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1. Introduction

In what follows, a capital letter means a bounded linear operator on a complex Hilbert
space H. An operator A is positive semidefinite if and only if (Az,z) > 0 for all z € H,
and we write A > 0. If an operator A is positive semidefinite and invertible, A is called
positive definite. In this case, we write A > 0. For self-adjoint operators A and B, B < A
is defined by 0 < A — B. A real-valued function f defined on an interval I C R is called
an operator monotone function if

B < A implies f(B) <.f(4)

for all self-adjoint operators A and B whose spectra are contained in /. Typical examples
of operator monotone functions are f(z) = z* and f(z) = (1 — A + )\x")'; on z > 0 for
A€ [0,1] and ¢ € [-1,1] \ {0}.

It was proven in Petz-Hasegawa [10] that the function f,(z) of z > 0 is operator
monotone for —1 < p < 2, where

(z—-1)

(xp—l)(xl‘l’—l) (p;éO,l),

fo(z) =p(1 - p)

fo(z) = lim,0 fp(z) = l’f);; and fi(z) = limy,; fo(z) = % (see also [1, 4]). In this

report, we shall consider the function

:1:—1

fp(x =z Hpt

for p = (p1,...,pn) as a generalization of the Petz-Hasegawa function f,(z). In Section
2, we shall give upper and lower bounds of f,(z). In Section 3, we shall introduce a new
approach to showing operator monotonicity of functions such as f,(z). This report is
based on [5].
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Remark. Professor Takayuki Furuta passed away on 26 June, 2016. He had obtained a
small result (a part of Corollary 4), however it had not been submitted. The rest of the
authors found his unpublished manuscript when we visited his home in order to arrange

56

his notebooks. Then we added some results into Furuta’s manuscript to make this report. -

2. Upper and lower bounds of fp(z)

1
In what follows, we consider p for p=0as T , the limit as p — 0.
ogr’

Theorem 1. Let n > 2 be a natural number, and let p; € [0,1] fori=10,1,2,...,n such
that 3 - pi =n. Then

T —
—Po_l_

(1 —pO) xPi —

fp(x) =z sz

z—-1\" z* +1 z+1\7
< x7 < 7 <z

holds for v € R and z > 0, where p = (p1, D2, - .., pn) and p = DIy

To give a proof of Theorem 1, we shall use the following theorem.

Theorem A ([11]). Let p,q € [-1,1]\ {0}. Then

! . p+q 3
LN p xPtI— 1\«
Froqlz) = [/0 (1-X+ ,\xp)pdx] - (mﬁ)

is a positive operator monotone function on z > 0, and increasing on p,q € [—1,1]\ {0}.

In [11], Theorem A is shown by using a technique of complex analysis. But it can be
shown by the following facts easily: (i) (1 — A+ AzP)!/? is operator monotone on x > 0 for
A €[0,1] and p € [~1,1] \ {0}, and increasing on p € [—1,1] \ {0}, and (ii) for operator
monotone functions fi(z) (1 = 1,2,...,n), (1, w f,-(x)q)% is operator monotone for
g € [-1,1] \ {0} and w; > 0 such that } . , w; = 1, and increasing on ¢ € [-1,1] \ {0}.

Proof of Theorem 1. If p; = 0 for some ¢, then p; = 1 for all j # 7 by the condition
Z?:o p; = n. pi% = 1 when p; = 1, so that we have only to consider the case
€ (0,1). It is enough to show that

x—l

) < (:1:“+1>%"l
- 2

IN

(1-p) ot sH
(o5

z +1\?
2

holds for z > 0.



Firstly, we shall show the first inequality in (1).

1

(g Eo L ] Sheal =p) 250 1
Po) zlro — 1 —1 Zz+1 1—p)xzk —o(1-m) — 1
n-1 i 11 —p, \ ::Z:+:
H ho(l =) a0l —1 ’
- i=0 Z‘t:)(l ) gTi=o(l-P) —
n—1
J— 1- T
- H FZL:()(I—Pk)J—Piﬂ(x) Pt
i=0
n—1 z—1
< H Fl{i+ly1—Pi+l NGRS HP; 1
=0

where the inequality follows from Theorem A and the following fact: > p_o(1 —px) =1
and p; € (0,1) fori=0,1,2,...,n imply

i

Y (1—p)=1—(1=pi1) = —(1—=pn) < pis1-
k=0

Secondly, we shall prove the second inequality in (1). To prove it, we show that for
each z > 0,

r—1Y\ . .
g(t) = log (t_T) is a concave function on (0,1). (2)
For0<t; <t <1,
x—1 z-1 4 xt;t—l thh+t, -1 r—1
Tz -1 g1 Wil gn 2 a2 _q Pr_1
t! ) ¢|+t2
=F, uu(e z)%z Fusta ;1 (2)' 77 Fppo(2)'™"
—t t t
< Fﬂ:—*a%x(x) T Fusn y_ara (0)' 777 B ()0
e i tl +t, z—1 z-1
Tt x_m__l 2 xn#_l'zxzz_l

ti+ts z—1 \2
- 2 e

holds by Theorem A. Then we have

1 gtz —1

<o t +to II—]. . t; +to

1 1 z—1 z—1
5 {9(t1) +9(t2)} = S log <t1 e )
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that is, g(t) is a concave function on (0, 1) since g(t) is continuous. Therefore
1, [y z-1Y 1
21 e (R 4.
log (g T 1) ~{9(1) +9(p2) + -+ g(pn)}

+p2t+- 4+ pn z—-1
Sg(pl 2 )=vg(u)=log<u )

n -1

that is,

H z—1 z—1 "
pzz"t 1 - uz“—l

Thirdly, we shall show the third inequality in (1). Since

1 o Po po_ 1
R N N P
p ng”’ n=" 273

that is, 1 — p < p, and

n
(1 —M)n=n_zpi = Ppo;
i=1

Theorem A ensures that

z -1 " (1-p)n (1-p)n {xt+1 E“Q
H = u,l—u(x) < Fu,u(x) = 2

¢t —1

The last inequality in (1) follows from the fact that F,(z) = (%)i is monotone

increasing on ¢ € [—1,1] \ {0} by Theorem A. O
We remark that we prove (2) by using Theorem A here, while it can be shown by

differential calculations.

Corollary 2. Let’n > 2 be a natural number, and let p; € [0,1] fori =1,2,...,n such
that 30 pi=n—1. Then

._fp —x‘Ysz x._l

z"
zPi — 1

1
r—1 ¢+ 1\ *» z+1
<z < Y <z

holds for v € R and z > 0, where p = (p1,p2,...,pa) and p =137 p;=1-1

log z

Proof. By taking the limit pp — 1 in Theorem 1, we have the desired inequality since
lima_0 2= = log z holds for all z > 0. O

We also obtain another upper bound of f,(z).
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Theorem 3. Let n > 2 be a natural number, and let p; € [0,1] fori=0,1,2,...,n such ‘

that 3 pi = n. Then

n n—1 2—pn
o ‘:c—l v _z—l 1 =z -1
fp(l')—fL‘ I_-‘!pll'p’—l <z szzpi—l 2—pn z—1

o1 zr— z4+1\"
< 2 <y
—IH2—p, -1 —z( 2 )

i=1

holds for v € R and z > 0, where p = (p1,p2,.-.,Pn)-

Proof. 1t is enough to show that

holds for z > 0. The first inequality can be shown as follows:

n

n
Hpi;z:ii —11 B H F i'l'Pi(x)l_pi

1=1 i=1

n—1 »
< (H Fpiyl_pi(a:)l“"> Fi1-p,(2)"™™ by Theorem A

i=1

B ’ﬁ z-1 1 g2P—1
B P 1 2—p, z—1

i=1

The second and third inequalities in (3) are obtained by Theorem A as follows:

n—1 -1
xr — 1 1 {L-z_Pn — 1
) = F . 1-p; F _ 1-pn
(EP xPi — l) 2-p, -1 ( 1 e pt(x) ) 11 p"(x)

1=

- e Tx 1 x¥Piod
<[IFin@ =Tl 51
N im1 1

where the last equality holds by >, (1 — p;) = po. ’ O

Especially, we have upper and lower bounds of the Petz-Hasegawa function by Corollary
’ p+1 1
z has been considered

2 and Theorem 3 as follows. We note that the function A ——
p+1 zP -1
in [2, 3].



Corollary 4. Let p € [0,1].
- (1) The inequality

z—1 (z —1)?

fo(flf) = fl(x) = log:r < fp(x) = p(l _p)(:ﬂ’ — 1)(151_" _ 1)
< <ﬁ+ 1)2 Lol
2 2
holds for x > 0.
(11) The inequality
_ _z—1 B (z—1)2
fo(z) = fi(z) = log < Jp(z) =p(1 —p) @ - D@7 1)
<_P Pt -1
- m P —1
1 (PP =) (z®>P—-1) z+1
e 0E-n  @-1F - 2

holds for x > 0.

Proof. (i) and the first inequality in (ii) are obtained by putting n =2, v =0, p; = p and
p2 = 1 —p in Corollary 2. The other inequalities in (ii) are obtained by putting n = 2,
v=0,po=1,p =pand p, =1 — pin Theorem 3. O

3. Operator monotonicity of f,(z)

First of all, we shall give an elementary proof of the following known result.

Theorem B ([6]). For -2 <p <2,

1
x—1\T»
sp(z) = (Pxp — 1)

is an operator monotone function on x > 0, where so(x) and s,(z) are defined by the limit

T

and s1(z) = zl’l_lg sp(z) = Exr-l.

=1l =
as so(z) lim sp(z) Tog
In [6], Theorem B has been proven by using a technique of complex analysis. Here we
give an alternative proof by using only Theorem A and the following well-known fact:

Lemma C (eg. [7]). Let f(z) and g(x) be operator monotone functions. Then the
following functions are also operator monotone:

(i) f(z)*g(x)? for o, >0 such that a+ B <1,

(i) fz7H)7".
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Another proof of Theorem B. (i) The case 0 < p < 1. s,(x) is operator monotone for
0 < p <1 by Theorem A since s,(z) = F,1-,(z). As for the case p = 0,1, s,(x) is still
operator monotone by taking its limit p — 40 and p — 1 — 0 (see [11]).

(i) In the case 1 < p < 2, s,(z) is operator monotone by Theorem A since

(iii) In the case —1 < p < 0,

1

, .
z—1 T+lp —1 1+[pl Ip| 1-|p|
sp(z) = (—|P|_—_‘i> ( plp| T 1) = T s (z) TF

xz ]

is operator monotone by (i) and Lemma C since lfllpl’ i +L’:: € [0,1].

(iv) In the case —2 < p < -1,

1 1
; z—1 T+l =t — 1\ T+l 1 g 22t
5(2) = ("""m) T <x'p'pp|—_—1) = 2T {sppy(z 1) 1}
is operator monotone by (ii) and Lemma C since ; +1|p|, '1’1‘;] € [0,1]. O

By the same way, we can obtain operator monotonicity of fp(z).

Theorem 5. Let p = (p1,...,pn) = (a1,...,a5,b1,...,bm,c1,. .. cudhy .. dy) (0 =
I+m+u+v) and v € R such that

-2<d1 < <d, <1< < < <0<Hh < <bp <1<y << L2,
) u m v
0§'y+(l+'u)—§:ai—2ci§1 and 0§7+(rn+u)—2bi—2di§1.
i=1 i=1 i=1 i=1

Then fp(z) = Hp, o s operator monotone on x > 0.

We notice that the fact shown in Theorem 5 is included in the results in Kawasaki-
Nagisa [8] and Nagisa-Wada [9)].

Proof. Since

=1
r—1 1-1 1=o; {-(1-ai)} - _
a — IIJl_a‘ {ai(—,} - xl—a, {Sa,-(x_l)_l}a‘ 17

e — 1 r-1)e — 1

z—1 —b;
b1 | = s, ()",

1
-1 -1 Tclg(l+c.)
Cifz; -1 =z {(_ci)x:fm - 1} = x_qs_ci(x)l-'.q and
-1

z—1 ‘ gml—1 | e () —1y-1)—(1+ds)

o5 = { g ) == leale™)
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hold for each 7, we have

—_ 1 v _ 1
)=z Ha, “=~1H xb‘_lngf H ;,_1
=¥ H {gai(x—l)—l}arl H Sbi(x)l—b, H S—ci(x)1+c' ﬁ {;S_dl(x-—l)_l}—(1+d,-) ’
= =1 i=1 i=1

wherew—’y+Zl—a,+Z c,+21—'y+(l+v Z ch

i=1 i=1 =1
By the assumption, w,a; — 1,1 = b;,1 + ¢;, —(1 + d;) € [0, 1] for every i and
w+z a;—1) +z(1 b;) +Z(1+c,) z 14+d;) = v+ (m+u)— Zb Zd e [0,1].
i=1
Hence fp(z) is operator monotone by Theorem B and Lemma C. a
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