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1. Notation

The continuous function ¢ : R — C is said to be positive definite if for any
positive integer n € N and for any x,x3,...,x, € R, the following n X n matrix

o(x1—x1) @ex1—x2) -+ @(x1—xn)
<P(X2.—XI) <P(X2'—X2) <P(X2.—Xn)v >0,
Ol —31) P(ta=x2) - P(tn—%n)

n
that is, Y o0 (x; —x;) > Oforall @, ...,&, € C. By definition, ¢(0) > 0,

'7.’=1

¢(=x) = ¢(x), and |p(x)| < ¢(0) for any x € R.
Typical example of positive definite function is @(x) = eV-lax , where a € R.
‘This can be seen because of the identity

e\/—laxl . e\/—laxl *
: v—lax; V—1laxy
2\ e e
(00— = (/TTo0m2))" = .

i,j=1 : T
e\/—lax,, e\/—lax,,

It is known as Bochner’s theorem that the function @ is positive definite if
there exists a positive finite measure (1 on R such that

ox)= [ _e*ano).
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2. Introduction and Main Results

It is known that :
“H%XK%“ < S IHX +XK],

where H,K,X are operators on Hilbert space and H, K are positive and invertible.
To show this operator norm inequality, we consider two functions as follows:

()

s+t f41 s
Nist) == :t(tz )ztg(?)’

and g(t) = % Then, we have

=

M(s,t) = (st)% =t (-:—)

and

W

that is f(t) =t

fle*) & 1 1  2sinhx
g(e¥) ﬁz% - et "~ coshx  sinh2x’

It is known that ﬁ:g‘g is positive definite. By [3], this fact is equivalent to the

operator norm inequality

1
<5 IHX +XK]|,

”‘H%XK%

where || || is any unitarily invariant norm and usual operator norm || e || is one of
example of unitarily invariant norms. Borrowing notation in [3], we can write the
above operator norm inequality as follows:

lIM(H,K)X|| < % IN(H, K)X]].

Foraj>a; >--->a,>0and by > by > --- > b, > 0, we define the function

h(x) = n b;sinha;x
- ] aisinhbix’



82

The following statements had proved in [1]:

k k
(M If Y a;< Y biforany k=1,2,--- n, then h is positive definite.
i=1 i=1

(2) If a; > by, then h is not positive definite.

n 14
(3) If ¥ a; > ¥ b;, then h is not positive definite.
i=1 1

i .

1=

Fora>b > 0.and ¢ > d > 0, we set

1-gst b(s* ~ 19)

M(S,t):(st) m

and
l—c+d d(Sc —_— tc)

c(s? —1d)’
By the facts (1), (2) and (3), we have that the following three statements are equiv-
alent.

N(s,t) = (st)

(@) c>aandb+c>a+d.

sinh axsinh dx
(b) sinhbxsinhc¢x

©) IM(H,K)X|| < %]||N(H,K)X|||, where H,K,X are operators on Hilbert
space and H, K are positive and invertible.

is positive definite.

The following two functions does not satisfies the assumption of (1), (2) and

3):

i (x) = §inh 8x s.inh 6x §inhx
sinh 9x sinh4xsinh4x
and ) . )
o (x) = sgnh 8x anh 6x s%nh 3x .
sinh9xsinh4xsinh4x

It is proved in [1] that A is positive definite whereas h; is not positive definite.
We can get the following statement and the non positive definiteness of 43 can be
extended as stated in Corollary 2.



Theorem 1. [2] If ¢ (not necessarily continuous) is positive definite on R and
Ii_r)n @(nx) = @(0) for all x € R, then ¢ is constant.
n—yoo

Corollary 2. If & is non-constant satisfying
ajtay+-+ap=bi+by+--+by

and
ayxXazX---Xay,=by XbyX---Xby,

then A is not positive definite.

3. Proof of the Main Results

We define that the function ¢ is positive definite on Z if for any natural num-

n
bersn, Y o;@jo(xi—x;) >0, where a1,00,...,0, € Cand x1,x,...,x, €Z. It
l1J:l
is known as Herglotz’s theorem that ¢ is positive definite function on Z if there

exists positive finite measure it on T (as a dual of Z) such that
o(n) = / ez’”‘/'_l’”‘d[.t(x) foralln € Z.
T

Here, [0,1) = R/Z will identify T. -
Before we begin our proof, we will show that

N
Y o). ©)
=-N

#{0}) = Jim S5 R

To prove this, it suffices to show that if u({0}) = 0, then

N
. 0
m ot L o)

by considering pt — u({0})dp instead of u, where & is a Dirac measure at 0. So,
we are going to assume that u({0}) = 0.
Since |sinx| < |x| and Z < sinx (0 <x < %), then

1
2N +1

sin(2N + 1)7x <

1 2N+ )x
SONF1 T I
T

~gifogxg

N —

sin Tx
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For a sufficiently small € > 0, we have

1 N

T n;N¢(n){ =

1 & s
N1, Z / )

sin(2N + 1)7rx (x).
sin 7x au
1 sin(2N+1)7x
<
- /—-g 2N+1  sin7mx dp(x)

I-e] 1 sin(2N+1)7x
+/e N1 smax |0
T 1
<Zu((- S :
< 2#(( £,€))+ (2N+1)sin7re”(T)

Hence, llmsup|2N+IZn_~N(p( )| < Zu((—¢&,€)). Since ¢ is arbitrary and
N-

©({0}) =0, then 11m 2NJFI):,,ﬁ_N(p( n) =0.

Lemma 3. Let ¢ : Z —» C be positive definite and hm 0 ¢(n ) = ¢(0). Then, @ is
constant.

Proof. Let o(n) = J§ 2™/ ~I"dy(x) for all n € Z. Then, @(0) = u(T). Further-
more, by (}) and since lgn ¢(n) = ¢@(0), then u({0}) = ¢(0). This means that u

is a non-negative scalar multiple of Dirac measure at 0 and so, ¢(n) = ¢(0) for
allneZ. O

Proof of Theorem 1. Given x € R, we can consider the complex-valued function
¢, on Z in which
| Px(n) = @ (nx).

We have that ¢, is positive definite and since ,}52, @(nx) = ¢(0), then by Lemma
3, ¢, is constant and since x is arbitrarily chosen, then @ is constant.



Proof of Corollary 2. By the assumption we have

sinha;xsinhayx---sinha,x -

h(x) = i
() sinhbixsinhbyx---sinhb,x
Consider that
h(0) = lim h(x)
x—0
— lim sinhaxsinhapx- - - sinhapx
x—0 sinhbxsinhbyx- - - sinhb,x
_ayXayX - Xay
T by xbyx---xXby,
=1
and
(ealx _ é-al)C) (eazx —a2X) ) (ea,,x _ e-—a,,x)
,}‘_{{,‘oh(x) - ,}H,?o (eblx — e—blx) (ebzx — e—ng) (eb,,x _ e—b,,x)
(a|+ao+---+a,, xX(1 — —2a|x 1— —2a2x (1= —2a,x
. ( )( )...(1 = 2
X—>o0 e(b1+b2+ ~+bp) x(l - e—2blx)(1 _ e—2b2x) . (1 _ e—2b,,x)
=1.

This means
l'i_r}n h(nx) =1forallx € R..
n—oo

Since h is non-constant, then by Theorem 1, A is not positive definite.
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