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THE GROUND STATE ENERGY OF HEAVY ATOMS

HEINZ SIEDENTOP

ABSTRACT. We review results on the asymptotic behavior of the groundstate
energy and the reduced one-particle ground state density of large atoms.

1. MODELS OF AN ATOM

We will review the description of large atoms, in particular the asymptotic be-
havior of the ground state energy and the ground state density. This can be done
in the context of various models which — heuristically — should describe the atom
— when compared with experimental values of these quantities — to increasing or-
der of correctness. Some of those models for N electrons are discussed here. For
simplicity we will focus on the one center case, i.e., the external field is generated
by a nucleus of charge Z although some of the results are also true for molecules.
Moreover, we will concentrate on the most prominent case, namely neutral atoms,

ie, N=2.

Thomas-Fermi: The Thomas-Fermi energy Evg (N, Z) of N electrons in the
field of a nucleus of charge Z is the infimum of the Thomas-Fermi functional

(Lenz [37])
. 3 2/3 Z
Err(p) = /R . (E (37%) " p()*/® - m) dz + Dlp]
where
_1 - p(z)p(y)
o= 0 f T

and p is taken over all p > 0 in L%/3(R3) with [, dzp(z) < N. Lieb
and Simon [38] analyzed the functional mathematically and showed among
other facts the existence and uniqueness of a minimizer. From the physical
point Gombas [24] offers a classical review.

Schrédinger: The Schrédinger energy is the lowest spectral point Es(N, Z) :
inf 0(Sn,z) of the Schrédinger operator

s & 2 1
”’Z‘Z("‘Tm>+ D

n=1 1<m<n<N

defined by the associated quadratic form on the anti-symmetric Schwartz
functions AN_, b with b := S(R® : C2) (Friedrichs extension). Here T :=
p?/2 with p := —iV.
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Chandrasekhar: The Chandrasekhar operator C, z . is motivated by the
naive quantization of the classical relativistic Hamiltonian. It can be defined
as the Schrodinger operator Sy, z but with the operator of kinetic energy
T := \/c2p? + c* — c2. The additional parameter c is — in physical terms —
known as the velocity of light. The Chandrasekhar energy Ec¢(N, Z) is the
lowest spectral point of Cy,z .

Of course this is only meaningful, if and only if Z/c < 2/7, the necessary
and sufficient condition for the form being bounded from below (Kato [35,
p. 307], see also Herbst [29] and Chen and Siedentop [7]).

Brown-Ravenhall: The no-pair operator By, z, in the free picture (Sucher
[59]), also called Brown-Ravenhall operator (Brown and Ravenhall [6], see
also Bethe and Salpeter [5]), can again be defined similarly to Schrodinger
operator Sy,z, however, with

T:=Dg, =ca-p+pc® —c?

and one-particle states in h = xr, (Do,c)(S(R?® : C*)) which intuitively is
interpreted as the orthogonal space of the Dirac sea — here of the free Dirac
operator Dy . — which is not accessible to electrons, i.e., poetically speaking
the electrons are the vapor over the free Dirac sea. The Brown-Ravenhall
energy Eg(N, Z) is the lowest spectral point of By, zc.

Again, as in the Chandrasekhar case, this requires a restriction of the
allowed coupling constant. For boundedness from below Z/c < 2/(2/m +
m/2) is necessary and sufficient (Evans et al [10], see also Tix [61, 62]).

Furry & Oppenheimer: The no-pair operator Fy,z. in the Furry picture
[59], for short the Furry operator, is defined as the Brown-Ravenhall oper-
ator, however, with one particle states h = Az .(S(R3 : C*)) where Az is
the spectral projection of the Coulomb Dirac operator

Z

Dzc.:=ca-iV+3(B-1)— Tzl

to the positive spectral subspace, i.e., Az c := X(0,00)(D2z,c). In other words,
the Furry electrons are the vapor over the Dirac sea defined as the negative
spectral subspace of the one-particle Dirac operator with external potential.
— Again there is a natural restriction on the coupling constant, namely

Zle< 1.

2. SOME CLASSICAL RESULTS

2.1. Non-Relativistic Hamiltonian. The classical Hamiltonian was introduced
by Schrédinger [45, 46, 44] and solved for N = 1. But motivation for taking anti-
symmetric states predates these works and goes back to Pauli [33]. However, it was
Kato [34] (see also Kato [35]) who showed that Sy, z can be self-adjointly realized
in A, L2(R3) ® C2 and can be viewed as perturbation of the Laplacian.

Shortly after Schrédinger’s work it became clear that the hope for an analytical
solution of the N-electron problem in quantum mechanics is at least as unrealistic
as in classical mechanics. Driven by this insight, Thomas [60] and Fermi [20, 21]
saw the necessity of an approximation which describes N electron systems in a
simple way; they derived — on a physical level — the Thomas-Fermi theory with the
intention to describe the energy and density roughly correct when many particles
are involved and the external potential does not change much, i.e., in a certain
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sense, the potential would commute locally with the momentum operator. The
expectation was that Eg(Z) ~ Erp(Z). In fact Lieb and Simon [38] showed in
their seminal paper published fifty years after Thomas and Fermi that indeed

Es(Z) = Erp(Z) + o(Z773).

(Note that we find it convenient to formulate our results for the neutral case only,
i.e., N = Z. In this case — when no confusion is possible — we tend to drop the
index N. Note also that the Thomas-Fermi energy has the simple scaling relation
Err(Z) = Erp(1)Z7/3.)

Based on the local commutativity assumption it was clear that a correction of
the TF-model should come from the electrons close to the attractive singularity. In
fact Scott [48] conjectured on this basis the following formula

Es(Z) = Err(Z) + %22 +0(2?)

which — was proven another ten years later (Siedentop and Weikard [54, 49, 50,
51, 52] (upper and lower bound) and Hughes [30, 31] (lower bound). The formula
has been physically rederived, mathematically reproven and extended by various
methods (Bach [1, 2], Ivrii and Sigal [32], Solovej and Spitzer [56], [4]). In fact
Fefferman and Seco [16, 17, 18, 11, 19, 14, 12, 13, 15] obtained a three terms
asymptotics.

2.2. Relativistic Hamiltonians.

2.3. The Chandrasekhar Energy. Since states at large distances from the nu-
cleus have — at least intuitively — small kinetic energy, a non-relativistic description
should still be appropriate for those states. However, at small distance the electrons
are moving much faster. Thus, using a non-relativistic model for large Z atoms is
physically inappropriate. Although mathematically possible as mentioned above, it
cannot be expected to give physically relevant results. Instead a relativistic descrip-
tion is required. It should influence the electrons close to the nucleus strongly and
thus contribute to the Scott correction. Since the relativistic energy is much weaker
for large momenta, a lowering of the Scott term should occur. This was predicted
by Schwinger [47] based on a heuristic modification of Scott’s original observation.
In fact, for large Z and v = Z/c fixed and less or equal 2/7 one obtains for the
Chandrasekhar ground state

(1) Eo(2) = Bre(2) + (3 ~ s0(1) 2 + o(2?)

where sc(Z/c) is the sum of the difference of the negative eigenvalues of the oper-
ators p?/2 — v/|z| and (p? +1)Y/2 -1 — v/|z], i.e.,

(2) sc(7) =tr((S1,9)- = (C19,1)-)-

This result is due to Solovej, Sgrensen, and Spitzer [55] and Frank, Siedentop, and
Warzel [22].

Note, that this model can be considered as a mathematical warm-up only, since
its eigenvalues are — even in the one-particle case — too low compared with the one-
particle Dirac eigenvalues. Moreover, it does not even cover the all known elements
for the physical values of ¢ and Z.
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2.4. The Energy of the Brown-Ravenhall Operator. The above general con-
sideration on fast moving inner electrons applies to all relativistic operators, i.e.,
also for the Brown-Ravenhall operator a lowering of the Scott term is expected. In
fact on gets

(3) Bp(2) = Fre(2) + (5 — s5(1) 2 + o(2?)

where, analogously to the Chandrasekhar case,

(4) sp(7) = tr((S1,y)- = (B1y,1)-)

with « is fixed in [0, (7/2 + 2/7)/2] (Frank, Siedentop, and Warzel [23]).

Although the eigenvalues of the one-particle Coulomb Brown-Ravenhall operator
majorize the eigenvalues of the Coulomb Chandrasekhar operator and although it
covers all known elements for the physical value of ¢ the one-particle eigenvalues
are still too low compared to the Dirac eigenvalues.

2.5. The Energy of the Furry Operator. The Furry operator is expected to
yield the right asymptotic behavior of the ground state energy. Therefore we indi-
cate the strategy of the proof in this case. ’

First we note that the hydrogenic Dirac operator Dz . can be defined in a natural
way with form domain H'/2(R3 : C3) when Z/c < 1 (Nenciu [42]). Furthermore, it
is obvious that

Y 1
DN,Z,C = Z DZ,cn + E m
n=1 1<m<ngN 7™ n

defined on all 4¥-spinors in the Schwartz space is a symmetric operator with cor-
responding form

(5) 6[¢] = (")ba DN,Z,C¢)'

However, we will admit only normalized anti-symmetric spinors because of the Pauli
principle and require ®_; Az ¢ = 1 implementing the Dirac sea. Note that & is
bounded from below on those functions. Obviously, £[1)] > —c2N||¢||2. This allows
to define the Furry operator Fiv, z . as the self-adjoint operator associated with the
form €& restricted to those spinors.

For v € (0,1) we define

(6) ASH n-th eigenvalue of ( 2 - %) ® 12
(7 ADH .11 th eigenvalue of a-p+pB—-1-— %

This allows to define the relativistic correction of the Scott term:

®) 20 = 25 D (A = ARA)

for v € (0,1). Note that not only the non-relativistic eigenvalues but also the
relativistic eigenvalues are explicitly known (Schrédinger [45], Gordon [25], Darwin
[8]). In fact those energy levels were known before the Schrédinger equation and
the Dirac equation (Balmer [3] and Sommerfeld [57]).
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Since the Coulomb eigenvalues are ordered as follows: Schrodinger (including
spin) bigger than Dirac bigger than Brown-Ravenhall bigger than Chandrasekhar
(including spin) eigenvalues, one has

0 < sp(y) <sB(7) < sc(7).

This is a consequence of the variational principle for eigenvalues in gaps (see Griese-
mer et al. [27, 26], Morozov and Miiller [40] and Miiller [41]).

2.5.1. Main Result. We can now formulate the main result.

Theorem 1 (Handrek and Siedentop [28]). There ezxists a constant C > 0 such
that for all Z > 0 and v = % <d <1 for some d one has

9) Er(Z) - |:ETF(Z) + <% - SF(’)’)) Zz] < CzZY?,
Put differently: Fix v € (0,1). As Z — c©
(10) Er(Z) = Ere(Z) + (5 — s7(7)) 2% + o(2?)

uniformly in vy = % <d< 1.

We indicate the strategy of proof here. The main point is that we do not control
the relativistic energy directly but only relatively to the non-relativistic energy.
Physically speaking we renormalize the energy. We outline this procedure for the
lower bound. The upper bounds is — in spirit — similar.

2.5.2. The Energy Shift from Hydrogenic Schrédinger to Hydrogenic Dirac Energies.
Using the explicit formulae for the eigenvalues one proves the following lemma:

Lemma 1. Assume v9 < 1. Then there exists a constant C € R such that for all
lGN,]=lil/2,]21/2, and vy € [Oa’YO)

4 1 3 1
11 ADH  \SH Y _2
(11) ymbg Ay T 2(n+ 1)3 i+3 4n+l

<oy
=" 0

This has the two important consequences:

Corollary 1. Under the above assumptions

Cy4
12 o< ASH _\PH o 7T
( ) - 'Yyn)l ’Y,Tl»,l,] - (n+l)3l

and
Corollary 2. For vy <1 the energy shift sp(v) exists and is positive.

2.5.3. The Shift from Screened Schrédinger to Screened Dirac. In the next step, one
needs to control the error when replacing screened Dirac eigenvalues by Schrodinger
eigenvalues for large angular momenta:

Lemma 2.

> (e - -o(TE)

1,0<j=lt3,n
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2.5.4. Correlation Inequality. An important step is the reduction to a one-particle
problem. This is accomplished by using the correlation inequality of Mancas et al
(39]

N
(13) 3 e > (p7" x|+ 17 @) — x(xv)) — Dlpz"].
1<v<u<N v=1
where
B pz" (y)
(14) X(X) - /|x—y|<Rz(x) |X - yl dy

Rz (x) radius of the exchange hole defined by

(15) / pF (y)dy = 3.
|[x—y|<Rz(x)

This gives a lower bound on the total Furry energy in terms of one- and zero-
particle operators

Corollary 3 (Lower Bound on Furry).

ElY] > Z , (Do, — 1 = prr(m)¥)) — D[pz"] — CZ°/3
Now, we use the following consequece of the upper and lower bounds of Siedentop
and Weikard [49, 52], see also [53]:
Theorem 2. Pick L = [Z'/°]. Then

Es(Z) = > i+ Y A - DlpgF +czt

nI<L-10<j=l1+1 n,L<L0<j=14%

Armed with this result, we get the following lower bound on the shift of the total
energy

(16) Es(Z) — Er(2)
-1
(17) >3 3 (L)
=0 ocjmitin
a DI S e R
=Logj—t+in
(19) ZSD(’}’)Zz _ CZ47/48.

This finishes the outline of the proof.

2.6. Comparison with Experiment. As already mentioned, one cannot expect
that the Chandrasekhar and Brown-Ravenhall operators give quantitatively correct
result for heavy atoms. However, the Furry picture gives numerical values up to
chemical accuracy (Reiher and Wolf [43)]).

If one is emboldened by this fact and dares to apply Stell’s Principle of Un-
reasonable Utility of Asymptotic Expansions (G. Stell [58]) one gets the following

graph.
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o red diamonds, crosses: (Eexperimental(Z) — ETr(Z))Z~2
o red solid: Schwinger’s approximation
® blue: 1 — sP(Z/137)

— Schwinger's prediction
+NIST Data

< Desclaux 1973

— Scott function

FIGURE 1. Comparison (see [28]) of the relativistic Scott func-
tion with data taken from the NIST database [36], Dirac-Fock
calculations (Desclaux [9]), and Schwinger’s original prediction
(Schwinger [47]) plotted over Z for ¢ = 137.

3. THE GROUND STATE DENSITY

Energetic control yields also convergence of the ground state. Using a linear
response argument Lieb and Simon[38] show

Theorem 3. Assume 9% to be a groundstate of Sz z; write Pys for the associated
one-particle groundstate density and prr the minimizer of the Thomas-Fermi func-
tional with Z = 1. Moreover, let B be any measurable bounded subset of R3. Then
the rescaled density pS defined by

p5(x) == Z%pys (27 /2)

converges to the Thomas-Fermi density in the following sense:

Jim Bd$P($)= /B dzprr ().

Fefferman and Seco [17] observed that the missing term in the correlation in-
equality yields automatically the convergence in Coulomb norm

Theorem 4. As Z — oo
D[p® — prz] = O(271/3).

Corresponding considerations can be also carried through for the Chandrasekhar
and Brown-Ravenhall operator (Merz [in preparation] and Merz and Siedentop [in
preparation]). In particular one obtains in the Brown-Ravenhall case the following
result:
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Theorem 5. Let ¥ be a groundstate of Bz z ., let pB be the rescaled groundstate
density (as above) and fix Z/c < 2/(2/m + =/2). Then, as Z — oo

D[p® — pre] = O(Z71/*).
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