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Abstract: We introduce applications of generalized root systems to generalized
quantum groups.

1 Introduction (History)

In [HY08], the axiomatic definition of generalized root systems is introduced. It
is improved in [CHO09]. Those definitions use semigroup terminology, or categor-
ical terminology. In [Y15] (see also [BY18]), those were rewritten without using
categorical terminology. Weyl groupoids are naturally defined associated to the
generalized root systems. Recall the Matsumoto therorem for the Coxeter group
(sili € I), which tells that two reduced expression of the same element of the
Coxeter group can be transformed from one to the other be repetition of chang-
ing expression by

(M2) s;8;5;- - = 8;8;8;--- with 3,5 € I, i # j and my; := [{(si8;)F|k € Z}| < 0.
e
my, mi;

Note that the defining relations of the Coxeter group are composed of (M2) and
(M1) s? =i (i € I), called the Coxeter relations. In [HYO08], it is shown that
Matsumoto-type theorem for the Weyl groupoids holds and that the defining rela-
tions of the Weyl groupoids are formed by the Coxeter-type relations. In AY18,
we introduced Nil-Hecke algeberas and a Bruhat order of the Weyl groupoids
(see Theorem 3 of this paper). As applications of the Weyl groupoids, wa have
achieved:
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(1) Although Weyl groupoids had not been introduced, the Serre-type defining
relations of the affine Lie superalgebras are obtained in [Y99]. This reproved the
Serre-type defining relations of the finite dimensional simple Lie superalgebras
of type A-G obtained in [Y94]. In [Y94] and [Y99], we also got the Serre-type
defining relations of the finite and affine type quantum superalgebras in some way.
In [AAY11], we got the Serre-type defining relations of finite-super-ABC D-type
Nichols algebras of diagonal-type (including multi-parameter finite-ABC D-type
quantum superalgebras).

(2) We got the Drinfeld second realizations of the AM(m,n)-type (resp,
DW(2,1; z)-type) quantum superalgebras in [Y99] (resp. [HSTYO08}).

(3) We got the Shapovalop determinant formula

w .
detShapy™ =[] [ (=7"(e)x(e, a) Ko+ La) P37 (@,
a€R* (x7) ta=1

of the finite-type generalized quantum groups U(x, ) in [HY10, Theorem 7.3],
where ShapX"™ means the Shapovalop matrix of the weight A and where see [BY18,
Theorem 7.5] for detail of the right hand side; we needed the condition that
x(a,a) # 0 for & € R*(x, ). Finite-type U(x,n) can be finite-type quantum
groups and finite-type quantum superalgebras and their Lusztig’s small quantum
groups.

(4) We got the classification theorem of the finite-dimensional irreducible rep-
resentations of the finite-type non-finite dimensional U(x,7) in [AYY15] over
zero-characteristic field, and we also recover in [AYY15] the Kac’s list of the classi-
fication theorem of the finite-dimensional simple modules of the finite-dimensional
simple Lie superalgebras of type A-G.

(5) We got the explicit formula of the universal R-matrix of the finite-type
U(x, ) in [AY15].

(6) We got the Harish-Chandra theorem for U(x,n) in (3) in [BY18], see
Section 3 of this paper.

(7) We got the Kostant-Lusztig A-form of the finite-type multi parametet
quantum groups in [JMY17).

2 Generalized Root Systems

Let I be a non-empty finite set. Let V be a R-linear space with a R-basis
{vilt € I}, so dimg V' = |I| and V =: ®;c;Rv;. Let Vg =: ®;c;Zv;. Then Vg be
a free Z-module with a Z-basis {v;|i € I}, and rankzVz = |I|. Let P(Vz) be a
power set of Vz. Let B(Vz) be a set of all Z-bases of Vg, so B(Vz) C P(Vz).

Let R € P(Vz). Assume R # 0. For B € B(Vz), let RB+ := RN Span,_ B
and R?~ := RNSpan,_ B. We say that B is a base of R if the following (x) and
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(y) hold:

(x) R=RB+*URBE-.
(y) VYa€B,ZaNR={o,—a}.

Let B(R) be a set of all bases of R, so B(R) C B(Vz).
Let R € P(Vz). Assume R # 0. Let B be a non-empty subset of B(R). We
say that (R,B) is a generalized root system [HYO08] (see also [BY18, Y15]) if

VB € B, Ya € B, 3r,(B) € B, R~®*+ nRE~ = {—a}.
For R € P(Vy), let M(R) be the set of all maps from I to R.

Theorem 2.1. [BY18, HY08, Y15]. Let (R,B) be a generalized root system.
Then there exist a non-empty subset B of M(R) and bijections 7; : B - B (i € I)
satisfying (a)-(c) below.

(a) The map ¢ : B — P(R) defined by p(r) := n(I) is injection, where P(R)
is the power set of R.

(b) p(B) = B.

(©) Vr € B, Vi € I, (r(m)(I) = oo (r(D)).

In particular, for m € B and i,j € I, there exzist N7 € Z such that (r:(m))(4) =
m(§) + NEm (i), which implies that Nf = —2 and N € Zxo (j # 1). Moreover,
(1:)? = idg and N} = Nf.

Let 7 € B. For amap f : N — I and t € Zyo, define 7, € B by ms0 := 7
and 7y := Tye)(mpe-1) (€ €N).
Lemma 2.2. Assume |R| < o0o. Let k := leﬂ. Then R™D+ = {ms,1(f(t))]t €
N,1 <t <k} and R™D:— = —Rr(D:+,

Let J be the set of all maps f : N — I.

Let (R,B) be a generalized root system. For m € B and i € I, define the
Z-module automorphism sf- : V' — V by s7(v;) := v; + NJv;. For 7w € B
and f € J, let mgo := 7 and ms; 1= Ty (7se-1), and let 17s50 = idy and
1"s¢s = (17s54-1) © s}rf;;. Let

£}, = min{r € Zo|3g € J, 1755, = 1"55,}.

Theorem 2 [HY08]. We have
g}r’t — IRW/,:(I),+ NR™|.
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In particular, if 17sgs = 17s,,, then mpy = 7y .

Let (R, B) be a generalized root system. Let B, (A € A) be non-empty subsets
of B such that

(i) UreaBr =B and BxNB, =0 (A # p).

(ii) For A € A and 7, 7’ € B, defining the Z-module automorphismp : V — V
by p(n(i)) := 7'(i) (i € I), we have p(R™D+) = R™(+,

(iii) VA € A, Vi € I, 3u € A, 7:(By) = B,.

For 7, ™ € B, we write 7 = 7’ if {m, 7'} C B, for some ) € A.

Theorem 3 [AY18]. Assume that €7, = k and 1"sgx = 17sgx. Assume that
there exists a non-empty proper subset S = {iy,...,iz} (it—1 < @) of {1,...,k}
such that w1 = sy (8 € {1,...,k} \ S) and £}, , = z, where f' € J is such
that f'(1) := 1y, ..., f'(z) := i,. Then there exrists a non-empty proper subset
T= {jl, .. Jx} (jt—l < ]t) Of{l, ceey k} such that Tgt—1 = Mgt (t € {1, ey k}\T)
and 1"sp , = 178y ,, where g’ € J is such that ¢'(1) :=j1, ..., §'(z) := j,. (Note
that |S| =z =|T|.)

3 Generalized Quantum Groups

Let K be an algebraically closed field. Let K* := K\ {0}. Let x : Vz x Vg — K*
be a map such that x(A, u+v) = x(A, p)x(X, v) and x(A +p,v) = x(\, v)x(u,v)
for all \, u, v € Vg. Let 1 € B. Let U = U(x, =) be the K-algebra (with 1)
satisfying the following conditions (U1)-(U5). Existence and uniqueness of U is
well-known.

(U1) U is generated by the elements K, Ly (A € Vz) and E;, F; (i € I) satisfying
the equations Ko = Lo = 1, K)\K# = K/\'H“ L,\L” = L)\-HH KAL# = LuK)‘,
K,\EiK__)\ = X(/\,ﬂ'(i))Ei, K,\EK_)\ = X()\, —W(i))ﬂ, L,\EiL._,\ = X(—ﬂ'(i), /\)Ei,
LyF;L_y = x(n(i), \)F;, E;Fj — F;E; = §;j(— Ky + Lag)-

(U2) There exist the K-subspaces Uy = U(x, ) (A € Vz) of U such that U =
Oaev,Un, UNU, C Uxryy, Ky € Uy, Ly € Uy, E; € Urpzy, F; € U_pz).

(U3) Let U° = U°(x, ) (resp. Ut = U*(x, 7)), resp. U~ = U~ (x,)) be the
K-subalgebra (with 1) generated by K L, (A, u € Vz) (resp. E; (i € I), resp. F;
(¢ € I)). Define the K-linear map 5, : U" QU@ U+t - U by (Y ® ZQ® X) :=
YZX. Then j is a K-linear isomorphism.

(U4) Define the K-linear map 75 : Vz X Vg — U° by 72(A, p) := KyL,. Then 7, is



injective, and j3(Vz x Vz) is a K-basis of U°.

(U5) We have {X € U*|E;X = XE,(Vi € I)} = Ut NU, and dimg{Y €
U-|FY =YF(Vi€ I)} =U~ Nl

Let Vot i= @ic1Z>om(i)(C Vz). For A € Vg, let U = U+t (x,m)s :=Ut NU,
and Uy = U~(x,m)x == U~ NUx. Then Ut = @,prt U, U™ = B)gyr+ U,
and Uy = Uy =K1. We also have U,y = KE; and U_ ;) =KF; (i € I).

For n € Zyg and t € K%, let (n), := > »_,t*"! and (n),! := ] _;(m);. For
aset X and amap f: X — N, let M(X, f) = {(z,k) € X xN|Vz € X,1 <
k < f(z)} and define the map p*/ : M(X, f) = X by p*f(z,k) := z. For
Y € P(Vz) and amap f : Y — N, let P& be the set of maps g : M(Y, f) —
Z>o such that (g(y))x(p(y,n(y),p(y,n(y))! # 0 for all y € M(Y, f) and such that
lg7}(N)| < o0. For A € Vi*+, Z € P(Vy*) and amap f : Z — N, let P& =
{g € BEN| Ezem(z,f) 9(2)pPN(2) = A}.

Theorem 3.1. (Kharchenko’s PBW theorem [Kha99]) There ezists a unique pair
(R*(x,m), X") of R*(x,7) € P(Vz'¥) and a map o¥™ : Z — N such that
dimU*(x, m)x = dimU~(x, 7)—x = B ¥ for all A € V+.

Let R(x, ) := R*(x,m) U (=R*(x, m))(€ P(Vz)).

Theorem 3.2. (Heckenberger’s Weyl groupoid theorem [Hec06]) If |R* (x, )| <
o0, then R(x,7) is a generalized root system and X" (o)) = 1 for alla € R*(x, 7).

Define the K-linear map &h*" : U(x,m) = U°(x,m) by Sb* "y mo =
idU(x,ﬂ')o and Gbx,n(spa’nll((U- (X’ﬂ)—)\Uo(X> W)U+(X7 W)#) = {0} for )‘7 b e Vz7r’+
with A + u # 0.

Let w : Vz — K* be a map such that w(A + u) = w(A)w(u) for all A\, u € V3.
Let 3,(x,m) == {Z € U(x,m)o|VA € Vg,VX € U(x,7)r, ZX = w(A\)XZ}. Let
HEY™ = B3 (ym- Define the map pX7 : V3 — K* by p¥7(3 . ki (i) =
[Tic; x(m (@), w(5))*, where k; € Z.

Lemma 3.3. ([BY18, Lemma 9.2]) $HEX™ is injective.

Assume [R*(x, )| < oo and assume x(a,a) # 1 for all & € R*(x, ). Let
B € R*(x,n). Let g := x(B,B). Let cg := 0 if g§ # 1 for all n € N, and let
¢p = min{m € N|qf* = 1} if ¢f* = 1 for some m € N. Let BX"(8) be the K-
subspace of U%(x, ) formed by the elements E,\,pevz ao KLy with ag ) € K

satisfying the following conditions (e1)-(e4). For A, p1 € Vg, let w7 5 := ﬁ%%f—\‘-(g)ﬂ

((3381))]t For X\, p € Vz and t € Z, if ¢y = 0 and g = w75, then apyspu—tp) =
P (B) apnu-
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(e2) For \, p € Vg, if cg = 0 and gj # wy]., for all t € Z, then a( ) = 0.

(e3)For A\, p € Vzandt € Nwithl <t < cg—1,ifcg > 2and qﬂ = W,\uﬂ’ then
Zzez a()\+(c,gz+t)ﬂ,u—(c,g:t+t)ﬂ)ﬁx'1r(ﬁ)—(cﬁm+t) = Zyez a(,\+c5yﬂ,u-cﬂyﬂ)px’"(ﬂ) Y,

(e4) For X, u € Vg, if ¢ > 2 and gf # w], for all ¢ € Z, then for
allt e Nwith1 <t < c—1, Y.z a(A+(ch+t)B’u__(cﬁz-H)B)p’“X,"l’(ﬂ)-(cgz+t) -
ZyEZ a(z\+c/sy/&u-cta1.4/3).0)"7r (B )"c‘3 v.

Let BX™ := Nger+ (x,mBL"(B)-

Theorem 3.4. ([BY18, Theorem 10.4]) Assume |R*(x,m)| < oo and assume
x(a, @) # 1 for all o € R*(x, 7). Then ImHEX™ = BJXT,
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