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ON KATO’S PAPER “ON THE CAUCHY PROBLEM FOR THE
(GENERALIZED) KORTEWEG-DE VRIES EQUATION”

G. PONCE

ABSTRACT. In this talk, we shall illustrate the decisive influence that the sem-
inal paper by Professor Tosio Kato

“On the Cauchy problem for the (generalized) Korteweg-de Vries equation”,
Advances in Mathematics Supplementary Studies, Studies in Applied Math.
8 (1983), 93-128

has had in the extraordinary development on the study of nonlinear dispersive
equations of the last thirty years.

1. INTRODUCTION

The paper is concerned with the so called generalized Korteweg-de Vries (gKdV)
equation.

3 pr—
(1.1) {C‘M +8%u+a(u)du=0, =z, teR,

u(z,0) = up(z).

To simplify, we shall consider a(u) = u*, k€ Z7.

After Scott Russell (1830’s) observation and experiments, and Boussinesq (1860’s),
it was deduced by Korteweg and de Vries (1895), for the case k=1 (KdV).

In 1967 Gardner-Greene-Kruskal-Miura introduced a method to solve it, the
inverse scattering method. This method also applies to the modified KdV k = 2
(mKdV).

For k =1, 2 real solutions satisfy infinitely many conservation laws. For general
k we have three:

L(u) = /u(m,t)dx, I(u) = /u2(a:,t)d33
and

1

BT R

B(w) = [ (@)
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From Kato’s paper :
(Section 1 : Introduction)

....... Our main object is to show that the Cauchy problem for
(KdV) and (gKdV) are well posed.

It appears that there is no precise definition of well-posedness,....”

“Consider the abstract Cauchy problem
(12) ), >0, w0 =

Suppose there are two Banach spaces Y C X, with the injection
continuous, such that f is continuous on Y to X.
Suppose that for each ¢ € Y there is a real number T > 0 and
a unique function
(1.3) uwe C([0,T]:Y)

[hence du/dt € C([0,T] : X)] satisfying (1.2) for t € (0, T].

Suppose, moreover, that the map ¢ — u is continuous from Y
C([0,7] : Y). Then we may say that the problem (1.2) is locally
well posed in Y: If T can be taken arbitrarily large, then the
problem is globally well posed in Y.

This notion of well-posedness is rather strong and is not always
realized, or at least not always proved in its full strength in the
literature.”

In section 3 of the manuscript Kato wrote :

(Section 3 : Review of the H® Theory)
“Local well-posedness for (gKdV) with Y = H®, s >3, X = H*~3
was proved in ................

The same proof works for s > 2. In fact, local well-posedness
has almost nothing to do with the special structure of the KdV
equation......

The local result for (1.1) has been extended to s > 3/2.”

The key ingredient for the solution of the optimal regularity for the IVP (1.1) was
given in Section 6 of the paper:

(Section 6 : The Smoothing Effects)

Theorem 1. (Kato (1983))
Let s >3/2, 0<T <oo. If ue C([0,T] : H*(R)) is the solution of the IVP
for the gKdV for ug € H*(R), then

u € L2([0,T] : H**1(-R, R)) VR>0.

with the associated norm depending only on ||uglls2, R, T.
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Proof (linear case): Since

(1.4) Ou+02u=0, u(z,0)=uc L (R),
multiplying by ¢ € C°(R) with ¢’ € Cy, ¢'(z) > 0 one gets

% u?(z,t)pdx + 3/(3Iu)2(m, t)p'dz — /u2(:c, t)e®dz = 0.

Hence, using the preservation of the L2-norm of the solution integration in time
the last identity yields the result.

Kato smoothing effect (homogeneous version) was generalized and extended by
Kruzhkov-Faminskii (1984), Sj6lin (1987), Vega (1988), Constantin-Saut (1989).......

Ginibre-Y. Tsutsumi (1989) were the first ones to use Kato smoothing effect
to improve the uniqueness results of solution of the KdV and mKdV in weighted
spaces.

Consider the linear problem

Opv + 827) =0,
o {v(x, 0) = wo(a)

whose solution is given by the group {V (¢)}*°,,
o0
Vit(o) = [ emiste' gy (e)ae.

—00

Theorem (Kenig-P.-Vega (1993)) Jcp, ¢ >0 VzeR
|02V (t)vo ()| L2 = collvollz,

t
162 /0 V(= )1 8)dt | ez < ell o2z

Proof (homogeneous case): by changing variables £3 = 7 one has

8,V (t)vo(z) = f " omgi 2 ST g (6

—00

)
— C/ 627"93"71/3 68w3ztn66(n1/3) ,'7-—1/3 dn.
)

Now using Plancherel’s theorem in the ¢ variable one gets the desired result.

Notice that this optimal one-dimensional version of Kato smoothing effect in-
volved a L°L2-norm, first in time and then in space.

It needs to be combined with estimates in the L2 L3°-norm, which correspond to
the maximal function associated to the group {V'(¢)}.
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Roughly, the smoothing effect for a dispersive operator with real symbol A of
order m
Au+iA(D)u =0,
provides a gain of m — 2 derivatives in the homogeneous case and a gain of m — 1
derivatives in the inhomogeneous case. (It cannot hold in hyperbolic equations.)

Strichartz estimates provide a gain of(m — 2)/4 derivatives in the homogeneous
case and a gain of (m — 2)/2 derivatives in the inhomogeneous case.

The solution of the IVP
Oy + 83v = f(z,t), v(z,0) =0,

is given by the formula:
itr _ Lit€3 o
v(z,t) =c//%e“’6 f(&,m)dédr.
This motivates Bourgain (1993) to define the spaces X, s, b€ R,

1%, = ( ] / (L+ r — €2 (1 + [E[2)% (7 €, 7)|2dedr) 2.

In the context of the wave equation they were previously introduced by Rauch-
Reed (1982) and M. Beals (1983).

Kato Smoothing Effect allows us to consider the integral equation version of the
problem (1.1)

u(t) = V(t)uo + /O t V(t - ) (uFdu)(t)dt,

using the contraction principle. As a byproduct one gets that the map data-solution
uo — u(t) is smooth.

Notice that if u(z,t) solves G;u+083+u*8,u = 0, then uy(z,t) = A2/ *u(Ax, X3t)
solves the same equation, with data wuy(z,0) = A2/*uy(A\z). Hence,
ID*ur(-, 0)ll2 = X*/*+s=1/2|| Doy,
This suggests that the optimal Sobolev index s should be
sp=1/2—-2/k=(k—4)/2k.

WELL POSEDNESS (WP) IN H*(R):

For k€ Z*+, s> 3/2 local WP (LWP) Bona-Smith (1976), Kato (1979)

For k =1 (based on contraction principle) (scaling s; = —3/2) :
s> 3/4 LWP Kenig-P.-Vega (1993),
s > 0 GWP Bourgain (1993),
s > —3/4 LWP Kenig-P.-Vega (1996),
s > —3/4 GWP Colliander-Keel-Staflilani-Takaoka-Tao (2003),
s = —3/4 LWP Christ-Colliander-Tao (2003), GWP Kishimoto (2009) and
Guo (2009).
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For k = 2 (scaling so = —1/2):
s> 1/4 LWP Kenig-P.-Vega (1993),
s> 1/4 GWP Colliander-Keel-Staffilani-Takaoka-Tao (2003),
s>1/4 GWP Kishimoto (2009)

For k = 3 (scaling s3 = —1/6):
s> —1/6 (scaling) LWP Grunrock (2005),
s =—1/6 (critical) WP Tao (2007),
s > —1/42 GWP Grunrock-Panthee-Drumond Silva (2007).

For k>4
s > (k—4)/2k (scaling/critical) LWP Kenig-P.-Vega (1993).
For k = 4: there exist H!-solutions which blow up in finite, Martel-Merle (2002)
(Martel-Merle-Raphael (2014)).

A similar result for the powers k = 5,6, .... remains as an open problem.

These results have shown to be “optimal” : Bourgain (mKdV), Kenig-P.-Vega

(2001)-(2003), Nakanishi-Takaoka-Tsutsumi (2001), Christ-Colliander-Tao (2003),.....

Next, we continue with Kato’s paper in section 8.
(Section 8: The H?"(R) N L?(|z|?"dx) theory).

THEOREM (Kato) : Let ug € H*>"(R) N L%(|z|*"dz), r € Z*.

There is T > 0, depending only on the H?"(R) N L?(|z|?>"dx) norm of ug, and a
unique solution u = u(z,t) to the IVP for the gKdV such that

u € C([0,T) : H* (R) N L2(|z|?" dz)).

The map wuy — u is continuous.

The main idea is that the operators T' =z + 3t92 and &; + &2 commute.
Corollary (i): The result holds in H2(R) N L?(|z|*"dz), s> .
Corollary (ii): The result holds in S(R).

THEOREM (Isaza-Linares-P. (2015))
Let

u € C(R : L*(R))
be a solution of the IVP for the KdV. If there exist o > 0 and two different times
to, t1 € R such that

|m|au($1t0)7 |w|au($7t1) € L2(R)7

then
u € C(R: H**(R) N L?(|z|**R)).
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Next, we continue with Kato’s paper in sections 10-11.

(Section 10-11: The H*(R) N L?(eP*dzx) theory-Regularity. )
THEOREM (Kato) : Let u € C([0,00) : H?(R)) be a solution of the IVP for
the KdV with

ug € H*(R) N L2(eP*dzx), for some B> 0,

then
ey € C([0,00) : L*(R)) NC((0,00) : H®(R)),
with
le?u(t)llz < X" [leuglla, >0,
K = K(B, [luoll2)-

The map data-solution up — u(t) is continuous
L*R) N L% (eP*dz) — C([0,T] : L*(eP%dx)),
for any T > 0.
The main idea is that formally in L?(e®*dz) the operator
o+

becomes
Oy + (0r — B)® = 8, + 82 — 3802 + 38%0, — °

so the equation exhibits a parabolic behavior for ¢ > 0.

THEOREM (S. Tarama (2004)) : If

ug € L2(e‘s|wll/2dx), 6 >0,
then the solution of the KdV becomes analytic in z for each ¢ # 0.

His proof based on the Inverse Scattering Method.

All these ideas and techniques (Kato smoothing effects, Strichartz estimates,
Bourgain spaces, maximal functions,.....) no only provide sharp well-posedness
results.

The inhomogeneous smoothing effect provides the local existence theory for
“small” data ug € H*(R™) N L2(|z|*) for the equation

(1.6) Ou + iAu = P(u, @, Vzu, V. a),

with P : C?"*2 — C a polynomial without constant or linear terms (Kenig-P.-Vega
(1993)).

N. Hayashi-T. Ozawa (1994) removed the “smallness” assumption on the data
in the 1-dimensional case.

H. Chihara (1995) removed the “smallness” assumption on the data in all di-
mensions.
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The weight condition is related with the so-called Mizohata condition: for the
linear IVP

(17) 8tu=iAu+5(z)-Vu, r e R teR,
‘ U(.I,O) = UO(‘,L')v
where b = (b1,...,bn) with b; : R — C, j =1,...,n smooth functions, the hypoth-

esis
l

/Imbj(w—i-ré)éjdr <0

0

(1.8) Sup Sup
éegn—l zeR™
IER

is a necessary condition for the L2-well-posedness of (1.7).

Consider the IVP associated to the general quasi-linear Schrédinger equations:

(O =iajk(z,t,u, 4, Vau, Vzﬁ)afku

+ bjk(x’ t’ u) a’ v.’l}uy Vz’l_t)a‘?kﬂ
+ gl (1" t,u, 4, Vau, Vo) - Vou
(19) + Z;2(51:7 t7ua’l_/ﬂ ku, Vw’l__l,) . sz-/,
+c (xv t,u,u, vzu)u + C2($, t,u,u, vzu)’ﬁ,

+ (=, 1),

| u(z,0) = up(x).

Hypotheses: (to simplify consider b;; = 0)
(H1) Ellipticity: VM >0 Jyp >0
ajk(z,t, 2)&; - & > ymlé? VEER™ VZeC™? |z <M.
(H2) Asymptotic Flatness: 3¢ >0 V(z,t) € R x R
=, 2 =, C
|ama’jk(w7t70)| + |azlzmajk(w’ t O)l < W

(H3) Nontrapping condition: for the data up € H*(R"™) the Hamiltonian flow

(bicharateristics) associated to the symbol
h(uo) = _ajk(xy 07 Ug, 1[07 VIUOa v:t”b)ﬁ]&k

is non-trapping.

(H4) Growth of the cofficients of the first order coefficients + (H5) Regularity.

Based on the artificial viscosity method, using classical pseudo-differential opera-

tors and other techniques including S. Doi’s argument of establishing Kato smooth-
ing effect in solutions of Schrédinger equation with variable coefficients:
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THEOREM (Kenig-P.-Vega (2004)) :Under the hypotheses (H1)-(H5) there ex-
ist

5,81 €LY, s>5 +4
such that the IVP for the quasi-linear Schrédinger equation is ”locally well-posed”

for
up € H*(R™), |2|*8%up € L*(R"), |a| < 51

and
feL'R:HR"Y), |z]?0%f € L}*(R: L*R"Y), |a| < s1.

”locally well-posed” means
u e C([0,T): H*¢(R™)) N L*([0,T] : H*(R™)).......

In a latter work, Kenig-Ponce-Rolvung-Vega the ellipticity assumption (H1) was
replaced by the more general one (a;x(-))) is a non-degenerated matrix.

Further consequence of Kato Smoothing Effects : Propagation of regularity in
solutions of the IVP for the k-gKdV.

Theorem (Isaza-Linares-P. (2015))
If ug € H¥4" (R) and for some m € Z*, m > 1 and zo € R

(1.10) I ol ey = [ 107 0(0) P < o,
Zo
then the solution u = u(z,t) of the IVP for the gKdV satisfies : Vv >0
(1.11) sup / (O u)?(z, t) dz < ¢,
0<t<T Jag—vt

with ¢ = c(m; [[uolls/a+ 25 | 07 woll L2 (20,0005 ¥5 T)-
Moreover, for any v >0 and R >0
T zo+R—vt
(1.12) / / (O u)2(x, t) dz dt < c,
0 rg—vt

with ¢ = ¢(m; |]ug||3/4+’2; | 0 uol| L2((z0,00)); Vs B3 T).

Thus, this kind of regularity moves with infinite speed to its left as time evolves.

This result has been extended to solutions of quasi-linear KdV equations (Linares-
P.-Smith (2016)).
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