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1. INTRODUCTION

1.1. Brief summary. The problem we addrees here is the spectral theory and
inverse scattering associated with Schrödinger operators on perturbed periodic lat‐
tices. Among many periodic structures appearing in material science, we are in‐
terested in the hexagonal lattice because of its generality in carbonic materials in

physical side and also in the geometry of lattice problem in mathematical side. \mathrm{A}

well‐known example is the graphen, whose simplest model is the hexagonal lattice
with Hamiltonian defined by a difference operator between vertices of the nearest

neighbors. We call it a vertex model. As perturbations, one can consider poten‐
tials or defects, which means to deform the lattice structure by removing or adding
edges. The scattering theory developed for the continuous model for Schrödinger
operators is also extended to this discrete model. Our main concern is the inverse

problem. Our results are:

\bullet A compactly supported scalar potential is uniquely reconstructed from the
 S‐matrix of one fixed energy.

\bullet The  S‐matrix determines the structure of the planar graph in a finite part.
\bullet The convex hull of the defects of the form of convex polygon is determined

by the  S‐matrix of one fixed energy.

There is another model for graphen, in which we take into account of effects of

edges. We consider -(d/dz)^{2}+q_{\mathrm{e}}(z) on each edge \mathrm{e} with Kirchhoff conditions on

vertices. We call it an edge model, although it is usually called a metric graph.

The study of spectral properties for the edge model is reduced to that of the vertex
model. We can then obtain the following result.

\bullet Assume that  q_{\mathrm{e}}(z) \in  L^{2}(0,1) and real‐valued, symmetric, i.e. q_{\mathrm{e}}(z) =

q_{\mathrm{e}}(1-z) , moreover q_{\mathrm{e}}(z)=0 except for a finite number of edges \mathrm{e} . Then,

the q_{\mathrm{e}}(z)s are determined by the S‐matrix for all energies.

Our theory, in particular the forward problem of scattering, can be extended
to more general lattices. However, for the simplicity of explanation, we restrict

ourselves here to the hexagonal lattice.
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This is a joint work with K. Ando, E. Korotyaev and H. Morioka.

2. HEXAGONAL LATTICE AND ITS HAMILTONIAN

Figure 1 represents a hexagonal lattice. We can find two lattices : the one

consisting of white dots, and the other black dots. Letting

\mathcal{L}_{0}=\{\mathrm{v}(n);n=(n_{1}, n_{2})\in \mathrm{Z}^{2}\},

\mathrm{v}(n)=n_{1}\mathrm{v}_{1}+n_{2}\mathrm{v}_{2},

\mathrm{v}_{1}=1+ $\omega$, \mathrm{v}_{2}= $\omega$(1+ $\omega$) ,  $\omega$=e^{ $\pi$ i/3},
we define the vertex set \mathcal{L}_{0} by

\mathcal{V}_{0}= (p_{1}+\mathcal{L}_{0})\cup(p_{2}+\mathcal{L}_{0}) .

Consequently, the wave function has two components in \ell^{2}(\mathrm{Z}) . Denoting it by
û(n) = (ûl (n) , û2 (n) ), we define the vertex Laplacian by

(  $\Delta$\hat {}\mathcal{V} û)(n) =\displaystyle \frac{1}{3} \left(\begin{array}{l}
\sum_{|\mathrm{v}(n')-\mathrm{v}(n)|=1}\hat{u}_{2}(n')\\
\sum_{|\mathrm{v}(n)-\mathrm{v}(n)|=\mathrm{l}}\hat{u}_{1}(n,)
\end{array}\right)

FIGURE 1. Hexagonal lattice

To study the wave propagation on the lattice, let us first recall the case of

continuous model, in which the free Schrödinger equation is

(-\triangle- $\lambda$)u=0.
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Passing to the Fourier transform, it becomes (| $\xi$|^{2}- $\lambda$)\overline{u}( $\xi$) = 0 1
. The physical

solution is the L^{2} ‐density on the sphere, hence has the asymptotic expansion

 u(x)=C( $\lambda$)\displaystyle \int_{S^{n-1}}e^{i\sqrt{ $\lambda$} $\omega$\cdot x}\overline{u}(\sqrt{ $\lambda$} $\omega$)d $\omega$
\displaystyle \simeq C_{+}\frac{e^{i\sqrt{ $\lambda$}r}}{r^{(n-1)/2}} û (\sqrt{} $\lambda \theta$) +C‐ \displaystyle \frac{e^{-i\sqrt{ $\lambda$}r}}{r^{(n-1)/2}} û (‐ \sqrt{} $\lambda \theta$)

with  $\theta$=x/r, r= |x| . This also holds for the perturbed equation (-\triangle+V(x)-
 $\lambda$)u=0 , where V(x) is compactly supported, i.e.

(2.1) u(x)\displaystyle \simeq C_{+}\frac{e^{i\sqrt{ $\lambda$}r}}{r^{(n-1)/2}}$\varphi$_{out}( $\theta$)+C_{-}\frac{e^{-i\sqrt{ $\lambda$}r}}{r^{(n-1)/2}}$\varphi$_{in}( $\theta$) .

The operator

S( $\lambda$):L^{2}(S^{n-1})\ni$\varphi$_{in}\rightarrow$\varphi$_{out}\in L^{2}(S^{n-1})
is the \mathrm{S}‐matrix. Note that the sphere \sqrt{ $\lambda$}S^{n-1} is the characteristic surface of the

operator -\triangle- $\lambda$.

The free Schrödinger equation on the hexagonal lattice is

(-\triangle_{\mathcal{V}}- $\lambda$)\hat{u}=0\wedge.
Passing to the Fourier series, we have

(H_{0}(x)- $\lambda$)u(x)=0 , on \mathrm{T}^{2}=(\mathrm{R}/2 $\pi$ \mathrm{Z})^{2},

H_{0}(x)=-\displaystyle \frac{1}{3}\left(\begin{array}{lllll}
 & 0 &  & 1+ & e^{-ix_{1}}+e^{-ix_{2}}\\
1+ & e^{ix_{1}} & +e^{ix_{2}} &  & 0
\end{array}\right).
The physical solution is an L^{2} ‐density supported in a submanifold on the torus:

M_{ $\lambda$}=\{x\in \mathrm{T}^{2};\det(H_{0}(x)- $\lambda$)=0\},

\displaystyle \det(H_{0}(x)- $\lambda$)=$\lambda$^{2}-\frac{1}{9}\{3+2(\cos x_{1}+\cos x_{2}+\cos(x_{1}-x_{2})\}.
This is the characteristic surface of the difference operator -\triangle_{\mathcal{V}}\wedge- $\lambda$ , and is called
the Fermi surface. The solution  u(x) is then written as

u(x)=\displaystyle \frac{ $\varphi$(x)}{p(x, $\lambda$)-i0}-\frac{ $\varphi$(x)}{p(x, $\lambda$)+i0},
 $\varphi$(x)\in L^{2}(M_{ $\lambda$}) , p(x,  $\lambda$)=\det(H_{0}(x)- $\lambda$) .

This also holds asymptotically (in the sense of singularity) for the perturbed lattice:

(2.2) u(x)\displaystyle \simeq\frac{$\varphi$_{out}(x)}{p(x, $\lambda$)-i0}-\frac{$\varphi$_{in}(x)}{p(x, $\lambda$)+i0},
and the operator

S( $\lambda$):L^{2}(M_{ $\lambda$})\ni$\varphi$_{in}\rightarrow$\varphi$_{out}\in L^{2}(M_{ $\lambda$})
is the \mathrm{S}‐matrix.

The two terms appearing in the right‐hand side of (2.1) are called outgoing and
incoming waves. As is seen here, they are distinguished by their spatial behaviors at

1_{\mathrm{I}\mathrm{n}} this note, the Fourier trasnsform of a distribution u(x) on \mathrm{R}^{d} is denoted by \overline{u}( $\xi$) , while
the Fourier coefficient of a distribution u(x) on the torus \mathrm{T}^{d} is denoted by û(n)
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infimity. For the lattice, it does not work well, since the Fermi surface is in general
not strictly convex and we encounter difficulties in applying the stationary phase
method to the integral on it. Therefore, we pass to the Fourier series and observe

the singularities of wave functions on the torus. This leads us to the formulation

(2.2).
As a perturbation of the vertex model, we add a scalar potential, or (and) replace

its finite part by a general graph. The associated Hamiltonian is denoted by \hat{H}_{\mathcal{V}}.
If these perturbations are assumed to be bounded self‐adjoint and confined in a
compact part, the spectral theory can be developped easily.

We turn to the edge model, which is usually called the metric graph. We consider
a hexagonal lattice with vertex set \mathcal{V} and edge set \mathcal{E} . Each edge \mathrm{e}\in \mathcal{E} is identified
with the interval [0 , 1 ] . Functios on the edge set \mathcal{E} are denoted by \^{u}=\^{u} \mathcal{E} =

\{\hat{u}_{\mathrm{e}}(z);\mathrm{e}\in \mathcal{E}\} . The Hamitonian \hat{H}_{\mathcal{E}} is defined by

(\displaystyle \hat{H}_{\mathcal{E}}\hat{u}_{\mathcal{E}})_{\mathrm{e}}(z)= (-\frac{d^{2}}{dz^{2}}+q_{\mathrm{e}}(z))\hat{u}_{\mathrm{e}}(z) , \mathrm{e}\in \mathcal{E},
assuming the Kirchhoff condition on û \mathcal{E} . For \mathrm{e} \in \mathcal{E} , denote its end points by
\mathrm{e}(0)=0, \mathrm{e}(1)=1 . Then, the Kirchhoff condition is

(K‐1) û \mathcal{E} (z) is continuous on \mathcal{E}.

(K‐2) For each \mathrm{e}\in \mathcal{E} , ûe \in C1 ([0,1 and

\displaystyle \sum_{\mathrm{e}(0)=v}\hat{u}_{\mathrm{e}}'(0)=\sum_{\mathrm{e}(1)=v}\hat{u}_{\mathrm{e}}'(1) , \forall v\in \mathcal{V}.
The assumption on the potentials are as follows:

(E‐1) q_{\mathrm{e}}(z) is real‐valued, and q_{\mathrm{e}}(z)\in L^{2}(0,1) .

(E‐2) q_{\mathrm{e}}(z)=0 except for a finite number of edges.

(E‐3) q_{\mathrm{e}}(z)=q_{\mathrm{e}}(1-z) .

This makes \hat{H}_{\mathcal{E}} self‐adjoint on L^{2}(\mathcal{E}) .

There is a simple relation between the vertex Laplacian and the edge Laplacian.
On each edge, the solution of the Schrödinger equation

(-(d/dz)^{2}+q_{\mathrm{e}}(z)- $\lambda$)\hat{u}_{\mathrm{e}}=\hat{f_{\mathrm{e}}} , on (0,1)

is written as

c_{\mathrm{e}}(1,  $\lambda$)\displaystyle \frac{$\phi$_{\mathrm{e}0}(z, $\lambda$)}{$\phi$_{\mathrm{e}0}(1, $\lambda$)}+c_{\mathrm{e}}(0,  $\lambda$)\frac{$\phi$_{\mathrm{e}1}(z, $\lambda$)}{$\phi$_{\mathrm{e}1}(0, $\lambda$)}+r_{\mathrm{e}}( $\lambda$)\hat{f_{\mathrm{e}}},
r_{\mathrm{e}}( $\lambda$)= (-(d/dz)_{D}^{2}+q_{\mathrm{e}}(z)- $\lambda$)^{-1}

where (d/dz)_{D}^{2} is the Dirichlet Laplacian on (0,1) , and $\phi$_{\mathrm{e}i}(z,  $\lambda$) is the solution to
the equation

(-(d/dz)^{2}+q_{\mathrm{e}}(z)- $\lambda$)$\phi$_{\mathrm{e}i}(z,  $\lambda$)=0 , on (0,1) ,

$\phi$_{\mathrm{e}0}(0,  $\lambda$)=0, $\phi$_{\mathrm{e}0}'(0,  $\lambda$)=1,
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$\phi$_{\mathrm{e}\mathrm{i}}(1,  $\lambda$)=0, $\phi$_{\mathrm{e}1}'(1,  $\lambda$)=-1.

The coefficients c_{\mathrm{e}}(1,  $\lambda$) , c_{\mathrm{e}}(0,  $\lambda$) are determined by the Kirchhoff condition. The
point is that

Kirchhoff condition = Vertex equation

Namely, the following equation holds:

\displaystyle \sum_{\mathrm{e}(0)=v}\frac{1}{$\phi$_{\mathrm{e}0}(1, $\lambda$)}c_{\mathrm{e}}(1,  $\lambda$)+\sum_{\mathrm{e}(1)=v}\frac{1}{$\phi$_{\mathrm{e}1}(0, $\lambda$)}c_{\mathrm{e}}(0,  $\lambda$)
+\displaystyle \sum_{\mathrm{e}(0)=v}\frac{$\phi$_{\mathrm{e}1}'(0, $\lambda$)}{$\phi$_{\mathrm{e}1}(0, $\lambda$)}c_{\mathrm{e}}(0,  $\lambda$)-\sum_{\mathrm{e}(1)=v}\frac{$\phi$_{\mathrm{e}0}'(1, $\lambda$)}{$\phi$_{\mathrm{e}0}(1, $\lambda$)}c_{\mathrm{e}}(1,  $\lambda$)

=\displaystyle \sum_{\mathrm{e}(1)=v}\frac{d}{dz}r_{\mathrm{e}}( $\lambda$)\hat{f_{\mathrm{e}}}|_{z=1}-\sum_{\mathrm{e}(0)=v}\frac{d}{dz}r_{\mathrm{e}}( $\lambda$)\hat{f_{\mathrm{e}}}|_{z=0}.
Therefore, when q_{\mathrm{e}}(z)=0 , we have the following representation:

((\displaystyle \hat{H}_{\mathcal{E}}^{(0)}- $\lambda$)^{-1}\hat{f}) |_{\mathrm{e}}=c_{\mathrm{e}}(1,  $\lambda$)\frac{\sin\sqrt{ $\lambda$}z}{\sqrt{ $\lambda$}}+c_{\mathrm{e}}(0,  $\lambda$)\frac{\sin\sqrt{ $\lambda$}(1-z)}{\sqrt{ $\lambda$}}+r_{\mathrm{e}}^{(0)}( $\lambda$)\hat{f_{\mathrm{e}}},
on each edge \mathrm{e} , and

c_{\mathrm{e}}(1,  $\lambda$)=c_{\mathrm{e}'}(0,  $\lambda$)= (\hat{R}_{\mathcal{V}}^{(0)}( $\lambda$)\hat{F}_{\mathcal{E}}^{(0)}( $\lambda$)\hat{f})(v) ,

for \mathrm{e}(1)=\mathrm{e}'(0)=v , where

\displaystyle \hat{R}_{\mathcal{V}}^{(0)}( $\lambda$)=\frac{\sin\sqrt{ $\lambda$}}{\sqrt{ $\lambda$}}(-\triangle v\wedge+\cos\sqrt{ $\lambda$})^{-1}
(\hat{F}_{\mathcal{E}}^{(0)}( $\lambda$)\hat{f}) (v)=-\displaystyle \frac{1}{3}(\sum_{\mathrm{e}(1)=v}\frac{d}{dz}r_{\mathrm{e}}^{(0)}( $\lambda$)\hat{f_{\mathrm{e}}}|_{z=1}-\sum_{\mathrm{e}(0)=v}\frac{d}{dz}r_{\mathrm{e}}^{(0)}( $\lambda$)\hat{f_{\mathrm{e}}}|_{z=0}) .

This formula suggests that the properties of the continuous spectrum of the edge
Schrödinger operator are inherited from those of the vertex Schrödinger operator.

The spectra of the vertex and edge Schrödinger operators are as follows.

Lemma 2.1. (1) $\sigma$_{e}(\hat{H}_{\mathcal{V}})=[-1, 1].
(2)  $\sigma$(\hat{H}_{\mathcal{E}})=[0, \infty)\cup$\sigma$_{D} , where $\sigma$_{D}=\displaystyle \bigcup_{\mathrm{e}\in \mathcal{E}}$\sigma$_{p}(-(d/dz)_{D}^{2}+q_{\mathrm{e}}(z)) .

3. RELLICH TYPE THEOREM

To study the continuous model for the Schrödinger operator on \mathrm{R}^{n} , appropriate

function spaces are the Besov type spaces B^{*}(\mathrm{R}^{n}) and B_{0}^{*}(\mathrm{R}^{n}) defined by

B^{*}(\displaystyle \mathrm{R}^{n})\ni f\Leftrightarrow\sup_{R>1}\frac{1}{R}\int_{|x|<R}|f(x)|^{2}dx<\infty,
B_{0}^{*}(\displaystyle \mathrm{R}^{n})\ni f\Leftrightarrow\lim_{R\rightarrow\infty}\frac{1}{R}\int_{|x|<R}|f(x)|^{2}dx=0.

The following theorem, proven by Rellich and Bekua, is fundamental in studying
the continuous spectrum.
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Theorem 3.1. Let  $\lambda$ > 0 . If u(x) \in  B_{0}^{*}(\mathrm{R}^{n}) satisfies the Helmholtz equation
(-\triangle- $\lambda$)u=0 on \{|x| >R\} for a constant R>0 , then u(x)=0 on \{|x| >R\}.

This theorem implies the non‐existence of eigenvalues embedded in the continu‐

ous spectrum. It also palys an important role in the inverse scattering theory.

We consider the counter part of this theorem on the lattice. For the periodic
lattice \mathcal{V} , we define the Besov type speces by

B^{*}(\displaystyle \mathcal{V})\ni\hat{v}\Leftrightarrow\sup_{R>1}\frac{1}{R}\sum_{|n|<R}|\hat{v}(n)|^{2}<\infty,
B_{0}^{*}(\displaystyle \mathcal{V})\ni\hat{v}\Leftrightarrow\lim_{R\rightarrow\infty}\frac{1}{R}\sum_{|n|<R}|\hat{v}(n)|^{2}=0.

Passing to the Fourier series, we define

B^{*}(\mathrm{T}^{d})\ni v\Leftrightarrow\hat{v}\in B^{*}(\mathcal{V}) ,

B_{0}^{*}(\mathrm{T}^{d})\ni v\Leftrightarrow\hat{v}\in B_{0}^{*}(\mathcal{V}) .

Sometimes, it is more convenient to use the Fourier transform. Multiplying a cut‐
off function (a partition of unity) and passing to the Fourier transform \overline{v}( $\xi$) , we can
also define

B^{*}(\displaystyle \mathrm{T}^{d})\ni v\Leftrightarrow\sup_{R>1}\frac{1}{R}\int_{|x|<R}|\overline{v}( $\xi$)|^{2}d $\xi$<\infty,
B_{0}^{*}(\displaystyle \mathrm{T}^{d})\ni v\Leftrightarrow\lim_{R\rightarrow\infty}\frac{1}{R}\int_{|x|<R}|\overline{v}( $\xi$)|^{2}d $\xi$=0.

For the lattice space, the Rellich type theorem should be rephrased as follows.

Theorem 3.2. Suppose \^{u}\in  B_{0}^{*}(\mathcal{V}) satisfies (-\hat{ $\Delta$}_{\mathcal{V}}- $\lambda$)\hat{v}=0 near infinity of the
lattice space. Then, \hat{v}=0 near infinity.

Extending û to be 0 in the finite part and passing to the Fourier series, we obtain
the equation

(H_{0}(x)- $\lambda$)u(x)=f(x) ,

where f(x) is a trigonometric polynomial, since its Fourier coefficients are compactly
supported. Then, the Rellich type theorem on the lattice is formulated and proved
in the following form.

Theorem 3.3. Let  $\lambda$\in(-1,1)\backslash \{0, \pm 1/3, \pm 1\} . Let u(x) \in B_{0}^{*}(\mathrm{T}^{2}) satisfy (H_{0}(x)-
 $\lambda$)u(x) = f(x) , where f(x) is a trigonometric polynomial. Then, u(x) is also a

trigonometric polynomial.

The proof relies on the HilbertNullStellenSatz ([18], [2]). Similar theorem also
holds for the edge Hamiltonian. In particular, the non‐existnece of embedded eigen‐
values follows. Put

$\sigma$_{\mathcal{V}}=(-1,1)\backslash \{0, \pm 1/3, \pm 1\},

$\sigma$_{\mathcal{E}}=(0, \infty)\backslash ($\sigma$_{D}\cup\{ $\lambda$;-\cos\sqrt{ $\lambda$}=0, \pm 1/3, \pm 1\}) .
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Corollary 3.4. (1) $\sigma$_{p}(\hat{H}_{\mathcal{V}})\cap$\sigma$_{\mathcal{E}}=\emptyset.
(2) $\sigma$_{p}(\hat{H}_{\mathcal{E}})\cap$\sigma$_{\mathcal{E}}=\emptyset.

For the preceeding results about the spectra of vertex models and edge models,
see e.g. [6], [16], [14], [5], [6], [13].

4. FORWARD PROBLEM

For the vertex model, the space \hat{B}(\mathcal{V}) is defined by

\displaystyle \hat{B}(\mathcal{V})\ni\hat{f}\Leftrightarrow\sum_{j=0}^{\infty}r_{j}^{1/2}(\sum_{r_{j-1}\leq|n|<r_{j}}|\hat{f}(n)|^{2})^{1/2}<\infty,
where r_{-1} = 0, r_{j} = 2^{j} (j \geq 0) . Then, the spaces \hat{B}(\mathcal{V}) , \hat{B}^{*}(\mathcal{V}) rig the Hilbert
space \ell^{2}(\mathcal{V}) :

\hat{B}(\mathcal{V}) \subset\ell^{2}(\mathcal{V})\subset\hat{B}^{*}(\mathcal{V}) .

For the edge model, the Besov type spaces \hat{B}(\mathcal{E}) , \hat{B}^{*}(\mathcal{E}) , \hat{B}_{0}^{*}(\mathcal{E}) are defined similarly,
\mathrm{e}.\mathrm{g}.

\displaystyle \hat{B}^{*}(\mathcal{E})\ni\hat{f}\Leftrightarrow\sup_{R>1}\frac{1}{R}\sum_{\mathrm{e}\subset B_{R}}\Vert\hat{f_{\mathrm{e}}}\Vert_{L^{2}(0,1)}^{2} <\infty,
where B_{R}=\{x\in \mathrm{R}^{2}; |x| <R\} . Their counter parts on the torus are defined by

B(\mathrm{T}^{2}\times I_{\mathcal{E}})\ni f\Leftrightarrow\hat{f}\in\hat{B}(\mathcal{E}) ,

B^{*}(\mathrm{T}^{2}\times I_{\mathcal{E}})\ni f\Leftrightarrow\hat{f}\in\hat{B}^{*}(\mathcal{E}) ,

B_{0}^{*}(\mathrm{T}^{2}\times I_{\mathcal{E}})\ni f\Leftrightarrow\hat{f}\in\hat{B}_{0}^{*}(\mathcal{E}) ,

where I_{\mathcal{E}} =(0,1) , and \hat{f} denotes the Fourier coefficient of f(x, z) with respect to x

(with a suitable cut‐off function).
Let \hat{R}_{\mathcal{V}}(z) = (\hat{H}_{\mathcal{V}}-z)^{-1} and \hat{R}_{\mathcal{E}}(z) = (\hat{H}_{\mathcal{E}}-z)^{-1} . Then, the following weak

*‐limits exist.

Theorem 4.1. For  $\lambda$\in$\sigma$_{\mathcal{V}}, \hat{R}_{\mathcal{V}}( $\lambda$\pm i0)\in \mathrm{B}(\hat{B}(\mathcal{V});\hat{B}^{*}(\mathcal{V})) .

Theorem 4.2. For  $\lambda$\in$\sigma$_{\mathcal{E}}, \hat{R}_{\mathcal{E}}( $\lambda$\pm i0) \in \mathrm{B}(\hat{B}(\mathcal{E});\hat{B}^{*}(\mathcal{E})) .

Once we have proven this limiting absorption principle, one can follow the sta‐

tionary theory of scattering developed by Kato‐Kuroda [12], Ikebe [10], Agmon
[1] without any difficulty, namely, existence and completeness of time‐dependent
wave operators, eigenfunction expansion theory, unitarity of the \mathrm{S}‐matrix and its
representation by generalized eigenfunctions.

In some energy region, one can define the \mathrm{S}‐matrix by using the asymptotic
behavior of wave functions at the infinity of the lattice space. However, for both of
the vertex model and the edge model, it is more convenient to obeserve the behavior

of singularities of wave functions on the torus, since there is no restricton of energy.
For the vertex model, it is stated as follows. Recall that H_{0}(x) has two eigenvalues
$\lambda$_{j}(x) and the eigenprojections P_{j}(x) , j=1 , 2. Define

M_{ $\lambda$,j}=\{x\in \mathrm{T}^{2};$\lambda$_{j}(x)= $\lambda$\},
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M_{ $\lambda$}=M_{ $\lambda$,1}\cup M_{ $\lambda$,2}.

Theorem 4.3. Let  $\lambda$ \in $\sigma$_{\mathcal{V}} . For any $\varphi$^{in} \in  L^{2}(M_{ $\lambda$}) , there exist a unique $\varphi$^{out} \in

 L^{2}(M_{ $\lambda$}) and û \in B
*

( \mathcal{V} ) such that

(\hat{H}_{\mathcal{V}}- $\lambda$)\hat{u}=0,

u\displaystyle \simeq\frac{1}{2 $\pi$ i}\sum_{j=1,2}\frac{1}{$\lambda$_{j}(x)- $\lambda$\mp i0}\otimes P_{j}(x)$\varphi$^{out}
-\displaystyle \frac{1}{2 $\pi$ i}\sum_{j=1,2}\frac{1}{$\lambda$_{j}(x)+ $\lambda$\mp i0}\otimes P_{j}(x)$\varphi$^{in},

where f\simeq g means f-g\in B_{0}^{*}(\mathrm{T}^{2}) . The unitary operator

S( $\lambda$):L^{2}(M_{ $\lambda$})\ni$\varphi$^{in}\rightarrow$\varphi$^{out}\in L^{2}(M_{ $\lambda$})
is the S‐matrix.

For the edge model, the above theorem is stated as follows.

Theorem 4.4. Let  $\lambda$\in$\sigma$_{\mathcal{E}} . For any incoimg data $\phi$^{in}\in L^{2}(M_{-\cos\sqrt{ $\lambda$}}) , there exist

a unique solution û \in B
\hat{}*

( \mathcal{E} ) of the equation

(\hat{H}_{\mathcal{E}}- $\lambda$)\hat{u}=0,
and an outgoing data $\varphi$^{out}\in L^{2}(M_{-\cos\sqrt{ $\lambda$}}) satisfying

u\displaystyle \simeq B( $\lambda$)\sum_{j=1,2}\frac{1}{$\lambda$_{j}(x)+\cos\sqrt{ $\lambda$}-i $\epsilon$( $\lambda$)}\otimes P_{j}(x)$\varphi$^{out}
-B( $\lambda$)\displaystyle \sum_{j=1,2}\frac{1}{$\lambda$_{j}(x)+\cos\sqrt{ $\lambda$}+i $\epsilon$( $\lambda$)}\otimes P_{j}(x)$\varphi$^{in},

where f\simeq g means f-g\in B_{0}^{*} (\mathrm{T}^{2} \times I_{\mathcal{E}}) . The unitary operator

S( $\lambda$):L^{2}(M_{-\cos\sqrt{ $\lambda$}}) \in$\varphi$^{in}\rightarrow$\varphi$^{out}\in L^{2}(M_{-\cos\sqrt{ $\lambda$}})
is the S‐matrix.

Here B( $\lambda$) \in \mathrm{B}(B^{*}(\mathrm{T}^{2}\times I_{\mathcal{E}});B^{*}(\mathrm{T}^{2}\times I_{\mathcal{E}})) and  $\epsilon$( $\lambda$)=\pm 1 , however we omit the
precise definition.

5. FROM \mathrm{S} ‐MATRIX TO D‐N MAP

As in the case of continuous model, the inverse scattering on the whole space
is reduced to an inverse boundary value problem in a bounded domain. Take a

sufficiently large bounded set containing all perturbations. Then, the equation in

the whole space is split into three parts: the exterior boundary value problem, the

interior boundary value problem and the (integral) equation on the boundary.
We follow the same approach for the vertex model and edge model. Take a

bounded domain $\Omega$_{int} enclosing all perturbations, and let $\Omega$_{ext} be the exterior do‐
main so that

$\Omega$_{ext}\cup$\Omega$_{int}=\mathcal{V}, \partial$\Omega$_{\mathrm{e}xt}=\partial$\Omega$_{int}.
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Consider the Dirichlet problem

\left\{\begin{array}{l}
(-\hat{ $\Delta$}_{\mathcal{V}}- $\lambda$)\hat{u}=0, \mathrm{i}\mathrm{n} $\Omega$_{int},\\
\^{u}=f\hat{}, \mathrm{o}\mathrm{n} \partial$\Omega$_{int}.
\end{array}\right.
The Neumann derivative is defined by

\partial_{\mathrm{v}}\hat{u}=-\hat{ $\Delta$}_{\mathcal{V}}\hat{u}|_{\partial$\Omega$_{int}}
Then, the D‐N map, Dirichlet‐to‐Neumam map, is defined by

$\Lambda$_{int}( $\lambda$):\hat{f}\rightarrow\partial_{ $\nu$}\hat{u}.

The \mathrm{S}‐matrix is defined in the whole space and in the exterior domain as well. We

denote them S( $\lambda$) and S_{ext}( $\lambda$) , and define the scattering amplitudes

S( $\lambda$)=I-2 $\pi$ iA( $\lambda$) , S_{ext}( $\lambda$)=I-2 $\pi$ iA_{ext}( $\lambda$) .

Then, the following formula holds:

(5.1) A_{ext}( $\lambda$) — A (  $\lambda$ ) = î ( + ) ( $\lambda$)B_{ $\Sigma$}( $\lambda$)^{-1}(\hat{I}^{(-)}( $\lambda$))^{*},

B_{ $\Sigma$}( $\lambda$)=$\Lambda$_{int}( $\lambda$)-$\Lambda$_{ext}( $\lambda$)- $\lambda \chi \Sigma$.

Here,  $\Sigma$=\partial$\Omega$_{int}=\partial$\Omega$_{ext} , î ( \pm ) (  $\lambda$ ) :  L^{2}(M_{ $\lambda$})\rightarrow l^{2}( $\Sigma$) are some injective operators,
$\Lambda$_{ext}( $\lambda$) is the D‐N map in the exterior domain, and  x $\Sigma$ is the characterisitic function

of  $\Sigma$ . Since all perturbations are confined to  $\Omega$_{int} , we know î (\pm)( $\lambda$) and $\Lambda$_{ext}( $\lambda$) .
Therefore, (5.1) means that S( $\lambda$) and $\Lambda$_{int}( $\lambda$) determine each other.

The edge model can be dealt with similarly.

6. INVERSE SCATTERING

6.1. Vertex model‐ reconstruction of the potential. In the inverse boundary

value problem for the continuous case, the exponentially growing solution for the

Schrödinger equation plays an important role. It solves the Schrödinger equation

(-\triangle+V(x)- $\lambda$)u =0 in \mathrm{R}^{n} , and is exponentially growing in a half‐space, and

exponentially decaying in the opposite half‐space. There is a counter part of this

solution in the discrete model. In [11], we used a solution to the discrete Schrödinger
equation on the square lattice, which vanishes in a half‐space and non‐zero in the

opposite half‐space, to recontsruct the scalar potential from the \mathrm{S}‐matrix. A similar

idea works well for the hexaogonal lattice.

Theorem 6.1. Consider the vertex Schrödinger operator on the hexagonal lattice
with a compactly supported scalar potential. Then, the potential is uniquely recon‐

structed from the S‐matrix S( $\lambda$) for an arbitrarily given fixed energy  $\lambda$\in$\sigma$_{\mathcal{V}}.
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6.2. Vertex model‐recovery as a planar graph. Another central issue in the
inverse boundary value problem for the continuous model is the reconstruction of

the Riemannian metric from the D‐N map with 0 energy. This is an interpretation

of the inverse problem of electrical impedance tomography. We expect that the
metric is determined by the D‐N map up to a diffeomorphism which leaves the

boundary of the domain invariant. It is proved in 2‐dimensions in the general
setting, and for the real analytic case with dimension n\geq 3.

The counter part of the Riemannian manifold in the discrete model is the planar

graph. By the works of Colin de Verdière [7], [8] and Curtis‐Morrow [9], it is known
that the D‐N map determines the planar graph up to elementary transformations.

In the case of hexagonal lattice, the D‐N map for the planar graph corresponds to
the \mathrm{S}‐matrix with energy at the bottom of the continuous spectrum. Therefore, we
obtain the following theorem.

Theorem 6.2. For a sequence of energies $\lambda$_{n} \in $\sigma$_{\mathcal{V}} such that $\lambda$_{n} \rightarrow -1 , the S‐

matrices S($\lambda$_{n}) determine the perturbed finite part of the hexagonal lattice up to
elementary transformations.

The equivalence of the \mathrm{S}‐matrix and the D‐N map can be proven for a wide class

of lattices, e.g. those introduced in [2]. Therefore, Theorem 6.2 holds for such class
of vertex models.

6.3. Vertex model ‐ proving defects. A physically important example of the

perturbation as a graph is the defect of the lattice. We consider the case where the

defects are bounded. By virtue of Theorem 6.2, one can reconstruct the perturbed
graph topologically. However, it does not give the information of the location of

defects. To study it, we utilize the above mentioned analogue of exponentially
growing solution to the Schrödinger equation on the hexagonal lattice. Take a

straight line L in the lattice and construct the solution to the free Schrödinger
equation which vanishes below L but does not vanish above L . Suppose that the

all defects are lying below L . If we take it as an input of the D‐N map, the output is
the same as that of the unperturbed case. Let us move the line L downwards. Then,

it will touch the defects. At this moment, the output of the D‐N map changes, and
we conclude that there is a defect on the line L . Therefore, we can enclose the

defects from above. Changing the dierction of the line L , we get the following
theorem.

Theorem 6.3. Assume that the defects consist of finite convex polygons. Then,
from the S‐matrix S( $\lambda$) with an arbitrarily fixed energy  $\lambda$\in$\sigma$_{\mathcal{V}} , one can determine
the convex hull of the defects.

Theorems 6.1 ,6.2, 6.3 will appear in [3].

6.4. Edge model‐ reconstuction of the potential. One can use the same idea

for the edge model. By the above procedure, one can compute the coefficients for the
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perturbed vertex Laplacian from the D‐N map. It consists of $\phi$_{\mathrm{e}0}(0,  $\lambda$) , where $\phi$_{\mathrm{e}0}(z)
is the solution to the Schrödinger equation (-(d/dz)^{2}+q_{\mathrm{e}}(z)- $\lambda$)$\phi$_{\mathrm{e}0}(z,  $\lambda$)=0 with

initial data $\phi$_{\mathrm{e}0}(0,  $\lambda$)=0 . Then, the zeros of $\phi$_{\mathrm{e}(0)}(0,  $\lambda$) are the Dirichlet eigenvalues

of the operator -(d/dz)^{2}+q_{\mathrm{e}}(z)- $\lambda$ . Recall Borg’s theorem [4], which is the starting
point of the inverse spectral theory: A symmetric potential on (0,1) is determined
by its Dirichlet eigenvalues. We have thus arrived at the following theorem.

Theorem 6.4. Let I be an open interval in $\sigma$_{\mathcal{E}} . Then, the potential is determined

from the S‐matrix S( $\lambda$) for all energies  $\lambda$\in I.

One can also deal with non‐zero back ground potentials.

Theorem 6.5. Let q_{0}(z) \in L^{2}(0,1) be real and symmetric. Suppose that the edge
potentials q_{\mathrm{e}}(z) coincide with q_{0}(z) except for a finite number of edges. Let I be an
open interval in $\sigma$_{\mathcal{E}} . Then, the potential q_{\mathcal{E}} is determined from the S‐matrix S( $\lambda$)
for all energies  $\lambda$\in I.
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