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ASYMPTOTIC LINEAR STABILITY OF BENNEY-LUKE LINE
SOLITARY WAVES IN 2D

TETSU MIZUMACHI AND YUSUKE SHIMABUKURO

The Benney-Luke equation is an approximation model of small amplitude long water waves
with finite depth originally derived by Benney and Luke [1] as a model for 3D water waves.
Let L be the horizontal length scale of motion and h be the depth of water. Suppose that the
amplitude parameter € and the long-wave parameter u = (h/L)? are small and € = y. Then
the water wave equation

n+Veo-Vn=¢, forz=h+n,

Bu+ 3(IV6P +(9:)%) + g =0 for z=htn,
Ap+¢,,=0 forO<z<h+mn,
¢.(z,y,0) =0,
can be reduced to the Benney-Luke equation
(2)  O}® — AD + pu(aA?® — bAS®) + €{(8;®)(A®) + 3;(|[V®*)} =0 on R x R?
with @ = 1/6 and b = 1/2. Here ¢ is the velocity potential of the water and the variable ® is

the nondimensional velocity potential on the bottom satisfying

— vgﬁ Yy
o(t,z,y,0) = eL+/gh® (Tt’ 7))

The parameters a and b should be positive and satisfy a — b = ¢ — 1/3, where o is the Bond
number. See [1] and also [14, 20] for the derivation of (2) from the water wave equation with
surface tension.

We remark that (2) is an isotropic model for propagation of water waves whereas KdV,
BBM and KP equations are unidirectional models. See e.g. [2, 3, 4] for the other bidirectional
models of 2D and 3D water waves. Since the Benney-Luke equation is isotropic, it could be
more useful to describe nonlinear interactions of waves at high angle than the KP equations.

The solution ®(t) of the Benney-Luke equation (2) formally satisfies the energy conservation
law

(3) E(®(t), 8,8(t)) = E(®, ¥g) fort € R,

(1)

where

E(®,0) = / (VP + pa(AB)? + B2 4 bV} dody,
R

and (2) is globally well-posed in the energy class (H2(R2) N H'(R?)) x H'(R2) (see [26]). If
a > b >0, then (2) has a stable ground state for c satisfying 0 < ¢ < 1 ([20, 25]).

For the sake of simplicity, we let ¢ = p = 1 in (2) by using the change of variable
w2 (t 2, y) v (t,2,y) and p=/%ed — &.
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The Benney Luke equation (2) has a 3-parameter family of line solitary wave solutions

(4) ®(t,z,y) = pc(xcos@+ysinf —ct+v), £c>1, veR, 6€]0,2n),

where
2(c? 1) o -1
T eet—— h — —_— —
we(x) o tanh( 5 x), ac g
and )
c? — QcT

4e(z) = pi(a) = sech®(=-)

is a solution of
3

(5) (be® —a)g! — (> — 1)ge + S-g2 = 0.

2

In this article, we report transverse linear stability of the line solitary waves in the weak
surface tension case (0 < a < b). In view of [27, 28], line solitary waves are expected to
be unstable if 0 < b < a and 0 < ¢? < 1. Stability of solitary waves to the 1-dimensional
Benney-Luke equation is studied by [24] for the strong surface tension case a > b > 0 and by
[18] for the weak surface tension case b > a > 0.

Since (2) is isotropic and translation invariant, we may assume § = vy = 0 in (4) without
loss of generality. Let ¥ = 0;®, A =1 —aA and B = I —bA. Then in the moving coordinate
z = x — ct, the Benney-Luke equation (2) can be rewritten as

{3¢<I>=caz<1>+\11,

(©) 0¥ = ¢0,¥ + B'AA® — B~1(VA® +2VE . V),

Let re(z) = —cqe(z). Linearizing (6) around (®,¥) = (p.(2),7.(z)), we have

o(8)-<(3).

0, 1
L=Lo+V, Lo= (B—clfm caz) ,

0 o0

) , Ve =2rL(2)0; + re(2)A,  wvae = 2qc(2)0, + ¢.(2).
Vi,e V2,

8) V=-BT! (

Before we state our results, we introduce several notations. For an operator A, we denote
by o(A) the spectrum of the operator A. For a Banach space X, let B(X) be the space of all
linear continuous operators from X to itself and ||T'||p(x) = supjz) =1 |Tu/l x-

Let L2(R?) = L?(R?%;e2*%dxdy), L2(R) = L?*(R;e’*® dz) and let H¥(R?) and HE(R) be
Hilbert spaces with the norms

/
Il sgcrey = (1053 ey + 195035 gy + Nl3pey)

1/
lullmgey = (105ulZy@ + el ) -

We consider linear stability of (7) in a weighted space X := HA(R?) x LZ(R?). Let
L(nu(z) = e WNL(eVMu(z)) for n € R. Note that V is independent of y. For each small
n # 0, the operator L£(n) has two stable eigenvalues.
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Theorem 1. ([19, Theorem 2.1]) Let 0 <a <b and k € N. Fizc> 1 and a € (0,c:). Then
there exist a positive constant 1o and functions A(n) € C*°([—no, m0)),

¢(-,m) € C®([—mo,mo); HA(R) x HET'(R)),  ¢*(-,n) € C°([—no, mo); HE o(R) x HEH(R))
such that
L(m)¢(z,n) = Am)¢(z,m),  L(M)*C*(z,m) = A(=n)¢*(2,1),

(9) A(n) = i\n = dan? + O(1%),
(10) () = (1 +idnée + O(n?)  in HE(R) x HETL(R),
(11) C(om) =G —inG +O(n?)  in HE ((R) x HEZ\(R),

(12) )‘(77) = )‘(_77) ) C(Z, 77) = C(Z, —'77) ’ C*(Z, 77) = C*(za _77) fOT ne [_7]07770] and z € ]R;

where A1 and A2 are positive constants, Ag =1 — a@f ,Bp=1- be and

_ [ - fzoo 0Ocqec
() o (F)
C=c —BoOcre — QQchQc - q{: f_zoo 8c¢1c) G = AOQé )
By f_oo 0cqe ’ —Bore

Remark 1. We remark that £(0) is a linearized operator of the 1-dimensional Benney-Luke
equation around ¢.(z) and that ¢; and {» belong to the generalized kernel of £(0). More
precisely,

[’(O)Cl = 0) ‘C(O)C2 = Cl ) ‘C(O)*C; = C; ) ‘C’(O)*C; = 07
kerg(£(0)) := U2, ker (£(0)?) = span{(1, (o},
ker, (£(0)*) := U2, ker ((.C(O)*)j) = span{({, (3},

in a weighted space L2(R) with a € (0,). The eigenvalue A = 0 for £(0) splits into two
stable eigenvalues A(£n) for £(n) with n # 0.

In the exponentially weighted space H}(R)x L2 (R), the value A = 0 is an isolated eigenvalue
of £(0) and there exists a 8 > 0 such that

o(LO)\{0} c {reC|RA< -5}
provided ¢ > 1 and c is sufficiently close to 1. See Lemma 2.1, Theorem 2.3 and Appendix B
in [18].
Remark 2. For the KP-II equation, the spectrum of the linearized operator around a 1-line
soliton near A = 0 can be obtained explicitly thanks to the integrability of the equation (see

[5, 17]). In [19], we use the Lyapunov-Schmidt method to find resonant eigenmodes of the
linearized operator.

Remark 3. The eigenfunctions ((-,n) and ¢f(-,m) (k =1, 2) do not belong to H'(R) x L?(R)
because they are exponentially growing as z — —oo. This is a reason why we study spectral
stability of £ in the exponentially weighted space X.

Let a be a small positive number. Then there exist an 79 > 0 and P(ny) € B(HL(R?) x
L% (R?)) such that P(mp) is a spectral projection onto the subspace corresponding to the
continuous eigenvalues {A(7)}-no<n<no- Let Q(mo) = I — P(no) and Z = Q(mo)(HL(R?) x
L2Z(R?)). If £ is spectrally stable, then the restriction of e!* to Z is exponentially stable.
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Theorem 2. ([19, Theorem 2.2]) Let 0 < a < b, ¢ > 1 and a € (0, ;). Consider the operator
L in the space X = HL(R?) x L2(R?). Assume that there ezist positive constants B and mg
such that

(H) o(Llz) c{A [ RA< -5},

where L|z is the restriction of the operator L to Z. Then for any ' < B, there exists a
positive constant C such that

(13) e Qo) Bxy < Ce™Pt for any t > 0.

The semigroup estimate (13) follows from the assumption (H) and the Geahart-Priiss the-
orem [9, 23] which tells us that the boundedness of C°-semigroup in a Hilbert space is equiv-
alent to the uniform boundedness of the resolvent operator on the right half plane. See also
[10, 11, 12].

Time evolution of the continuous eigenmodes {eM*#7g(z, 1)} _y <n<n, can be considered
as a linear approximation of non-uniform phase shifts of modulating line solitary waves. For
the KP-II equation, modulations of the local amplitude and the angle of the local phase shift
of a line soliton are described by a system of Burgers’ equations (see [17, Theorems 1.4 and
1.5]). In [19], we find the first order asymptotics of solutions for the linearized equation (7)
is described by a wave equation with a diffraction term and it tends to a constant multiple
of the z-derivative of the line solitary wave as t — co.

Theorem 3. ([19, Theorem 2.3]) Let 0 < a < b, ¢ > 1, @ be as in Theorem 2 and ($o, ¥y) €
HZ(R?) x HL(R?). Assume (H). Then a solution of (7) with (®(0),3;®(0)) = (®o, ¥p)
satisfies

9,2(t, z,y) g:(2)
(5t o) — e wes o) (5(2)
where f(y) = (cBoWo(-y) — Aod:®o(-,y), qe(Vr2(ry, Hily) = (4mhat)~2e~v"/4h2t, ) =

%%E(qc,rc) and Wi(y) = (261) 71 for y € [-A1t, Mit] and Wi(y) = 0 otherwise.

We remark that if f(y) is well localized and [ f(y)dy # 0, then Hy » Wy x f(y) ~
(2k1)71 Jg f(y)dy on any compact intervals in y as ¢ — oo. The first order asymptotics
of solutions to (7) suggests that the local phase shift of line solitary waves propagates mostly
at constant speed toward y = +oc.

If ¢ > 1 and close to 1, then the assumption (H) is valid and the spectrum of £ near 0
is similar to that of the linearized KP-II operator. To be more precise, let us introduce the
scaled parameters and variables

=0tV ast— oo,
L3 (R2)L>°(Ry)

(14) A=A, 2=1+¢, s2=€z, j=¢y, E=¢, n =€,
and translate the solitary wave profile g.(z) as

R o1 G . 1
(15) q(2) = 5296(2) , B:(2) = EseChZ ( ; ) , O = m-
Let

do=(b—a)"V2, 6y(3)= sechQ(%gé) ,

1
Lxp=~5{(b— )0} = 0; +0; 0] + 30:(60)} -
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We remark that the operator L p is the linearization of the KP-II equation
_ 3
(16) 20iu+ (b— a)3u + 0; ' O2u + 5agc(ui’) =0

around its line soliton solution y(x — %) The linearized operator Lx p has continuous eigen-
values Agp(n) = i\%\/l T 71 in L2(R?; €2%0% dydy).

Theorem 4. ([19, Theorem 2.4]) Let ¢ = V1 + €2, a = de and & € (0,40/2). Then there
exist positive constants €y, mo, B and a smooth function A(n) such that if € € (0,€p), then

(17) a(L)\ {Xe(n) | 1 € [0, €*n0)} € {X € C | RA < —B€%},
(18) lim le73A(€2n) — Akp(n)| = O(n®)  for n € [—no, mo],
(19) e Q(e*0)llpxy < Ke Pt for any t > 0,

where K is a constant that does not depend on t.

Finally, we will explain the strategy to prove Theorem 4. Since the dispersion relation for
the linearization of (2) around 0 is

1+a(g®+7°)
1+b(82+1n2)’
and X is an exponentially weighted space whose weight function is biased in the direction of
motion of a line solitary wave, we have ||et£°||B(X) < e~ for ¢ > 0 and o(Loy) C {) €
C | R\ < —B€3} for a B > 0. To prove Theorem 4, we need to take the influence of the
potential V' into account. Since limg ;) (0,0) [Vw(§,7)| = 1 and Vw(&,7n) || (§,7), we see that
c— we(&,7m) is smaller in the frequency regime

Alow ={(&) | €] S €7°, In| S 7%

than in any other region and the effect of the potential is negligible in the frequency regime
Af - In Ay, we can deduce the eigenvalue problem

£()-+()

to Lk pOz;u = Ad;u and make use of the spectral stability results for the KP-II equation ([17]).
We remark that for 1-dimensional long wave models, non-existence of unstable modes for
the linearized operator around solitary waves has been proved by utilizing spectral stability
of KdV solitons (e.g. [7, 15, 16, 18, 21, 22]) and [19] is the first result which proves linear
stability of line solitary waves making use of the spectral stability of KP-II line solitons.

w? = (&% + ) [Vw| <1,
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