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Abstract

In this paper renormalized Nelson Hamiltonian in quantum field theory is
discussed. Gibbs measure associated with the ground state of the Nelson Hamil-
tonian is constructed, and the super exponential decay of the truncated number
opcrator of the ground statc is shown.

1 The Nelson model

1.1 Definition

This is a review article of the recent work [21, 13]. One of the simplest model in
quantum field theory describing an interaction between non-relativistic quantum mat-
ters and a scalar Bose field is the so-called Nelson model which was introduced by
Edward Nelson [22, 23] to describe a renormalization of ultraviolet cutoff functions.
He fortunately proved the existence of the renormalized Hamiltonian by the operator
theory. In this article we study the spectrum of the renormalized Nelson Hamiltonian
by using functional integrations and Gibbs measures associated with the ground state.
In particular we focus on investigating the properties of the ground state.

First we introduce the Nelson Hamiltonian with ultraviolet cutoff and secondly we
define the Nelson Hamiltonian without the cutoff by removing the cutoff.

Let 1

be a Schrodinger operator in L2(R3). Let D(T) be the domain of operator T. If V
is relatively bounded with respect to —--;—A with a relative bound strictly smaller than
one, i.e.,

D(V) € D(~3A), [Vl <all - ZAf] +b]]
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for f € D(V) with some a < 1 and b > 0. Then we say V € Rkato. If V € Rkato, then
H, is self-adjoint on D(—1A) and essentially self-adjoint on any core of —~A so that
HP[D = —%A[D + VI_D See [14]

Let us introduce the scalar quantum field. The following are standing assumptions
on dispersion relation w, ultraviolet cutoff function ¢ and potential V' throughout this
section.

Assumption 1.1 (1) w(k)=|k|. (2) ¢(k) = ¢(—k), ¢/w,p//w € L*(R3).
(3) V € RKato-

We define Hy = {f|f/v@ € L*(R®} and Hg = {f|f//@p € L*(R3*')}. Here
wg = we(k, ko) = \/|k|> + k2. We also define the Fourier transform of Hys and Hg by
H)ys and Hg, respectively. We also define real Hilbert spaces below:

M = {f € Hyl|f is real-valued}, & = {f € Hg|f is real-valued}.

Both .# and & are Hilbert spaces over R, and note that .#c = Hy and é¢ = Hg.
Here H¢ denotes the complexification of H. Let (¢(f), f € #) be a family of Gaussian
random variables on a probability space (Q, X, i) indexed by f € .#. Thus it follows
that

EJ6() =0, EJ6(No(a)] = 3(F. ),

Here Ep[- - -] describes the expectation with respect to probability measure P. The
Hilbert space L?(Q) is called the boson Fock space in this paper. We define & =
w(=iV) = vV=A. Let H; = dT'(@) : L*(Q) — L*(Q) be the free field Hamiltonian,
where dI'(&) denotes the second quantization of @. Thus Hy is the self-adjoint operator
in L?(Q) and satisfies that H;1 = 0.

The Nelson Hamiltonian defined in the total Hilbert space

Hy = L*(R°) ® L*(Q)
is given by
H=H,@1+1® Hy + H;. (1.1)

Here Hj describes the linear interaction and is given by

®
Hi= [ ool —o)ds

under the identification Hy = fn;.; L*(Q)dz. Here fng ---dz denotes the constant fiber
direct integral [24, XIII.16]. Notice that we can also define the Nelson Hamiltonian on
L*(R®) ® #, where .Z is the boson Fock space over Hys. We refer to Appendix A and
C. Suppose Assumption 1.1. Then H is self-adjoint on D(—3A® 1) N D(1® Hy). This
can be proven by using the inequality || H;®|| < ||¢/w||||(H+ 1)*/2®|| and Kato-Rellich
theorem.
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1.2 Feynman-Kac-type formula

We define another Gaussian random variable to construct Feynman-Kac-type for-
mula. Let (¢g(f),f € &) be the Gaussian random variable on a probability space
(QE, g, ug) indexed by f € &. ¢g(f) is called Euclidean field smeared by f. We will
define a family of isometries J; from L?(Q) to L?(Qg) through the second quantization
of a specific transformation j; from .# to &. Define j;, : # — & by

Joif=0®f.

Here &;(z) = §(z —t) is the dclta function with mass at ¢t. Thus §; ® f = §; ® f, which
implies that j; preserves realness. It follows that

mn=e "% steR.
In particular, j; is isometry between .# and & for each t € R. Let
Joi LA(Q) = L*(Qr), tER,
be the family of isometries connecting L?(Q) and L*(Qg), i.c.,

Jiy = Mg,  Ji:@(f1) - d(fn) :=: Ge(fef1) - DE(jefn) :

and it satisfies that J*J,e~l1*=t1s for s,t € R. Here : [[}_, ¢r(f;) : is the wick product
t 1 j

J
Of H?:l ¢E(f3)

Let (Bt)t>0 be the Brownian motion on a Wiener space (Q, %, #%). Under Wiener
measure #*, the Brownian motion starts from x almost surely at time t = 0. We
denote E® for Ey=. Let f,g € L?(R®). Then the Feynman-Kac formula of e~*#r is
given by

(e g aey = [ dal® [e KV F(By)g(B,)] .
R3

We can also construct Feynman-Kac-type formula for e=#.

Theorem 1.2 (Feynman-Kac-type formula) Suppose Assumption 1.1. Then for
t>0 and F,G € Hy,

(F, e @)y, = /sd:v]Ez [e_f"t V(BS)ds(JoF(Bo),6_¢E(f°tjsw('_Bs)ds)J‘G(B‘))Lz(QE)] '
R
(1.2)

Here F,G € Hyx are regarded as L*(Q)-valued L*-functions on R®.

PROOF. For € > 0 let Hf = y.(Hj), where y.(X) = X +eX? Then Hf is bounded
below for € > 0. We can also see that H* = H, ® 14+ 1 ® Hy + Hj is self-adjoint on
D(H, ® 1+ 1 ® H;) and essentially self-adjoint on any core of H, ® 1+ 1 ® Hy for
0 < & < c with some c. In particular e — e~*# strongly as € | 0. For simplicity,
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first we assume that V € C°(R3). Let h = —%A. By the Trotter-Kato product formula
[17, 18, 19] and the factorization formula e~*~‘H# = J*J, we have

n—1
e =5 lim Jj <H Jue e —%he_%VJ*%> Ji, (1.3)
Jj=0
and we insert (1.3) into (F,e™*¥°G). Hence we have

(F,e™™G) = lim ( (]‘[ Jue wHiemwh ‘%VJ“;_t> JtG>.

Here H?:ltj =t,---t,. Using the identity Jee ], = E,e Hi®)E, for s € R, where
Hi(s) = [or ¥ (é5(jse(- — 2))) dz and E, = J,J% is a projection, we can sce that

n—1
(F e tH°G) = h_)m (JOF <H ELe %Hi(%)e_%he_%vEﬁ) JtG) .

7=0

By the Markov property [26] of E,’s we can neglect E’s on the right-hand side above.
Then

n—1
(F.e™G) = lim (JoF (H i >) m) .
7=0

The right-hand side above can be represented in terms of the Wiener measure by

nl n—
(F,e™™°G) = lim d:v]E“”[ "X V(B (JOF(BO) 720 #H(E) ] G(Bt))].

n—oo R3

Note that s — jso(- — Bs) is strongly continuous as a map R — &, almost surely.
Hence s — ¢g(js¢(- — Bs)) is also strongly continuous as a map R — L*(2g). Then
we can compute the limit as

(F,e~tH Q) = / dzE® [e- Jg V(Bayds (JOF(BO),e-eQ-MfJ jS“’("Bs)ds)JtG(Bt))] .

Here Q; = fo #E(jsp(- — Bs))?ds. Take € | 0 on both sides above we have (1.2). Then
the theorem follows for V € C$°(R3). By a simple limiting argument we can prove
(1.2) for V € Rxkato- O

2 Ultraviolet-renormalization

2.1 Pair interactions
We introduce a cutoff function by
(k) = e P20y
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and the Nelson Hamiltonian H with cutoff function above is denoted by H.. Here
% > 0 is the sharp infrared cutoff parameter which is fixed throughout this paper, and
¢ ultraviolet cutoff parameter.We note that it is not necessarily fix the cutoff function
as above, and the discussion below can be verified for more general cutoff functions.
We also suppose that
V e L™(R?).

In this section we consider the limit of € | 0. Neclson shows in [22] that there cxists a
self-adjoint operator Hi, such that H, — g?E, — H,., as € | 0 in the strong resolvent
sense by the operator theory. Here

e—rsllcl2
Ee = —43 mﬂ(k)]h“zndk, e>0

is a renormalization term which goes to —oo as € | 0, where 8(k) is given by

1
AR = Cm TR

By Theorem 1.2, for FF= f® 1 and G = h ® 1 we have
—_— 2
(fele ™ hel) = / dzE° [ F(B_p)h(Br)e 2 V(Ba)dsg ST |
R3

where (Bj)ier is two-sided 3-dimensional Brownian motion,

T T
SZ:/ ds/ dt W.(B, — By, s — t)
-T -T

is called the pair interaction, and

e—slklze—ikze—ltlw(k,)
Ws(x,t) = Aa 2w(k) ]l|k|2,§dk'.

2.2 Functional integral representations

Consider the function on R® x R:

e—elklze—ikx—ltlw(k) o1 i
= > 0.
¢5(x7 t) 43 2(4)(]{/') 5( ) |’C|2K y 3 iy O

Note that E, = —p.(0,0). Next proposition is a key ingredient.
Proposition 2.1 ([7] and [12, Chapter 8]) It follows that

lim E® [ o {7 V(B.)ds 6923(53-4T¢E(o,o))] _ e [e- 1% V(Bs)dseﬁ’;saen] .
el0
where SI™ is the random process defined by

T T /ot
Sren — —2/ ¢o(Bs — Br,s —T)ds + 2/ (/ Vio(Bs — By, s — t)ds) dB;.
-t \J-r

-T
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We recall that (¢(f), f € #) and (¢pr(F), F € &) arc familics of Gaussian random
variables indexed by .# and &, respectively. Then it follows that

%(F)g%(az(mw(ﬁ)), Fe g, (2.2)
¢<f>%%<a;,<f)+aM<i», f € o, (2.3)

where a%(F) and ag,(f) (resp. ag(F) and ap(f)) are creation operators (resp. anni-
hilation operators) on boson Fock space F(Hg) and & (Hyy), respectively, i.e.,

(a3 () am (@) = (f,9) g, = (f/ V@, 9/ V),
[a*E(F)vaE(G)] = (Fv G)HE = (F/waé/wE)’
where wp = /w(k)? + |ko|2. Note that af;(f), am(f), ax(f) and ag(f) are linear in

f. We given a functional integral representation of (F,e THe@3) in [7] but only for
F,G € D, where D is some dense subset. Let F,G € Hy and we define

T

Us(k) = _%/ 6—|s+T|w(k)e—ikBse—e|k|2/2]llkIZKdS’
-T

~ q T . 2

U»fw(k) = _\/_§ /Te_ls_le(k)elkBse_Elkl /2]1|k|2,¢d5.

Set U = Ur and U’% = Ur. Exponential of annihilation operators and creation op-
erators e2() and e (f) are discussed in Appendix. Thesc arc closed operators and
e et and e~tHiem(f) are bounded operators for t > 0 if f/\/w € Hy, ie.,

flw, f/Vw € L2(R®). Set
Se = ST — 4T'.(0,0).

Theorem 2.2 ([21]) It follows that Uy, Ur € Hyy a.s. i.e., Ur/v/w, Ur/v/@ € L2(R?),
and

(F,eTHen ) = [ doEe [e‘ S5 V(Bods 5 S5 (F(B_), eafw<Ur>e-2TeraM<0T>G<BT))] .
R3
(2.4)

PROOF. We show only outline of the proof. Refer to see [12, Section 8.10] and [21].
Let 0. = (6‘6|k|2/2]l|k|2n)i Let € > 0. We then have

( F, e_ZT(He—EE)G)

_ (szz[e_ ffT V(Bs)dse%—s;en (F(B—T), J*_Te_!]QSE(ffTsta(’_Bs)ds)JTG(BT))] .
R
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By the identification

T T
PE (/jsgs(. - Bs)ds) ~ 1 {a*E (/jsgee—ikBsds> +ag (/ o zk33d3>}
-T \/§ s g

— . 2
and 3 ” f_TT jsgee‘lkBSdst{ = ST, the Baker-Campbell-Hausdorff formula yields that
E

=99 Ty Gs0c(—By)ds) _ % ST a3 (% [Tp dsee™*Pods) ~art(J [Tp jopee™Pods)

Then we can compute as
J* Te—y¢(f_TTjsoe(~—Bs)ds)JT — o557 a3 (US) ~2THr yans (U5)

Thus we have a functional integral representation of semigroup e=27(#e=E¢) in terms of

et (VD) e=2TH: ca(Uf) by (F, e~2THe=B) Q) = [, P.(x)dz, where
Pu(z) = E® |e /2 V(Bs)dseE;S;e"(F(B_T%eaj‘,;(U%)e—QTeraM(ﬁ%)G(BT))

We can check that E[[gs |[Ur/+/w|*dk] < co. Then we can conclude that Ur/\/w €
L*(R%) and Ur/v/w € L*(R%) a.s. By using the uniform continuity of the map f
e%(Ne~THr discussed in Proposition B.8 we can show that P. € L'(R®) and P. — P
in L' as € | 0. Then the proof is complete. g

One crucial corollary of Theorem 2.2 is the positivity improving property [5] of the
semigroup e~ tfren,

Corollary 2.3 ([21]) Lett > 0. Then e~tHren 4s positivity improving. In particular if
the ground state of Hyen exists, then it is unique.

PROOF. Let ® € L%(Q) be non-negative. Then & can be approximated by functions
{®,}52, such that @, = Fn(¢(f7), -+ ,o(fn ), where F,, € #(R™) is a non-negative
function, and f} € .#. Suppose that ¥ = F,(¢(f1), -+ ,¢(fm)). For g € .4 we have

eaM(g)\IJ = Fn(¢(f1) + (gv fl)HMy e a¢(fM) + (g? fm)HM) 2 0.

The linear hull of functions like ¥ is dense, and e ' is positivity improving [24,
XII1.12]. Then e~tHiem(9) is positivity improving for any ¢ > 0. In particular the
bounded operator e%s(Ur)e=2THs gam (Ur) s also positivity improving for any T > 0. Let
F,G € L?(R?® x Q) bc non-ncgative functions. By formula (2.4) we have

(F e 2THen @) = d:v]E’”[e“ JZp v (Bo)ds &S (F( B_r), e%(Ur) g=2THs gat (Ur) i BT))] >0

R3

Then the corollary follows. O
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2.3 Kato-class potentials

A potential V : R? — R is said to belong to Kato-class relative to the Laplacian [16, 4]
whenever

t
ltIf(I)l sup E3, [/0 |V(Bs)|ds] =0

z€Rd

We denote by J#; the set of all such potentials. Let 0 < V € J#;. Then there exist
B,~v > 0 such that

sup E[efo V(W) < yeth.

zER4

See [27] and [20, Lemma 3.38] for this.
Theorem 2.4 Let V € 3. Let us define the quadratic form on Hy X Hy by
Q(F,G) =[ dzE” [e‘f—TTV(E"‘)dse%zs‘r)en (F(B_T),6054(UT)e'zTer“M(UT)G(BT))] .
R3
Then there exists a self-adjoint operator K such that Q(F,G) = (F,e X Q).

PROOF. Let
P.(z) = E* [e—f}‘T V(Bs)dses;_gaen Q’(B—T), ea]f,I(U%)e—QTeraM(ff%)G(BT))] )

We then see that |P.(z)| < C||F(z)||||G(Bzr)| with some constant C' independent of
z € R?, furthermore it can be seen that |P.(z) — P(x)| < C.||F(z)||||G(Bar)| with Ce
such that lim. o C; = 0. Thus Q(F, G) = (F, SrG) with a bounded operator St by the
Ricsz representation theorem [15, p.322). We can sec that

So=1

Let

Qe(F,G) = dzE” [e_ JIp V(Bds g sE (F(B_T),ea’T’I(U’?)e_QTHfeaM(ﬁ%)G(BT)>] .

R3
Then for cach € > 0, we sce that Q.(F,G) = (F,e*TH:=E)q) and (F,e?THE)G) —
(F,S7@G) as € | 0. In particular

(F, SsSTG) = 1;{](31(197 e2S(H5—Ee)€2T(He—Es)G) — leiﬁ)l(F’ 62(S+T)(H5—E5)G) = (F, Ss.7G).

Hence
SsSt = Ss4r

for any S,T > 0. Then Sr satisfies the semi-group property. It is also easily seen that
T — (F, SrG) is continuous. This implies that T+ St is strongly continuous. Thus
by the Stone theorem for semigroup [20], the theorem follows. O
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3 Gibbs measures

3.1 Local convergence

Under some assumptions in e.g., [1, 2, 28, 6] it is shown that H has the unique ground
state. In [10, 13] the existence of the ground state is shown for Hye,. In this scction we
assume the existence of ground state of Hye,. On the other hand properties of ground
state of H is shown in [3] by using a path measure. In this paper we can see the
properties of ground state of H, by using the so-called Gibbs measure.

The ground state of H,e, is denoted by ¥, and Hen U, = E¥,. Then ¥, > 0 is
proven. In particular

1 —tHe
Vo= emreme o0

and it follows that

(¥g,0¥,) = limlim !

—tHE —tH,
il e /@ Lo el

For some operator O we can construct a functional integral representation of the right-
hand side above, and which has the form of E,sn[fr,0] with some probability measure
W™ and some integrand fro. Formally we have

(Vg, OFg) = Epen [ foo,0]- (3.1)

ren ren

The purposc of this scction is to construct 7" and to show the convergence pgf®™ — prd
as t — oo in the local sense. Using the formula (3.1) we can study the properties of
ground state W,. This type of formulas are actually established for the Nelson model
in [3] and [12, Section 8.8.], the so-called spin-boson model in [9] and semi-relativistic
Pauli-Ficrz model in [11]. We summarize them in [12]. The procedure is similar to
those in [9, 11]. We shall show only the result concerning the existence of limit measure

ren

Hoo -
Let .2 be the set of R3-valued continuous paths on R:

Z =C(R;R?).

Let #r = o(B,,—t < r < t) be the natural filtration of Brownian motion (Bj)icg.
Then we set ¥y = U F,and ¥ = U Z, are finitely additive families of sets. We

0<s<T 0<s
define T
gren — f( )f(BT>€Sacn6_ [27V(Bs)ds

and define the family of path measures 5", T > 0, on (2", B(Z")) by
pr(A) =

where Zr is the normalizing constant. We can show that pF" converges to a probability
measure po" in the local sense.

dzE (1, 25"
Zr [ S 4277,
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Theorem 3.1 ([13]) The family of probability measures {pF"}r>0 on (Z,B(Z))

converges to a probability measure P in the local sense, i.e., wg"(A) — pt(A)
as T — oo for each A € 9, and u=* is independent of f.

o0

In Theorem 3.1 we do not know the explicit form of " but we see that

pe(A) = €2 o dzE” (4 (Vg(B-s), 5" Vg (Bs))] = pg' (A)

s 2 ren * F7
for A € %;. Here J&" = e~ J2 V(Br)dr o 5 SE gy (Us) g=2T Hy gant (Us)

3.2 Applications

By using the measure p2" constructed in the previous section we can also express
(U, 00,). In order to factorize e*At we need an extra Hilbert space Hg in addi-
tion to Hy, and define j, : Hy — Hg such that j*j, = e™*7%% by which we can
construct J; = T'(j;) and it satisfies J%J; = e ls=tH: " In a similar way we can con-
struct a functional integral representation of (e"THF,e @ @e-THE) where p is a
non-negative measurable function. In order to have a functional integral represen-
tation of (e”THF,e P W THF) we prepare an extra Hilbert space H, to factor-
ize e PP We set H, = L?(R**?) and the Fourier transform of H, is denoted by
H, = FL*(R*"?), where F denotes the Fourier transform on H,. The scalar product
on H, (resp. H,) is denoted by (-,-), (resp. (:,-),). Define a family of Gaussian ran-
dom variables (¢,(f), f € L7, (R**?)) on a probability space (Qp, ¥, 1) indexed by

L2, (R**?). For f € H, the variables of f is denoted by (k, ko, k1) € R® x R x R.

real

Define a family of isometries & : Hg — H, by

x et 1 p(k)
Sk, ko, k1) =
éf( 0 1) w<k)2+|k0|2 p(k)2+|k1|2

It follows that £2¢; = e~1s~HP(=iV)®1 for 5 t € R. Here we used identification L?(R41) &
L*(R®) ® L?(R). We define a family of second quantizations Z, by Z, = T['(&) :
L2(Q) — L*(Q,). Let p = p(—iV). We can see that Z; is isometry for each s and
furthermore it factorize et #®D Tt follows that =X, = e 1*~H (@@ for 5 ¢ € R, and
the intertwining property J,e=s®T®) = ¢=sdl(#®N) ], follows. Using these facts we can
have the theorem below. Suppose Assumption 1.1. Let p be a positive function on R3.
Let F,G € L*(Q) and 8 > 0. Then it follows that

(e THF, e PdlP)e~TH )

f(k7 kO)

T
- /R doE” [e- FZxvB)ds(=01 1 F(B_p), e-¢ﬂ<K%>aﬂJTG(BT))Lz(Qp)] . (3.2)

where

0 T
Kt = KT §0jsg0(~ — Bs)ds +A gﬂjsﬂo(' - Bs)ds'
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Lemma 3.2 Suppose Assumption 1.1. Let p be a positive function on R3. Let fr =
e THf @ 1. Then it follows that

(fr, e Pr® fr) = E oo [e_ [ ds [T dth(Bs—Bt,s—t)]

Ifrll?

where Wp(z,t) = [pa ' "”(k)|2e Itho(k) g=tka (1 — g=Fr(k))d,

LU

PROOF. Wc have
(frs e—ﬁdF(ﬁ)fT) = /R3 dzE*® [e_ % V(Bs)dS(]l, e_‘b"(K;)ll)Lz(Qp)] ) (3.3)
We can compute as (1, e=%E)1) = ezl X7l and
0 2 T 2
iz = | [ usuote— Baas| + | [ essaot: - B
_T 0
0 T
+2R (/TfojsSO(' - Bs)ds,/ €pdsp(- — Bs)ds) :
- 0
Since &T’g’g\f(k, ko) = e~B7%) f(k, k), we have

T T 0 T
||K§i||f, = / ds/ diW(Bs — By, s —t) — 2/ ds/ dtWps(Bs — By, s — t).
-t J-r -t Jo

Then

(. €800 1) Jreo d2E2 [ o= ST V(Ba)ds o} [Trds [T atw o~ [0 ds [T dtwﬂ]
T, T)

Ifzl® I3 dez[ T V(Bads b [Ty ds [y dtW]

= E,pen [e- IO ds [T dtwﬁ(Bs-Bt,s-t)]
T

and the lemma follows. O
Let f € L*(R%*) and T > 0. We define fr = e THeaf®@ L and fo =e TH: f 1. We
define A-truncated number operator Ny by dI'(1jxj<a) which is formally written as

Ny = / ot (k) ane () dk
|k|<A
and N, counts the number of bosons with momentum smaller than A. We have

(fr, e~V fr) = / dx]E"[ F(B_g)f(Bp)e™ 2rV(Bodsg=(1=e™") [2r ds [ dtWA(Bs—Bz,s—t)eSS”] .
R3
(3.4)

Here W (X, t) = fk|<A 'Z)(;';”“‘) —ik(Bs—Bt) jJ..
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Corollary 3.3 (Super-exponential decay [13]) Let f € C and suppose Assump-
tion 1.1. Then ¥, € D(e™PN) and it follows that

(T, e PN0T,) = Eper [e_u-e—ﬁ)ff’T ds [T dtWA(Bs—Bt,s—t)] ‘ (3.5)

In a similar manner to the proof of the super-exponential decay of ¥, we can also
show a Gaussian domination of the ground state ¥, by the path measure p3". We
only mention the statement.

Corollary 3.4 (Gaussian dominations [13]) Let §/\/w € L3(R?), g/w? € L}(R?)
and B < 1/)|g//w@||?. Suppose Assumption 1.1. Then ¥, € D(e#/?#9°) and

{ 2
Ile(ﬁ/2)¢(g)2\1/g||2 — = ﬂﬁA/\/_IIQE#&n [61 Zﬁ?/\)/_" :I (36)
—Plg

where K(g) denotes the random variable defined by

—|rlw(k) —ikBr
/ dr / 1€ g(k)e™™
K>|k| k)

In particular limg_, 5/ -2 [|e?/2#@* T, || = oo

A Boson Fock space

In this appendix we quickly review boson Fock space for reader’s convenient. Let #
be a separable Hilbert space over C. Consider the operation ®7 of n-fold symmetric
tensor product defined through the symmetrization operator

1
Sn(f1®®fn)=EZf1r(l)®®fw(n)a n2>1,

TEPn

where fi,...,fn € # and g, denotes the permutation group of order n. Define
FM = G, (@"¥#), where ®2#% = C. The space F = &2, F ™, where &2, is
understood to be completed direct sum, is called boson Fock space over #. Z is
a Hilbert space endowed with the scalar product (¥,®)s = > oo (¥™,dM) 5.
The vector = (1,0,0,...) is called Fock vacuum. There are two fundamental boson
particle operators, the creation operator denoted by a*(f) and the annihilation operator

by a(f) defined by
@(HYVO =0, ((NHY™ = VnS(feT™ V) n>1
with domain D(a*(f)) = {(‘I’(n))nzo € F| T nlSa(f @ D)2, ) < oo} and
a(f) = (a*(f))*. It is known that
Fon = {(T™) 150 € F| U™ =0 for all m > M with some M}
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is dense. The field operators a, a* leave %y, invariant and satisfy the canonical com-
mutation rclations

[a(f)va*(g)] = (f7 9)17 [a(f)7a(g)] =0, [a*(f)ra*(g)] =0

on Zgn. Given a bounded operator T on #, the second quantization of T is the
operator I'(T') on # defined by I'(T') = @%° ,(®"T). Here it is understood that ®°T =
1. For a contraction operator T, the second quantization I'(T) is also a contraction
on Z. For a self-adjoint operator h on ¥, {T'(e*") : t € R} is a strongly continuous
one-parameter unitary group on %. Then by the Stone theorem there exists a unique
self-adjoint operator dI'(h) on .# such that T'(e*h) = ¢#T(®) The operator dI'(h) is
called the second quantization of h. Thus the action of dI'(k) is given by dI'(h)Q = 0
and

dU'(h)a*(f1) -+ a" ()R =Y a*(f1) -+ a*(hfy) - 0" (f2).

Jj=1

We use the following facts below. The superscript in af indicates that either of the
creation or annihilation operators is meant.

Proposition A.1 (Relative bounds) Let h be a positive self-adjoint operator, and
f € D(h"Y2), ¥ € D(dT'(h)/?). Then ¥ € D(a*(f)) and

la(f) ¥l < [[R72f][|dT(R) 2], (A1)
la* ()l < B2 f([[| T (R) 2] + | £ 1112 (A.2)
In particular, D(dT'(h)Y?) C D(a*(f)), whenever f € D(h™Y/?).

To obtain thc commutation rclations between af(f) and dI'(h), suppose that f €
D(h~Y2)N D(h). Then

[dT(R), a* ()] = a*(hf)¥, [dT(h),a(/)]¥ = —a(hf)¥, (A.3)

for U € D(dT'(h)*?) N Fgy.
The Segal field ®(f) on the boson Fock spacc % is defined by

]' *
®(f) = %(a (f)+alf), fe¥,
and its conjugate momentum by
(f) = S (F) - alf), fe¥.

Here f denotes the complex conjugate of f. It is straightforward to check that
[©(f),II(g)] = iRe(f,g), [2(f), ®(9)] = ilm(f,g) and [II(f),II(g)] = ilm(f,g). In

particular, for real-valued f and g the canonical commutation relationsbecome

[@(f), (g)] =i(f,9), [®(f), ®(9)] = [1I(f),TL(g)] = 0.
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B Exponential of annihilation operators and cre-
ation operators

In this appendix we discuss exponent of annihilation operators and creation operators.
We learned this in [8, 21]. Let f € # and we define the exponential of creation

opcrators Fy by
oo
1
= Z o ()"
=0

and D(Fy) = {<1> € N2, D(a*(f)™)| T, Llla* (£)m@]| < oo}. Let & € Z(™. Thus

we have
Z vm+n—1---y/m

IF@] < ||@f + IF1™][@]l < oo.

Then Fs, C D(FY) follows. We also define the exponential of annihilation operators
by

Gr=3" —alf)"
n—D
with the domain D(Gy) = {<I> € N>, D(a(f)) ‘Zn_ Llla(f)"®| < oo}. We simply
write Fy = e®' ) and G5 = e/ /) whenever confusion may arise. Then we can see that

(e D) > e“(f ) and this implics that e*") is closable. The closure of e*"/) is denoted
by the same symbol. Similarly the closure of e¥f) is denoted by the same symbol. The
vector defined by C(f) = e () is called the coherent vector.

Proposition B.1 (Algebraic properties) Let f,g € # and P be a polynomial.
Then

(1) e @ea" (N — ' (FHo)Q
(2) Pla(9)e” V2 = P((g, f))e” V0
(3) 29" Q) = @ ea*(NQ,
PROOF. It can be seen that C(g) € N°2,D(a* and that
=0
M

o~ %0@

n=0

as M — oo. Then C(f) € D(e*"9) and e ()C(g) = C(f + g) follow by the closedness
of e¥"f). We can also see that a(g)e? ) = 2" Na(g)+ (g, f)e* ) on Fg,. In particular
we have a(g9)C(f) = (g, f)C(f) and recursively we can get (2) for any polynomial P.
Then (1) and (2) are proven. Since

Z ' (0 — 2(9 (D)
n:

n=0
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and the right-hand side converges to e@)e®" () as M — oco. Then (3) follows from
the closedness of €9 O
Next we see the continuity of map # > f +— NP e 7.

Proposition B.2 (Continuity) Let ® € Fg,. Then the map # > f — e*Nd € &
18 continuous.

PROOF. Suppose that f,, — f strongly in # as m — oco. Let ® € W), Then
etfm)p = Ziv:o —“(’;’f;) -®. Since Zf:, 0 afm)"§ Z 2P as m — oo,

Tl n=0 n!

lim e = NP

m—>0o0

follows. Next we consider the continuity of f +— e V®. Let ¢ > 0 and || fn — f|| <€
for sufficiently large m. We fix ¢ > 0 such that ||f|| < ¢ for all m. Then we can see
that

||ea*(fm)q> — ea*(f)(p”

<Z V(N” *FZufmn 1 fm = FINLAI™ 112
<e3 VA N*” “_ncbn

1)!

Then ||e“*(f")<1> — e’ )<I>|| — 0 as n — oo follows, and the proof is complete. O

Proposition B.3 (Differentiability) Let h be a self-adjoint operator in W, f €
D(h) and ® € Fgn. Then the map R 3 t — e N® € F is strongly differentiable
with

d

—e

dt

PROOF. Let ¢ € R. Suppose that & € F®™). We show only the case of a*(f). The
proof for a(f) is similar. We set a*(e!®*+9)h f) = a*(¢) for notational simplicity. We
have

E*"NG = aﬂ(iheithf)ea”(e“”f)g

(ea*(e) _ ea*(O)) d— a*(iheithf)ea‘(o)q)

= (- mens) 35 Za(e" (040

™M [ =

[e%s) n—1 [e’s)
*(+71 1 1 * —k—1 % 1 *
4 a(iheh (Z;Z a0 -3 Lo m)n) 5_A+B.
n= —0 n=|
We see that
ieh _ N+n-—

1Al < — N sl
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and

f”Z VN +n— \/—n(n

o Yisir-pa).

1Bl < RSl (e ~

Hence lim, o ||A|| = 0 and lim,_,o || B|| = 0 follow. Then the proposition follows. O
We discuss relationships between e*"f) and the second quantization I'(T). Let h be a
self-adjoint operator in # and we define

2 =LHAa"(f1) - a"(fn)0,Q fe#,j=1,...,n,n > 1},
Dy = L.H.{a*(fl) a"(fn)0, Q) f; € Dh),j=1,...,n,n>1}.

Proposition B.4 (Intertwining properties) (1) Let T be a contraction operator
on W . Then it follows that on Fgy

I‘(T)e"‘(f) = ea‘(Tf)p(T),
I(T)e*T D = oO1(T).
(2) Let h be self-adjoint in # and f € D(h). Then it follows that on D,
dT(h)e” ) = a*(hf)er D) 4+ e N dr(h),
dr(R)e®D = —a(hf)e®" ) + e*Ddr (k).

PROOF. Let @ =[], a*(¢;)Q € 2. Then & € D(e*!)) and T'(T)Z C 2. We have

T(T)e” NP = Za(Tf H *(Tg;) = e TNI(T) 3.

Then the first statement of (1) is proven on 2. Let ® € F®). Then there exists
®,, € 2 such that &, € F®™ and ||®, — ®|| — 0 as n — co. We can also see that
e N, — e NP as n — co. Then the limit of I'(T)e*" N, = e THT(T)®,, implies
that T(T)e* & = 2" (THT(T)®. Then the first statement of (1) is proven on Fgy.
The second statement of (1) can be show by taking the adjoint of both sides of the
first statement. Next let us prove (2). Let ® € 9, and T = €. Then

T(™)e® NP = 2" ("N (). (B.1)
In a similar way to Proposition B.3 it can be scen that the right-hand side above is
differentiable with respect to ¢ at t = 0, the result is

%ea*@“"ﬁr(eith)@ = ia*(hf)e” Dd + ie¥ D dr(h)d. (B.2)
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This implies that the left-hand side of (B.1) is also differentiable with respect to ¢,
and thus e*" D@ € D(dT'(h)) (sce [25, Theorem VIIL7 (d)]) and the derivative of the
left-hand side at t = 0 is

%r(e“h)eﬂf)cb = idT'(h)e® D@, (B.3)

Comparing (B.2) and (B.3), we can conclude the first statement of (2). The second
statement can be show by taking the adjoint of both sides of the first statement. [

Finally we discuss the representation of e2() in terms of both ') and e*f). Let
%, =LHA{C(g),®|9,® € Fpin}-

Proposition B.5 (Baker-Campbell-Hausdorff formula) Let f € #. Then it fol-
lows that on on %

e (D4a(l) — ga (1) galN g3 IFIP. (B.4)
PRrROOF. We shall show (B.4) on C(g). The proof of (B.4) on Fg, is similar. We have

NN (g) = eHIC(f + g). (B.5)

Let ¥(f) = a*(f) + a(f). Then 9(f) is self-adjoint and it holds that

) Z ¢(f )" (B.6)

on the finite particle subspace. Let Cp,(g9) = > pe 2 g)"Q By using the expansion
(B.6) we can compute as

G, (g) = ) i (@) _ i (a*(9) + (1,9)" wing,

! n!
n=0 n n=0

Together with e = e3lfI7ea"(NQ) we see that

Cn(g) =3 W:g_))ieéllﬂlzea*(f)g.
n=0 :
Then we have

YNC(g) = eF9eslfIPC(f + g). (B.7)

By (B.5) and (B.7) the proposition follows. O
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Now we shall show that e?"@e~#r for ¢ > 0 is bounded for g € L?(R®). In order
to see this we evaluate || [T}~ a*(f;)®||. We have a general formula. Let & € Fg, and
fisgi €W fori,j=1,..,m. Then

n n

I1eG) [[o (52

i= '

- gl > X (H(gz,fm(z)))) 11 o fp)> (H a(gq)) s,

m=0Cm3A Crn_mn>B g:B—B,bijection \l€Ac € B¢ geA
(B.8)

Here Cr = {A C {1,...,n}|#A = k} and Cy = 0, 7 is an identification map between
A and B, finally 37, 5 . p piiccrion 1S understood to take all bijections from B to itsclf.
From now on we consider the case where # = L?(R3). Then w is the multiplication
operator by w in L*(R3).

Proposition B.6 (Boundedness) Lett > 0 and f € D(1/\/w). Then e¥ (Ne tH
and e~tHeedlf) qre bounded.

PROOF. Let ¥ € N2, D(H). Suppose that ¢t < 1. Let f;,g; € D(1/4/w) for 4,5 =
1,..,n and ® € D(H?). Then by (B.8) we have

<H a*(gj)é,l_[a*(fj)<1>> < ni2° <H ||fl||w||gz||w> > —H

=1 m=0
where || fllo = | fll + || f/v@||. In particular we have the bound

n

n 1/2
n, 1 m,
< v ([T (3 Zuaeane)
=1 ’

n

[[a"(£)@

j=1 m=0

Then for any s < 1 we have

n n 1/2
< Vilan/2s (H Ilfz||w> (Z %li(sﬂomﬂ'wz) .

=1 m=0

n

[Ie)e

j=1

Hence we observe that for ® € &,

ok n ,—tH, n/2 ,—n/2 n - k/2 —tH, 2

> Lat(fre e < 3 Loy (Z L (sHo et ) .
n=0 n=0 k=0

We can see that {d . Za*(f)"e "H1®}%_, is a Cauchy sequence. Hence e Hid ¢

D(e* ") and as m — oo on both sides above we have

e De~tHep|| < A(f,s)||e" 25|,
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where A(f,s) =3 ", ﬁ?”/zs‘”/znfﬂz. Choosing s such that s < ¢, we can see that

e=2@=H:@|| < ||®|| and e2"PetHr for ¢ < 1 is bounded. Suppose 1 < t. Choosing
s = 1 in the above discussion, we have

le" e~ || < A(f, 1)[|le"2 ¢ DHE|| < A(f, 1)]|2].

Thus e e~ for t > 1 is bounded. Finally since (e~t#1e?)" 5 ea"(fetHr  the
second statement follows. Then the proposition follows. O

We can also cstimate the bound of || (De~t#t| and ||e*" (Ve V||, which can be
derived from the estimates in the proof of Proposition B.6.

Proposition B.7 (Bound) Let f € D(1//w). Then

e (Demth | < Bt/ e dC-9He)| 0 <5 <t <1,
e PetH | < \/2etIfI3||e~3t-DHr|| 1 < ¢.

In particular we have

e (Ne=2tHegalf)|| < 2e8/5IfIE 0 < s <t <1,
”ea*(f)e_Qtera(f)” S 268||f||3;, 1<t.

PROOF. We can estimate A(f,s) as A(f,s) < v2e5IfI&. Then the corollary follows

from Proposition B.6. O
We have already seen the strong continuity of map L3(R?) 5 f s ¥ )®. We can

furthermore prove the uniform continuity of map f +— e* He~tHs for t > 0.

Proposition B.8 (Uniform continuity) Let f,g € D(1/\/w). Then

e De=tHt _ ¢a*@e=tHe || < /2| f — glet/=Uflutlslt? 0 <5 <t<1,

[le® Ne=tHe — a*@e~tHe || < \/2||f — gl eIflutlolotD? 1 < ¢ (B.9)

In particular let f, f, € D(1/\/w) forn > 1 such that || f — fullw — 0 as n — oco. Then
e Un)e=tHe yniformly converges to e DetHt g n — co.

PROOF. We can straightforwardly see that
(a*(f)" = a*(g)")¥|l
"y 1/2
< Vnl22s™( fllo + llglle + 1) (Z mll(st)m/z\NP) If = gllo-

m=0

Hence (B.9) follows. a
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C Fock space and Gaussian random variables

In this appendix we state the equivalence between L?(Q) and a boson Fock spacc Z.

Let # be the boson Fock space over Hy. Let (¢(f), f € .#) be the Gaussian random
variable on a probability space (@, %, 1) indexed by f € .#. Note that Hy = ..
Then there exists a unitary operator U : L?(Q) — % such that

(1) Ul=Q,

(2) UTS(H)U = 6(), where &(f) = L(afs(f) + a()),
(3) U~dl (w)U = dT(&).

Using this equivalence we can define the Nelson Hamiltonian both on L?(R3%) ® # and
L*(R®*) ® L*(Q). In this paper for constructing a functional integral representation we
adopt the Nelson Hamiltonian defined on L?(R?) ® L?(Q).
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