Operator Norm Inequality and Positive Definiteness of Some Functions

Imam Nugraha Albania

Department of Mathematics Education, Indonesia University of Education

This is a joint work with Professor NAGISA Masaru.

1. Notation

The continuous function $\varphi : \mathbb{R} \longrightarrow \mathbb{C}$ is said to be positive definite if for any positive integer $n \in \mathbb{N}$ and for any $x_1, x_2, ..., x_n \in \mathbb{R}$, the following $n \times n$ matrix

$$\begin{pmatrix} \varphi(x_1-x_1) & \varphi(x_1-x_2) & \cdots & \varphi(x_1-x_n) \\ \varphi(x_2-x_1) & \varphi(x_2-x_2) & \cdots & \varphi(x_2-x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi(x_n-x_1) & \varphi(x_n-x_2) & \cdots & \varphi(x_n-x_n) \end{pmatrix} \geq 0,$$

that is, $\sum_{i,j=1}^{n} \alpha_i \overline{\alpha_j} \varphi(x_i - x_j) \ge 0$ for all $\alpha_1, ..., \alpha_n \in \mathbb{C}$. By definition, $\varphi(0) \ge 0$, $\varphi(-x) = \overline{\varphi(x)}$, and $|\varphi(x)| \le \varphi(0)$ for any $x \in \mathbb{R}$.

Typical example of positive definite function is $\varphi(x) = e^{\sqrt{-1}ax}$, where $a \in \mathbb{R}$. This can be seen because of the identity

$$(\varphi(x_i - x_j))_{i,j=1}^n = \left(e^{\sqrt{-1}a(x_i - x_j)}\right)_{i,j=1}^n = \begin{pmatrix} e^{\sqrt{-1}ax_1} \\ e^{\sqrt{-1}ax_2} \\ \vdots \\ e^{\sqrt{-1}ax_n} \end{pmatrix} \begin{pmatrix} e^{\sqrt{-1}ax_1} \\ e^{\sqrt{-1}ax_2} \\ \vdots \\ e^{\sqrt{-1}ax_n} \end{pmatrix}.$$

It is known as Bochner's theorem that the function φ is positive definite if there exists a positive finite measure μ on \mathbb{R} such that

$$\varphi(x) = \int_{-\infty}^{\infty} e^{ixt} d\mu(t).$$

2. Introduction and Main Results

It is known that

$$\left\|H^{\frac{1}{2}}XK^{\frac{1}{2}}\right\| \leq \frac{1}{2}\left\|HX + XK\right\|,$$

where H, K, X are operators on Hilbert space and H, K are positive and invertible. To show this operator norm inequality, we consider two functions as follows:

$$M(s,t) = (st)^{\frac{1}{2}} = t\left(\frac{s}{t}\right)^{\frac{1}{2}} = tf\left(\frac{s}{t}\right)$$

and

$$N(s,t) = \frac{s+t}{2} = t\left(\frac{\frac{s}{t}+1}{2}\right) = tg\left(\frac{s}{t}\right),$$

that is $f(t) = t^{\frac{1}{2}}$ and $g(t) = \frac{t+1}{2}$. Then, we have

$$\frac{f(e^{2x})}{g(e^{2x})} = \frac{e^x}{\frac{e^{2x}+1}{2}} = \frac{1}{\frac{e^x+e^{-x}}{2}} = \frac{1}{\cosh x} = \frac{2\sinh x}{\sinh 2x}.$$

It is known that $\frac{2\sinh x}{\sinh 2x}$ is positive definite. By [3], this fact is equivalent to the operator norm inequality

$$\|H^{\frac{1}{2}}XK^{\frac{1}{2}}\| \leq \frac{1}{2} \|HX + XK\|,$$

where $\| \bullet \|$ is any unitarily invariant norm and usual operator norm $\| \bullet \|$ is one of example of unitarily invariant norms. Borrowing notation in [3], we can write the above operator norm inequality as follows:

$$||M(H,K)X|| \le \frac{1}{2} ||N(H,K)X||.$$

For $a_1 \ge a_2 \ge \cdots \ge a_n > 0$ and $b_1 \ge b_2 \ge \cdots \ge b_n > 0$, we define the function

$$h(x) = \prod_{i=1}^{n} \frac{b_i \sinh a_i x}{a_i \sinh b_i x}.$$

The following statements had proved in [1]:

- (1) If $\sum_{i=1}^{k} a_i \leq \sum_{i=1}^{k} b_i$ for any $k = 1, 2, \dots, n$, then h is positive definite.
- (2) If $a_1 > b_1$, then h is not positive definite.
- (3) If $\sum_{i=1}^{n} a_i > \sum_{i=1}^{n} b_i$, then h is not positive definite.

For $a \ge b > 0$ and $c \ge d > 0$, we set

$$M(s,t) = (st)^{\frac{1-a+b}{2}} \frac{b(s^a - t^a)}{a(s^b - t^b)}$$

and

$$N(s,t) = (st)^{\frac{1-c+d}{2}} \frac{d(s^c - t^c)}{c(s^d - t^d)}.$$

By the facts (1), (2) and (3), we have that the following three statements are equivalent.

- (a) c > a and b + c > a + d.
- (b) $\frac{\sinh ax \sinh dx}{\sinh bx \sinh cx}$ is positive definite.
- (c) $||M(H,K)X|| \le \frac{1}{2} ||N(H,K)X||$, where H,K,X are operators on Hilbert space and H,K are positive and invertible.

The following two functions does not satisfies the assumption of (1), (2) and (3):

$$h_1(x) = \frac{\sinh 8x \sinh 6x \sinh x}{\sinh 9x \sinh 4x \sinh 4x}$$

and

$$h_2(x) = \frac{\sinh 8x \sinh 6x \sinh 3x}{\sinh 9x \sinh 4x \sinh 4x}$$

It is proved in [1] that h_1 is positive definite whereas h_2 is not positive definite. We can get the following statement and the non positive definiteness of h_2 can be extended as stated in Corollary 2.

Theorem 1. [2] If φ (not necessarily continuous) is positive definite on \mathbb{R} and $\lim_{n\to\infty} \varphi(nx) = \varphi(0)$ for all $x\in\mathbb{R}$, then φ is constant.

Corollary 2. If h is non-constant satisfying

$$a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n$$

and

$$a_1 \times a_2 \times \cdots \times a_n = b_1 \times b_2 \times \cdots \times b_n$$

then h is not positive definite.

3. Proof of the Main Results

We define that the function φ is positive definite on \mathbb{Z} if for any natural numbers n, $\sum_{i,j=1}^{n} \alpha_i \overline{\alpha_j} \varphi(x_i - x_j) \ge 0$, where $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{C}$ and $x_1, x_2, \dots, x_n \in \mathbb{Z}$. It is known as Herglotz's theorem that φ is positive definite function on \mathbb{Z} if there exists positive finite measure μ on \mathbb{T} (as a dual of \mathbb{Z}) such that

$$\varphi(n) = \int_{\mathbb{T}} e^{2\pi\sqrt{-1}nx} d\mu(x) \text{ for all } n \in \mathbb{Z}.$$

Here, $[0,1) \cong \mathbb{R}/\mathbb{Z}$ will identify \mathbb{T} .

Before we begin our proof, we will show that

$$\mu(\{0\}) = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \varphi(n). \tag{\dagger}$$

To prove this, it suffices to show that if $\mu(\{0\}) = 0$, then

$$\lim_{N\to\infty}\frac{1}{2N+1}\sum_{n=-N}^{N}\varphi(n)=0$$

by considering $\mu - \mu(\{0\})\delta_0$ instead of μ , where δ_0 is a Dirac measure at 0. So, we are going to assume that $\mu(\{0\}) = 0$.

Since $|\sin x| \le |x|$ and $\frac{2x}{\pi} \le \sin x$ $(0 \le x \le \frac{\pi}{2})$, then

$$\left| \frac{1}{2N+1} \left| \frac{\sin(2N+1)\pi x}{\sin \pi x} \right| \le \frac{1}{2N+1} \times \frac{(2N+1)\pi x}{\frac{2\pi x}{\pi}} = \frac{\pi}{2} \text{ if } 0 \le x \le \frac{1}{2}.$$

For a sufficiently small $\varepsilon > 0$, we have

$$\left| \frac{1}{2N+1} \sum_{n=-N}^{N} \varphi(n) \right| = \left| \frac{1}{2N+1} \sum_{n=-N}^{N} \int_{0}^{1} e^{2\pi\sqrt{-1}nx} d\mu(x) \right|$$

$$= \left| \int_{0}^{1} \frac{1}{2N+1} \frac{\sin(2N+1)\pi x}{\sin \pi x} d\mu(x) \right|$$

$$\leq \int_{-\varepsilon}^{\varepsilon} \left| \frac{1}{2N+1} \frac{\sin(2N+1)\pi x}{\sin \pi x} \right| d\mu(x)$$

$$+ \int_{\varepsilon}^{1-\varepsilon} \left| \frac{1}{2N+1} \frac{\sin(2N+1)\pi x}{\sin \pi x} \right| d\mu(x)$$

$$\leq \frac{\pi}{2} \mu((-\varepsilon, \varepsilon)) + \frac{1}{(2N+1)\sin \pi \varepsilon} \mu(\mathbb{T}).$$

Hence, $\limsup_{N\to\infty}\left|\frac{1}{2N+1}\sum_{n=-N}^N\varphi(n)\right|\leq \frac{\pi}{2}\mu((-\varepsilon,\varepsilon))$. Since ε is arbitrary and $\mu(\{0\})=0$, then $\lim_{N\to\infty}\frac{1}{2N+1}\sum_{n=-N}^N\varphi(n)=0$.

Lemma 3. Let $\varphi : \mathbb{Z} \longrightarrow \mathbb{C}$ be positive definite and $\lim_{n \to \infty} \varphi(n) = \varphi(0)$. Then, φ is constant.

Proof. Let $\varphi(n) = \int_0^1 e^{2\pi\sqrt{-1}nx} d\mu(x)$ for all $n \in \mathbb{Z}$. Then, $\varphi(0) = \mu(\mathbb{T})$. Furthermore, by (†) and since $\lim_{n \to \infty} \varphi(n) = \varphi(0)$, then $\mu(\{0\}) = \varphi(0)$. This means that μ is a non-negative scalar multiple of Dirac measure at 0 and so, $\varphi(n) = \varphi(0)$ for all $n \in \mathbb{Z}$.

Proof of Theorem 1. Given $x \in \mathbb{R}$, we can consider the complex-valued function φ_x on \mathbb{Z} in which

$$\varphi_{x}(n) = \varphi(nx).$$

We have that φ_x is positive definite and since $\lim_{n\to\infty} \varphi(nx) = \varphi(0)$, then by Lemma 3, φ_x is constant and since x is arbitrarily chosen, then φ is constant.

Proof of Corollary 2. By the assumption we have

$$h(x) = \frac{\sinh a_1 x \sinh a_2 x \cdots \sinh a_n x}{\sinh b_1 x \sinh b_2 x \cdots \sinh b_n x}.$$

Consider that

$$h(0) = \lim_{x \to 0} h(x)$$

$$= \lim_{x \to 0} \frac{\sinh a_1 x \sinh a_2 x \cdots \sinh a_n x}{\sinh b_1 x \sinh b_2 x \cdots \sinh b_n x}$$

$$= \frac{a_1 \times a_2 \times \cdots \times a_n}{b_1 \times b_2 \times \cdots \times b_n}$$

$$= 1$$

and

$$\lim_{x \to \infty} h(x) = \lim_{x \to \infty} \frac{(e^{a_1x} - e^{-a_1x})(e^{a_2x} - e^{-a_2x}) \dots (e^{a_nx} - e^{-a_nx})}{(e^{b_1x} - e^{-b_1x})(e^{b_2x} - e^{-b_2x}) \dots (e^{b_nx} - e^{-b_nx})}$$

$$= \lim_{x \to \infty} \frac{e^{(a_1 + a_2 + \dots + a_n)x}(1 - e^{-2a_1x})(1 - e^{-2a_2x}) \dots (1 - e^{-2a_nx})}{e^{(b_1 + b_2 + \dots + b_n)x}(1 - e^{-2b_1x})(1 - e^{-2b_2x}) \dots (1 - e^{-2b_nx})}$$

$$= 1.$$

This means

$$\lim_{n\to\infty}h(nx)=1 \text{ for all } x\in\mathbb{R}.$$

Since h is non-constant, then by Theorem 1, h is not positive definite.

References

- [1] Albania. I. N and Nagisa. M, Some Families of Operator Norm Inequalities, Linear Algebra and Its Application. 534(2017), 102-121.
- [2] Albania. I. N and Nagisa. M, *Positive Definite Sequences with Constant Modulus*, Scientiae Mathematicae Japonicae. Editione Electronica, whole number 30, e-2017-17.
- [3] Hiai. F and Kosaki. H, Means for Matrices and Comparison of Their Norms, Indiana Univ. Math. J. 48(1999), 899-936.
- [4] Hiai. F and Petz. D, Introduction to Matrix Analysis and Applications, Springer, 2014.

Department of Mathematics Education Indonesia University of Education Jl. Dr. Setiabudhi 229 Bandung, West Java 40154 e-mail address: albania@upi.edu, phantasion@gmail.com