On a conjugation and a linear operator II

by

Muneo Chō, Eungil Ko, Ji Eun Lee and Haruna Motoyoshi

Abstract

Last year, we showed the study of some classes of operators concerning with conjugations on a complex Hilbert space with title "On a conjugation and a linear operator". In this time, we show some results after that.

1. ∞ -isometric operators

Definition 1.1 T is said to be ∞ -isometric if

$$\lim \sup_{m \to \infty} \|\beta_m(T)\|^{\frac{1}{m}} = 0,$$

where

$$\beta_m(T) = \sum_{j=1}^m (-1)^j \binom{m}{j} T^{*m-j} T^{m-j}.$$

T is said to be *m*-isometric if and only if $\beta_m(T) = 0$.

It holds: T: m-isometric $\implies T: \infty$ -isometric.

Theorem 1.1 Let T be ∞ -isometric. Then

- $(1) \ \sigma_a(T) \subset \mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \},\$
- (2) For sequences of unit vectors $\{x_n\}$, $\{y_n\}$, if $(T-a)x_n \to 0$ and $(T-b)y_n \to 0$ $(a \neq b)$, then $\langle x_n, y_n \rangle \to 0$.

Hence if Tx = ax, Ty = by $(a \neq b)$, then $\langle x, y \rangle = 0$.

Theorem 1.2 Let T and T_n be ∞ -isometric.

- (1) If Q is quasinilpotent and TQ = QT, then T + Q is ∞ -isometric.
- (2) If $T_n \to S$ in operator norm, then S is ∞ -isometric.
- (3) If T_1 and T_2 are doubly commuting, then $T_1 T_2$ is ∞ -isometric.

Hence it holds that T, S are ∞ -isometric, then so is $T \otimes S$.

Definition 1.2 For $T \in \mathcal{L}(\mathcal{H})$, put

$$K_m(T) := \bigcap_{k \ge 0} \ker(\beta_m(T) T^k),$$

$$K_{\infty}(T):=\{x: \lim\sup_{m\to\infty}\|\beta_m(T)T^kx\|^{\frac{1}{m}}=0 \text{ for all } k\geq 0\}.$$

It holds

$$K_m(T) \subset K_\infty(T)$$
.

Theorem 1.3 For all T, it holds:

- (1) K_m is invariant for T and $T_{|K_m|}$ is m-isometric.
- (2) K_{∞} is invariant for T and $T_{|K_{\infty}}$ is ∞ -isometric.
 - 2. Conjugation and examples

Definition 2.1

 $C: \mathcal{H} \to \mathcal{H}$ is said to be *conjugation* on \mathcal{H} if the following conditions hold:

- (1) C is antilinear; $C(ax + by) = \bar{a}Cx + \bar{b}Cy$ for all $a, b \in \mathbb{C}$ and $x, y \in \mathcal{H}$.
- (2) C is isometric; $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$
- (3) C is involutive; $C^2 = I$.

Example 2.1 The followings are examples:

- (1) $C(x_1, x_2, x_3, \dots, x_n) := (\overline{x_1}, \overline{x_2}, \overline{x_3}, \dots, \overline{x_n})$ on \mathbb{C}^n .
- (2) $C(x_1, x_2, x_3, \dots, x_n) := (\overline{x_n}, \overline{x_{n-1}}, \overline{x_{n-2}}, \dots, \overline{x_1})$ on \mathbb{C}^n .
- (3) $(Cf)(x) := \overline{f(x)}$ on $\mathcal{L}^2(\mathcal{X}, \mu)$.
- (4) $(Cf)(x) := \overline{f(1-x)}$ on $L^2([0,1])$.
- (5) $(Cf)(x) := \overline{f(-x)}$ on $L^2(\mathbb{R}^n)$.
 - 3. *m*-complex symmetric operators

Definition 3.1

(1) An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be an *m*-complex symmetric operator if there exists some conjugation C such that

$$\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} T^{*j} C T^{m-j} C = 0$$

for some positive integer m.

(2) If m = 1, we say that T is complex symmetric with conjugation C (i.e., $T^* = CTC$).

Set
$$\Delta_m(T) := \sum_{j=0}^m (-1)^{m-j} \binom{m}{j} T^{*j} C T^{m-j} C$$
.

Then T is an m-complex symmetric operator with conjugation C if and only if $\Delta_m(T) = 0$. Note that

$$T^*\Delta_m(T) - \Delta_m(T)(CTC) = \Delta_{m+1}(T).$$

If T is m-complex symmetric with conjugation C, then T is n-complex symmetric with conjugation C for all $n \ge m$.

4. [m, C]-isometric operators

Definition 4.1 An operator $T \in \mathcal{L}(\mathcal{H})$ is called an [m, C]-isometric operator with conjugation C if $\lambda_m(T; C) := \sum_{j=0}^m (-1)^j \binom{m}{j} C T^{m-j} C \cdot T^{m-j} = 0$.

It holds

$$CTC \cdot \lambda_m(T; C) \cdot T - \lambda_m(T; C) = \lambda_{m+1}(T; C).$$

Theorem 4.1 Let T be an [m, C]-isometric operator. Then the following statements hold:

- (1) T is bounded below.
- (2) $0 \notin \sigma_a(T)$.
- (3) T is injective and R(T) is closed.

Theorem 4.2 Let T be an [m, C]-isometric operator. If $a \in \sigma_a(T)$, then $\overline{a}^{-1} \in \sigma_a(T)$.

Hence we have $||T|| \ge 1$ if T is [m, C]-isometric.

Theorem 4.3 Let T be an [m, C]-isometric operator. Then the following statements hold:

- (1) If T is invertible, then T^{-1} is [m, C]-isometric.
- (2) T^n is [m, C]-isometric for all $n \in \mathbb{N}$.

Theorem 4.4 Let T be an [m, C]-isometric operator and N be n-nilpotent. If TN = NT, then T + N is [m + 2n - 2, C]-isometric.

Theorem 4.5 Let T be an [m, C]-isometric operator and S be an [n, C]-isometric operator. If TS = ST and $S \cdot CTC = CTC \cdot S$, then TS is [m+n-1, C]-isometric.

• If C and D are conjugations on \mathcal{H} , then $C \otimes D$ is a conjugation on $\mathcal{H} \otimes \mathcal{H}$.

Theorem 4.6 Let T be an [m, C]-isometric operator and S be an [n, D]-isometric operator. Then $T \otimes S$ is $[m + n - 1, C \otimes D]$ -isometric on $\mathcal{H} \otimes \mathcal{H}$.

5. ∞ -complex symmetric operators

Definition 5.1 An operator $T \in \mathcal{L}(\mathcal{H})$ is called an ∞ -complex symmetric operator with conjugation C if $\limsup_{m \to \infty} \|\Delta_m(T)\|^{\frac{1}{m}} = 0$.

Example 5.1 Let C be the canonical conjugation on \mathcal{H} given by

$$C(\sum_{n=0}^{\infty} x_n e_n) = \sum_{n=0}^{\infty} \overline{x_n} e_n$$

where $\{e_n\}$ is an orthonormal basis of \mathcal{H} . Given any $\epsilon > 0$, choose a N > 0 such that $\frac{1}{N} < \epsilon$. Fix any m > N. If W is the weighted shift on \mathcal{H} defined by $We_n = \frac{1}{2^{m+n}}e_{n+1}$ (n = 0, 1, 2, ...) for such m, then T = I + W is an ∞ -complex symmetric operator.

Example 5.2 Let C_n be the conjugation on \mathbb{C}^n defined by $C_n(z_1, z_2, \dots, z_n) := (\overline{z_1}, \overline{z_2}, \dots, \overline{z_n})$ and let $T = \bigoplus_{n=1}^{\infty} T_n$ where T_n has the following form;

$$T_{n} = \begin{pmatrix} \alpha_{n} & \frac{1}{n} & 0 & \cdots & 0 \\ 0 & \alpha_{n} & \frac{1}{n} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & \frac{1}{n} \\ 0 & 0 & 0 & \cdots & \alpha_{n} \end{pmatrix}$$

for a bounded set $\{\alpha_1, \alpha_2, \alpha_3, ...\}$. Then T is an ∞ -complex symmetric operator with conjugation $C = \bigoplus_{n=1}^{\infty} C_n$.

Two vectors x and y are C-orthogonal if $\langle Cx, y \rangle = 0$.

Theorem 5.3 Let $T \in \mathcal{L}(\mathcal{H})$ be an ∞ -complex symmetric operator with conjugation C and let λ and μ be any distinct eigenvalues of T.

- (1) Eigenvectors of T corresponding to λ and μ are C-orthogonal.
- (2) If $\{x_n\}$ and $\{y_n\}$ are sequences of unit vectors such that $\lim_{n\to\infty}(T-\lambda)x_n=0$ and $\lim_{n\to\infty}(T-\mu)y_n=0$, then $\lim_{k\to\infty}\langle Cx_{n_k},y_{n_k}\rangle=0$, where $\langle Cx_{n_k},y_{n_k}\rangle$ is any convergent subsequence of $\langle Cx_n,y_n\rangle$.

Theorem 5.4 Let Q be a quasinilpotent operator. Then T = aI + Q is an ∞ -complex symmetric operator for all $a \in \mathbb{C}$.

Theorem 5.5 Let T be an m-complex symmetric operator with a conjugation C. If λ is an eigenvalue of T, then $\overline{\lambda}$ is an eigenvalue of T^* .

However, if T is an ∞ -complex symmetric operator, this does not hold.

Example 5.3 Let C be the conjugation on \mathcal{H} given by

$$C(\sum_{n=0}^{\infty} x_n e_n) = \sum_{n=0}^{\infty} (-1)^{n+1} \overline{x_n} e_n$$

where $\{e_n\}$ is an orthonormal basis of \mathcal{H} and let W be the weighted shift on \mathcal{H} defined by $We_n = \frac{1}{n+1}e_{n+1}$ (n = 0, 1, 2, ...).

If $T = \lambda I + W^*$, then T is an ∞ -complex symmetric operator. Moreover, $(T - \lambda I)e_0 = W^*e_0 = 0$, but $(T^* - \overline{\lambda}I)Ce_0 = WCe_0 = We_0 = e_1 \neq 0$.

Theorem 5.6 If $\{T_n\}$ is a sequence of commuting ∞ -complex symmetric operators with conjugation C such that $\lim_{n\to\infty} ||T_n - T|| = 0$, then T is also ∞ -complex symmetric with conjugation C.

Theorem 5.7 Let C be a conjugation on \mathcal{H} . Assume that $T \in \mathcal{L}(\mathcal{H})$ is a complex symmetric operator with conjugation C and $R \in \mathcal{L}(\mathcal{H})$ commutes with T.

- (1) RT is an m-complex symmetric operator with conjugation C if and only if R is an m-complex symmetric operator on $\overline{ran(T^m)}$.
- (2) If R is an ∞ -complex symmetric operator with conjugation C, then RT is an ∞ -complex symmetric operator with conjugation C.

Corollary 5.8 If T is normal or algebraic operator of order 2 and R = I + Q where Q is quasinilpotent with QT = TQ, then QT + T is an ∞ -complex symmetric operator.

Theorem 5.9 Let S and T be in $\mathcal{L}(\mathcal{H})$ and let C be a conjugation on \mathcal{H} . Suppose that TS = ST and $S^*(CTC) = (CTC)S^*$ for a conjugation C.

- (1) If T and S are m-complex symmetric and n-complex symmetric, respectively, then T + S is (m + n 1)-complex symmetric.
- (2) If T is complex symmetric and S is an ∞ -complex symmetric operator, then T+S is ∞ -complex symmetric operator.
- $X \in \mathcal{L}(\mathcal{H})$ is called a *quasiaffinity* if it has trivial kernel and dense range.
- $S \in \mathcal{L}(\mathcal{H})$ is said to be a *quasiaffine transform* of an operator $T \in \mathcal{L}(\mathcal{H})$ if there is a quasiaffinity $X \in \mathcal{L}(\mathcal{H})$ such that XS = TX.
- Two operators S and T are quasisimilar if there are quasiaffinities X and Y such that XS = TX and SY = YT.

Corollary 5.10 Let $T \in \mathcal{L}(\mathcal{H})$ be an ∞ -complex symmetric operator and T have the decomposition property (δ) .

- (1) If T has real spectrum on \mathcal{H} , then exp(iT) is decomposable.
- (2) If $\sigma(T)$ is not singleton and $S \in \mathcal{L}(\mathcal{H})$ is quasisimilar to T, then S has a nontrivial hyperinvariant subspace.

Corollary 5.11

- (1) If $F \subset \mathbb{C}$ is closed, then the operator $S =: T/_{H_T(F)}$, induced by T, on the quotient space $\mathcal{H}/H_T(F)$ satisfies $\sigma(S) \subset \overline{\sigma(T) \setminus F}$.
- (2) If \mathcal{M} is a spectral maximal space of T, then $\mathcal{M} = H_T(\sigma(T|_{\mathcal{M}}))$.
- (3) f(T) is decomposable where f is any analytic function on some open neighborhood of $\sigma(T)$.
- (4) $\sigma(T) = \sigma_{ap}(T) = \sigma_{su}(T) = \cup \{\sigma_T(x) : x \in \mathcal{H}\}.$

Theorem 5.12 Let T and S be m-complex symmetric and n-complex symmetric with conjugation C, respectively. If T commutes with S and $S^*(CTC) = (CTC)S^*$, then TS is (m+n-1)-complex symmetric with conjugation C.

Theorem 5.13 Let T and S be an m-complex symmetric operator and n-complex symmetric operator with conjugations C and D, respectively. If T commutes with S and $S^*(CTC) = (CTC)S^*$, then $T \otimes S$ is an (m+n-1)-complex symmetric operator with conjugation $C \otimes D$.

• $T \in \mathcal{L}(\mathcal{H})$ is called a 2-normal operator if T is unitarily equivalent to an operator matrix

of the form $\begin{pmatrix} N_1 & N_2 \\ N_3 & N_4 \end{pmatrix}$, where N_1, N_2, N_3, N_4 are mutually commuting normal operators.

Corollary 5.14 If T is an m-complex symmetric operator with a conjugation C and S is a 2-normal operator with TS = ST, then $T \otimes U^*NU$ is an m-complex symmetric operator, where $S = U^*NU$ with $N = \begin{pmatrix} N_1 & N_2 \\ N_3 & N_4 \end{pmatrix}$ and a unitary operator U.

Example 5.4 Let C be a conjugation given by $C(z_1, z_2, z_3) = (\overline{z_1}, \overline{z_2}, \overline{z_3})$ on \mathbb{C}^3 . If N is normal and $T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ on \mathbb{C}^3 with TN = NT, then T is a 5-complex symmetric

operator with conjugation C. Hence $T\otimes N=\begin{pmatrix}0&N&0\\0&0&2N\\0&0&0\end{pmatrix}$ is 5-complex symmetric from Corollary.

Theorem 5.15 Let T and S be ∞ -complex symmetric operators with conjugation C. Assume that TS = ST and $S^*(CTC) = (CTC)S^*$. Then TS is an ∞ -complex symmetric operator with conjugation C.

Theorem 5.16 Let T and S be ∞ -complex symmetric operators with conjugations C and D, respectively. Suppose that T commutes with S and $S^*(CTC) = (CTC)S^*$. Then $T \otimes S$ is an ∞ -complex symmetric operator with conjugation $C \otimes D$.

Theorem 5.17 Let T and S be ∞ -complex symmetric operators with conjugations C and D, respectively. If T commutes with S and $S^*(CTC) = (CTC)S^*$, then $(T \otimes S)^*$ has the property (β) if and only if $T \otimes S$ is decomposable.

References

- [1] M. Chō, C. Gu and W.Y. Lee, Elementary properties of ∞-isometries on a Hilbert space, Linear Alg. Appl. 511(2016), 378-402.
- [2] M. Chō, E. Ko and Ji Eun Lee, On m-complex symmetric operators, Mediterr. J. Math., 13(2016), no. 4, 2025-2038.
- [3] M. Chō, E. Ko and Ji Eun Lee, On m-complex symmetric operators, II, Mediterr. J. Math., 13(2016), no. 5, 3255-3264.
- [4] M. Chō, E. Ko and Ji Eun Lee, *Properties of m-complex symmetric operators*, Stud. Univ. Babes-Bolyai Math. 62(2017), No. 2, 233-248.

- [5] M. Chō, Ji Eun Lee and H. Motoyoshi, On [m, C]-isometric operators, Filomat 31:7 (2017), 2073-2080.
- [6] M. Chō, Ji Eun Lee, K. Tanahashi and J. Tomiyama, On [m, C]-symmetric operators, preprint.
- [7] M. Chō, S. Ôta, K. Tanahashi, Invertible weighted shift operators which are misometries, Proc. Amer. Math. Soc. 141 (2013) 4241-4247.
- [8] M. Chō, S. Ôta, K. Tanahashi, and M. Uchiyama, Spectral properties of m-isometric operators, Funct. Anal., Appl. Computation 4:2 (2012), 33-39.
- [9] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358(2006), 1285-1315.
- [10] ______, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359(2007), 3913-3931.
- [11] J. W. Helton, Operators with a representation as multiplication by x on a Sobolev space, Colloquia Math. Soc. Janos Bolyai 5, Hilbert Space Operators, Tihany, Hungary (1970), 279-287.
- [12] J. W. Helton, Infinite dimensional Jordan operators and Strum-Liouville conjugate point theory, Trans. Amer. Math. Soc. 170 (1972), 305-331.
- [13] S. Jung, E. Ko, M. Lee, and J. Lee, On local spectral properties of complex symmetric operators, J. Math. Anal. Appl. 379(2011), 325-333.
- [14] S. Jung, E. Ko, and J. Lee, On scalar extensions and spectral decompositions of complex symmetric operators, J. Math. Anal. Appl. 382(2011), 252-260.
- [15] ______, On complex symmetric operator matrices, J. Math. Anal. Appl. 406(2013), 373-385.

Muneo Chō

Department of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan e-mail: chiyom01@kanagawa-u.ac.jp

Eungil Ko

Department of Mathematics, Ewha Womans University, Seoul 120-750, Korea e-mail: eiko@ewha.ac.kr

Ji Eun Lee

Department of Mathematics-Applied Statistics, Sejong University, Seoul 143-747, Korea e-mail: jieun7@ewhain.net; jieunlee7@sejong.ac.kr

Motoyoshi Haruna

Department of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan e-mail: r201303226ej@jindai.jp