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ABSTRACT. We present results concerning reflexivity and hyper‐
reflexivity of a subspace of all C‐symmetric operators from [6] and
a subspace of all skew-C‐symmetric operators from [2] with a given
conjugation C . We also give a description of theirs preanihilators.

1. INTRODUCTION

Let \mathcal{H} denote a complex separable Hilbert space with an inner prod‐
uct \rangle and let  B(\mathcal{H}) be the Banach algebra of all bounded linear
operators on \mathcal{H}.

Recall that C is a conjugation on \mathcal{H} if C:\mathcal{H}\rightarrow \mathcal{H} is an antilinear,
isometric involution, i.e., {Cx, Cy\rangle=\langle y , x) for all x, y\in \mathcal{H} and C^{2}=I.

An operator T in B(\mathcal{H}) is said to be C ‐symmetric if CTC=  $\tau$*

Denote by C = \{T \in B(\mathcal{H}) : CTC= T^{*}\} the subspace of all C-

symmetric operators. Operators which are C‐symmetric have been
lately studied by many authors (see [3], [4], [5]). In this class there
are for example Jordan blocs, truncated Toeplitz operators and Hankel
operators. An operator  T\in  B(\mathcal{H}) is called to be skew-C ‐symmetric
if CTC= -T^{*} Denote by C^{S} = \{T \in B(\mathcal{H}) : CTC= -T^{*}\} the
subspace of all skew-C‐symmetric operators. It follows directly from
the definition that C and C^{s} are weak’ closed. It is worth to note that

any operator T \in  B(\mathcal{H}) can be written as a sum of a C‐symmetric
operator and a skew-C‐symmetric operator. Indeed, T = A+B,
where A=\displaystyle \frac{1}{2}(T+CT^{*}C) and B=\displaystyle \frac{1}{2}(T-CT^{*}C) .

Recall that the predual to B(\mathcal{H}) is the space of trace class operators
denoted by  $\tau$ c with the dual action \{T,  f\rangle =tr(Tf) , where T\in B(\mathcal{H})
and  f\in  $\tau$ c . The norm in  $\tau$ c is denoted by \Vert \Vert_{1} and called the trace
norm. Denote by F_{k} the set of all operators which have rank at most
k . Rank one operators are usually written as x\otimes y , where x, y\in \mathcal{H},
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and (x\otimes y)z = \langle z, y\rangle x for z \in \mathcal{H} . Moreover, tr(T(x\otimes y)) =\{Tx, y\rangle.
For a closed subspace  S\subset  B(\mathcal{H}) denote by s_{\perp} the preanihilator of S

defined by \mathcal{S}_{\perp}= { t\in $\tau$ c:tr(St)=0 for all S\in S }.
Recall that the reflexive closure of a subspace S\subset B(\mathcal{H}) is given by

Ref S= { T\in B(\mathcal{H}) : Tx\in[Sx] for all x\in \mathcal{H} },

here is the norm‐closure. A subspace S is called reflexive, if \mathcal{S} =

Ref S and \mathcal{S} is called transitive, if Ref S = B(\mathcal{H}) . A subspace \mathcal{S} \subset

 B(\mathcal{H}) is called k‐reflexive if S^{(k)} =\{S^{(k)} : S\in S\} is reflexive in B(\mathcal{H}^{(k)}) ,
where S^{(k)} =S\oplus\cdots\oplus S and \mathcal{H}^{(k)} =\mathcal{H}\oplus\cdots\oplus \mathcal{H} . Recall after [10, 8]
that a weak

*

closed subspace \mathcal{S} is k ‐reflexive if and only if operators
of rank at most k are linearly dense in s_{\perp} , i.e., S_{1} = [S_{\perp}\cap F_{k}] . On
the other hand, transitivity means that there are no rank-1 operators
in the preanihilator of S , i.e., s_{\perp}\cap F_{1} =\{0\}.

The definition of k‐hyperreflexivity was introduced in [1, 7] and
is a stronger property than k‐reflexivity, which means that each k‐
hyperreflexive subspace is k‐reflexive. A subspace S is called k‐hyper‐
reflexive if there is a constant c>0 such that

(1) dist (T, \displaystyle \mathcal{S})\leq c\cdot\sup\{|tr(Tt)| : t\in F_{k}\mathrm{n}s_{\perp}, \Vert t\Vert_{1} \leq 1\},
for all T\in B(\mathcal{H}) . Note thàt dist (T, S)=\displaystyle \inf\{\Vert T-S\Vert: S\in \mathcal{S}\} and the

supremum on the right hand side of (1) we denote by $\alpha$_{k}(T, S) . The
smallest constant for which the inequality (1) is satisfied is called the
k‐hyperreflexivity constant and is denoted $\kappa$_{k}(\mathcal{S}) . If k=1 , the letter k

will be omitted.

In this paper we present results concerning reflexivity and hyper‐
reflexivity of subspaces C and C^{s} proved in [6] and [2]. It is shown that
the subspace of all C‐syninietric operators is transitive (hence far from
being reflexive) and 2‐reflexive or even 2‐hyperreflexive. It means that
the preanihilator of C does not contain any rank‐one operators and
rank‐two operators are linearly dense in the preanihilator. Moreover,
we describe all rank‐two operators in this preanihilator. However, the
subspace of all skew-C‐symmetric operators have much better proper‐
ties: it is reflexive (so very far from being transitive) and hyperreflexive.

2. PREANIHILATOR

Let \mathcal{H} be a complex separable Hilbert space with an antilinear in‐
volution C . Now we will present results describing the structure of
preanihilator of the subspace C . First theorem says that there are no
rank-1 operators in t,he preanihilator.

Theorem 2.1 (Theorem 2.1 [6]). Let C be the set of C ‐symmetric
operators. The subspace C is transitive.
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The next theorem gives a full description of rank-2 operators in c_{\perp}.

Theorem 2.2 (Theorem 3.1 [6]). Let C be the set of all C ‐symmetric
operators. Then

F_{2}\cap C_{\perp}=\{h\otimes g-Cg\otimes Ch:h, g\in \mathcal{H}\}.

Let now consider some examples of conjugations given in [3] in the
context of Theorem 2.2.

Example 2.3. A natural example of a conjugation in l^{2}(\mathbb{N}) is given by

C(z_{0}, z_{1}, z_{2}, \ldots)=(\overline{z}_{0},\overline{z}_{1},\overline{z}_{2}, \ldots) .

In this case

c_{\perp}\cap F_{2}=\{h\otimes g-\overline{g}\otimes\overline{h} : h, g\in l^{2}(\mathrm{N})\}.

Example 2.4. Consider the classical Hardy space H^{2} and take a non‐
coristarrt inner function a . Denote by K_{ $\alpha$}^{2} = H^{2}\ominus $\alpha$ H^{2} For f \in  K_{ $\alpha$}^{2}
and h\in H^{2} the formula

C_{ $\alpha$}f= $\alpha$\overline{zf}
defines a conjugation C=C_{ $\alpha$} on K_{ $\alpha$}^{2} . Then

C_{1}\cap F_{2}=\{h\otimes g- $\alpha$\overline{zg}\otimes $\alpha$\overline{zh} : h, g\in K_{ $\alpha$}^{2}\}.

Example 2.5. Let  $\rho$ be a bounded, positive continuous weight on the
interval [−1, 1], symmetric with respect to the midpoint of the interval:
 $\varrho$(t)= $\rho$(-t) for t\in[0 , 1 ] . Then the formula

Cf(t)=\overline{f(-t)}
defines a conjugation on L^{2}([-1,1],  $\rho$ dt) . In this case

c_{\perp}\cap F_{2}=\{h(\cdot)\otimes g -\overline{g(-(\cdot))}\otimes\overline{h(-(\cdot))} : h, g\in L^{2}([-1,1],  $\rho$ dt

Example 2.6. Consider the isometric antilinear operator

C(z_{1}, z_{2})=(\overline{z}_{2}\prime,\overline{z}_{1})
on \mathbb{C}^{2} Then

C_{\perp}\cap F_{2}=\{(h_{1}, h_{2})\otimes(g_{1}, g_{2})-(\overline{g}_{2}, \overline{g}_{1})\otimes(\overline{h}_{2},\overline{h}_{1}):(h_{1}, h_{2}), (g_{1}, g_{2})\in \mathbb{C}^{2}\}.
Now we will consider the preanihilator of the subspace of all skew‐

C‐synmietric operators.

Lemma 2.7. Let C be a conjugation in a complex Hilbert space \mathcal{H} and
h, g\in \mathcal{H} . Then

(1) C(h\otimes g)C=Ch\otimes Cg,
(2) h\otimes g-Cg\otimes Ch\in C^{s}
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In [3, Lemma 2] it was shown that

C\cap F_{1}=\{ $\alpha$\cdot h\otimes Ch:h\in \mathcal{H},  $\alpha$\in \mathbb{C}\}.

The next proposition shows that it is also a description of the rank‐one
operators in the preanihilator of C^{s}

Proposition 2.8 (Proposition 2.2 [2]). Let C be a conjugation in a
complex Hilbert space \mathcal{H} . Then

C_{\perp}^{s}\cap F_{1}=C\cap F_{1}=\{ $\alpha$\cdot h\otimes Ch:h\in \mathcal{H},  $\alpha$\in \mathbb{C}\}.

Lemma 2.9. Let C be a conjugation in a complex Hilbert space \mathcal{H}.

Then

C_{\perp}^{s}\cap F_{2}\supset\{h\otimes g+Cg\otimes Ch:h, g\in \mathcal{H}\}.

The following examples illustrate the result presented in Proposition
2.8.

Example 2.10. Note that for different conjugations we obtain different
subspaces. Let C_{1} (x_{1}, x_{2}, x3) = (\overline{x}_{3}, \overline{x}_{2}, \overline{x}_{1}) be a conjugation on \mathbb{C}^{3}
Then

\mathcal{C}_{1}^{s}= \{\left(\begin{array}{lll}
a & b & 0\\
c & 0 & -b\\
0 & -c & -a
\end{array}\right) : a, b, c\in \mathbb{C}\}
and

C_{1}= \{\left(\begin{array}{lll}
a & b & *\\
c & * & b\\
* & c & a
\end{array}\right) :a, b, c\in \mathbb{C}\}
Rank‐one operators in C_{1} and in (C_{1}^{s})_{\perp} are of the form  $\alpha$(x_{1}, x_{2}, x_{3})\otimes
(\overline{x}_{3},\overline{x}_{2},\overline{x}_{1}) for  $\alpha$\in \mathbb{C}.

If we now consider another conjugation C_{2} (x_{1}, x_{2}, x3) = (\overline{x}_{2},\overline{x}_{1}, \overline{x}_{3})
on \mathbb{C}^{3} , then

C_{2}^{s}= \{. \left(\begin{array}{lll}
a & 0 & b\\
0 & -a & c\\
-c & -b & 0
\end{array}\right) : a, b, c\in \mathbb{C}\},
and

C_{2}= \{\left(\begin{array}{lll}
a & * & b\\
* & a & c\\
c & b & *
\end{array}\right) :a, b, c\in \mathbb{C}\}
Similarly, rank‐one operators in C_{2} and also in (C_{2}^{s})_{\perp} are of the form
 $\alpha$(x_{1}, x_{2}, x_{3})\otimes(\overline{x}_{2},\overline{x}_{1},\overline{x}_{3}) .
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Example 2.11. Let C be a conjugation in \mathcal{H} . Consider the conjuga‐

tion \tilde{C}= \left(\begin{array}{ll}
0 & C\\
C & 0
\end{array}\right) in \mathcal{H}\oplus \mathcal{H} (see [9]). An operator  T\in  B(\mathcal{H}\oplus \mathcal{H})

is skew-\tilde{C}‐symmetric, if and only if T = \left(\begin{array}{ll}
A & B\\
D & -CA^{*}C
\end{array}\right) , where

A, B, D \in  B(\mathcal{H}) and B, D are skew-C‐symmetric. Moreover, rank‐
one operators in \tilde{C}_{\perp}^{s} are of the form  $\alpha$(f\oplus g)\otimes(Cg\oplus Cf) for f, g\in \mathcal{H}
and  $\alpha$\in \mathbb{C}.

The following example gives a description of skew-C‐symmetric op‐
erators in a case of model space K_{ $\alpha$}^{2} equipped with the conjugation C_{ $\alpha$}
defined in Example 2.4.

Example 2.12. Let H^{2} be the Hardy space, and let  $\alpha$ be a non‐
constant inner function. As in Example 2.4 consider the conjugation
 C_{ $\alpha$}h =  $\alpha$\overline{zh} on the space K_{ $\alpha$}^{2} = H^{2}\ominus $\alpha$ H^{2} By S_{ $\alpha$} and S_{ $\alpha$}^{*} denote
the compressions of the unilateral shift S and the backward shift S^{*}

to K_{ $\alpha$}^{2} , respectively. Recall after [11] that the kernel functions in K_{ $\alpha$}^{2}
for  $\lambda$\in \mathbb{C} are projections of appropriate kernel functions k_{ $\lambda$} onto K_{ $\alpha$}^{2},
namely k_{ $\lambda$}^{ $\alpha$}=k_{ $\lambda$}-\overline{ $\alpha$( $\lambda$)} $\alpha$ k_{ $\lambda$} . Denote by \tilde{k}_{ $\lambda$}^{ $\alpha$}=C_{ $\alpha$}k_{ $\lambda$}^{ $\alpha$} . Since S_{ $\alpha$} and S_{ $\alpha$}^{*} are
C_{ $\alpha$}‐symmetric (see [3]), for a skew-C_{ $\alpha$}‐symmetric operator A\in B(K_{ $\alpha$}^{2})
we have

(2) \langle AS_{ $\alpha$}^{n}k_{ $\lambda$}^{ $\alpha$} , (S_{ $\alpha$}^{*})^{m}\tilde{k}_{ $\lambda$}^{ $\alpha$}\}=\langle C_{ $\alpha$}(S_{ $\alpha$}^{*})^{m}\tilde{k}_{ $\lambda$}^{ $\alpha$}, C_{ $\alpha$}AS_{ $\alpha$}^{n}k_{ $\lambda$}^{ $\alpha$}\rangle=

-\langle S_{ $\alpha$}^{m}C_{ $\alpha$}\tilde{k}_{ $\lambda$}^{ $\alpha$}, A^{*}C_{ $\alpha$}S_{ $\alpha$}^{n}k_{ $\lambda$}^{ $\alpha$}\rangle=-\langle AS_{ $\alpha$}^{m}k_{ $\lambda$}^{ $\alpha$}, (S_{ $\alpha$}^{*})^{n}\tilde{k}_{ $\lambda$}^{ $\alpha$}\},

for all n, m\in \mathbb{N} . Note that if n=m , then

(3) \{AS_{ $\alpha$}^{n}k_{ $\lambda$}^{ $\alpha$}, (S_{ $\alpha$}^{*})^{n}\tilde{k}_{ $\lambda$}^{ $\alpha$}\}=0.

In particular, we may consider the special case  $\alpha$ = z^{k}, k > 1.

Then the equality (3) implies that a skew-C_{ $\alpha$}‐symmetric operator  A\in

 B(K_{z^{k}}^{2}) has the matrix representation in the canonical basis with 0 on
the diagonal orthogonal to the main diagonal. Indeed, let A\in B(K_{z^{k}}^{2})
have the matrix (a_{ij})_{i,j=0,\ldots k-1}\prime. with respect to the canonical basis. Note
that  C_{z^{k}}f=z^{k-1}\overline{f}, k_{0}^{z^{k}} =\cdot 1, \tilde{k}_{0}^{z^{k}} =z^{k-1} Hence for 0\leq n\leq k-1 we

have

0=\langle AS_{ $\alpha$}^{n}1, (S_{ $\alpha$}^{*})^{n}z^{k-1}\rangle\backslash =\langle Az^{n}, z^{k-n-1}\rangle=a_{n\prime k-n-1}.
Moreover, from the equality (2) we can obtain that

\{Az^{n}, z^{k-m-1}\}=-\langle Az^{m}, z^{k-n-1}\rangle,

which implies that a_{n\prime k-m-1}=-a_{m,k-n-1} for 0\leq m, n\leq k-1.
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3. REFLEXIVITY

In this section we present results concerning reflexivity of the space of
all C‐synimetric operators and the subspace of all skew-C‐symmetric
operators.

Theorem 3.1 (Theorem 4.1 [6]). Let \mathcal{H} be a complex separable Hilbert
space with an antilinear involution C. The subspace C \subset  B(\mathcal{H}) of all
C ‐symmetric operators is 2‐reflexive.

In the case of the space of all skew-C‐syninietric operators we can
obtain a stronger result.

Theorem 3.2 (Theorem 3.1 [2]). Let C be a conjugation in a complex
Hilbert space \mathcal{H} . The subspace C^{s} of all skew-C ‐symmetric operators
on \mathcal{H} is reflexive.

Recall that, a single operator T \in  B(\mathcal{H}) is called reflexive if the
weakly closed algebra generated by T and the identity is reflexive.
In [9] authors characterized normal skew symmetric operators and by
[12] we know that every normal operator is reflexive. Hence one may
wonder, if all skew-C‐symmetric operators are reflexive. The following
simple example shows that it is not true.

Example 3.3. Consider the space \mathbb{C}^{2} and a conjugation C(x, y) =

(\overline{x}, y Note that operator T= \left(\begin{array}{ll}
0 & \mathrm{l}\\
-1 & 0
\end{array}\right) is skew-C‐symmetric. The

weakly closed algebra \mathcal{A}(T) generated by T consists of operators of the

form \left(\begin{array}{ll}
a & b\\
-b & a
\end{array}\right) . Hence \mathcal{A}(T)_{\perp}=\{\left(\begin{array}{ll}
t & s\\
s & -t
\end{array}\right) : t, s\in \mathbb{C}\} . It is easy

to see, that \mathcal{A}(T)_{\perp}\cap F_{1}=\{0\} , which implies that T is not reflexive.

4. HYPERREFLEXIVITY

Hyperreflexivity is a stronger property than reflexivity. Here we
present results concerning hyperreflexivity of the subspaces C and C^{s}

Since C is transitive, it cannot be hyperreflexive. However, we can
prove the following:

Theorem 4.1 (Theorem 4.2 [6]). Let \mathcal{H} be a complex separable Hilbert
space and let C be a conjugation on \mathcal{H} . The  sub_{\mathcal{S}}paceC\subset  B(\mathcal{H}) of all
C ‐symmetric operators is 2‐hyperreflexive with constant 1.

The subspace C^{s} is reflexive. It can be proved that it also has the
stronger property—hyperreflexivity.
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Theorem 4.2 (Theorem 4. 1 [2] ). Let C be a conjugation in a com‐
plex Hilbert space \mathcal{H} . Then the subspace C^{s} \subseteq  B(\mathcal{H}) of all skew-C-

symmetric operators is hyperreflexive with the constant  $\kappa$(C^{s}) \leq 3 and
2‐hyperreflexive with $\kappa$_{2}(C^{s})=1.
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