugation in H. Consider the conjuga-
tion C = ( 0 ¢ ) in H & H (see [9]). An operator T € B(H & H)

C 0
) = .. . A B
is skew—-C-symmetric, if and only if T = ( D —CAC ), where
A, B,D € B(H) and B, D are skew—C-symmetric. Moreover, rank-
one operators in C are of the form o(f ® g) ® (Cg@ Cf) for f,g e H
and a € C.

The following example gives a description of skew—C-symmetric op-
erators in a case of model space K2 equipped with the conjugation C,
defined in Example 2.4.

Example 2.12. Let H? be the Hardy space, and let a be a non-
constant inner function. As in Example 2.4 consider the conjugation
Cuh = azh on the space K2 = H? © aH? By S, and S denote
the compressions of the unilateral shift S and the backward shift S*
to K2, respectively. Recall after [11] that the kernel functions in K j
for A € C are projections of appropriate kernel functions ky onto K2,
namely k% = ky —a()\)aky. Denote by k¢ = C,k¢. Since S, and S* are
Co—symmetric (see [3]), for a skew—C,—symmetric operator A € B (K 2)
we have

(2) (ASTES, (S2)™kS) = (Ca(So)"k$, Co ASTKS) =

— (STCakg, A*CoSTkS) = —(ASTKS, (S2)"KS),
for all n,m € N. Note that if n = m, then
(3) (ASEES, (So)kg) = .

In particular, we may consider the special case a@ = 2%, k > 1.
Then the equality (3) implies that a skew—-C,-symmetric operator A €
B(Kzz,c) has the matrix representation in the canonical basis with 0 on
the diagonal orthogonal to the main diagonal. Indeed, let A € B(K?%)
have the matrix (a;;);, 520, k=1 with respect to the canonical basis. Note
that Couf = 2671f, k" =1, k& = 251 Hence for 0 < n < k—1 we
have

0= (ASgl, (S;)"zk_l) = (A2", 2" 1) = appn-1.
Moreover, from the equality (2) we can obtain that
(Azn, zk—m—l) — _(Azm’ zk—n—l>’

which implies that ap g—m-1 = —@m-n-1 for 0 <m,n <k - 1.
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3. REFLEXIVITY

In this section we present results concerning reflexivity of the space of
all C—symmetric operators and the subspace of all skew—C—symmetric
operators.

Theorem 3.1 (Theorem 4.1 [6]). Let H be a complex separable Hilbert
space with an antilinear involution C. The subspace C C B(H) of all
C -symmetric operators is 2-reflezive.

In the case of the space of all skew—C—symmetric operators we can
obtain a stronger result. »

Theorem 3.2 (Theorem 3.1 [2]). Let C be a conjugation in a complex
Hilbert space H. The subspace C* of all skew-C-symmetric operators
on H is reflexive.

Recall that a single operator T € B(H) is called reflexive if the
weakly closed algebra generated by T and the identity is reflexive.
In [9] authors characterized normal skew symmetric operators and by
[12] we know that every normal operator is reflexive. Hence one may
wonder, if all skew—C'-symmetric operators are reflexive. The following
simple example shows that it is not true.

Example 3.3. Consider the space C? and a conjugation C(z,y) =

(Z,7). Note that operator T' = _(lJ (1) is skew—C—-symmetric. The
weakly closed algebra A(T) generated by T consists of operators of the

form ( _Z Z) HenceA(T)l:{<§ —i )-:t,sé(C}. It is easy

to see, that A(T),. N F; = {0}, which implies that T is not reflexive.

4. HYPERREFLEXIVITY

Hyperreflexivity is a stronger property than reflexivity. Here we
present results concerning hyperreflexivity of the subspaces C and C°.
Since C is transitive, it cannot be hyperreflexive. However, we can
prove the following:

Theorem 4.1 (Theorem 4.2 [6]). Let H be a complex separable Hilbert
space and let C be a conjugation on H. The subspace C C B(H) of all
C-symmetric operators is 2-hyperreflexive with constant 1.

The subspace C° is reflexive. It can be proved that it also has the
stronger property — hyperreflexivity.
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Theorem 4.2 (Theorem 4.1 [2]). Let C be a conjugation in a com-
plex Hilbert space H. Then the subspace C° C B(H) of all skew-C-
symmetric operators is hyperreflexive with the constant k(C*) < 3 and
2-hyperreflezive with ky(C*) = 1.
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