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On a generalization of multiple zeta functions
from the viewpoint of symmetric functions*

Yoshinori Yamasaki'
Graduate School of Science and Engineering, Ehime University

1 Introduction

The multiple zeta and the multiple zeta-star function (MZF and MZSF for short) of Euler-Zagier
type are respectively defined by the series

1 1
Wey= Y = =Y =
1<mi<-<mn my e Mn 1<my<-<mn my =" Mp
where s = (s1,...,5n) € C". These series converge absolutely for (s1),...,R(sn-1) > 1 and
R(sn) > 1. One easily sees that a MZSF can be expressed as a linear combination of MZFs, and

vice versa. For instance,

(*(s1,82) = ((s1, 82) + {(51 + s2),
C(s1,82) = ¢*(s1,82) = ¢*(s1 + 82),
¢*(s1, 82, 83) = ((s1, 82, 83) + ( (81 + 82, 53) + { (51,52 + 53) + {(81 + 82 + 83),
¢(s1,52,83) = ¢*(81,52,53) — (*(s1+ 82,83) — (* (51,82 + 53) + (*(s1 + 52 + 83),

where {(s) = (*(s) is the Riemann zeta function. The special value of ((sy,...,s,) and
¢*(s1,...,8n) at positive integers were first introduced by Euler [E] for n = 2, and by Hoff-
man [H] and Zagier [Z] for general n, independently. It is known that they appear in various
branches of mathematics and mathematical physics, such as quantum field theory, knot theory,
mixed Tate motive and quantum groups.

The aim of this article is to introduce a (skew) Schur multiple zeta function (y/,(s) for
each (skew) Young diagram )\/p from the view point of symmetric functions (as an analogue
of the (skew) Schur function sy,,) and study its combinatorial and arithmetic properties. For
instance, we will show a Jacobi-Trudi formula, Giambelli formula and dual Cauchy formula for
Schur multiple zeta functions as analogues of those for Schur functions. Moreover, we will also
give so-called 1, 3 formulas for them as analogues of those for MZFs and MZSFs.

2 Definition of SMZFs

2.1 Combinatorial settings

We first set up some notions of partitions.

*All the results presented here are obtained in joint works with Maki Nakasuji and Ouamporn Phuksuwan
[NPY] and Henrik Bachmann [BY].
YPartially supported by Grant-in-Aid for Scientific Research (C) No. 15K04785.
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A partition of n € N is a tuple A = (Ay,...,Ap) of positive integers A; > --- > A, > 1 with
n=|A\| = A1 +---+ Ap. In this case, we write A - n. For another partition p = (u1,..., 1), we
write p C A if ¢ < p and p; < \; for all 1 < 7 < ¢. For partitions A, u with p C ), we identify the
pair \/p = (), p) with its (skew) Young diagram D(\/p) = {(3,5) € Z*|1 < i < p, pi < j < M}
where we set u; = 0 for i > ¢. In the case where 1 = ) is the empty partition, we just write
Mp =X We put M p| = |\ = |- An entry (i,7) € D(\/u) is called a corner of A\/p if
(i,7+1) € D(A\/p) and (i +1,5) € D(\/1). We denote the set of all corners of A/u by Cor()\/
©). The conjugate of A/p is the pair X'/p' with X = (A],... ,A;,) and py/ = (u’l,...,p,;,) where
? = A1 and p/ = p; whose Young diagram is the transpose of that of A\/u. A (skew) Young
tableau s = (s;5)(i,j)eD(/u) ©f shape A\/p is a filling of D(A/p) obtained by putting s; ; € C into
the (4, j)-entry of D(A/p). We will also just write (s; ;) if the shape A/p is clear from the context.
A Young tableau (m; ;) is called semi-standard if m; ; € N, m;; < miy1,; and m;; < my j4 for
all 7 and j. The set of all Young tableaux and all semi-standard Young tableaux of shape A/u
are denoted by T'(\/p) and SSYT(A\/u), respectively.

2.2 Definition

We call a Young tableau s = (s; ;) € T(\/u) admissible if R(s; ;) > 1 for (, ) € Cor(A/p) and
R(s;;) > 1 otherwise. Let W, C T(\/p) be the set of all admissible Young tableaux of shape
A/ p. For 8 € W), the Schur multiple zeta function (SMZF for short) associated with A/u is
defined by
@=0ue)= ¥ M -
(ma,,)ESSYT(N/ ) (i,5)€D(A )~ 47

and (p = 1 for convenience. It is essentially shown in [NPY, Lemma 2.1] that the series converges
absolutely for s € W),,. Clearly, this is a generalization of both MZFs and MZSFs since

@) Clno =Com [ [1] |+ ot o) = oo ([ To0])-

Sn

Remark 2.1. Our Schur multiple zeta functions is not new in the sense that it can be written
as a linear combination of MZFs or MZSFs. For example, when A\/u = (2,1)/(1), we have

81.181£| 1
¢ = E, 1Sz, Sii

52,1 miy <mie L1 M2 Mol

A
m2,1

= ((51,1,51,2,82,1) + (51,1, 82,1, 51,2) + (51,1, 51,2 + 82,1) + (51,1 + 81,2, 52,1)
= (*(51,1,51,2, 82,1) + (¥ (81,1, 52,1, 81,2) — (¥ (51,1, 81,2 + 52,1) — ¢* (81,1 + 52,1, 51,2)-

In the following discussion, we often study such multiple zeta functions by regarding them
as analogues of symmetric functions. Actually, let © = (1,2, ...) be variables and

Sx/u = Sx/u(@) = > | |
(m3,5)ESSYT(A ) (i) DA/ k)

the Schur function associated with A/p. One easily sees that ¢/, is an analogue of s)/,.
Moreover, for n € Z>o, let

en =en(x) = Z Ty ** Tmps P = ho(x) = Z T+ Ty

1ISmi<-<mn 1<m<-<mp
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be the ementary and complete symmetric functions, respectively. Then, since s(n) = €p and
S(n) = hn, from (2.1), we can say that { and (* are respectively analogues of e, and h,. Notice
that the power-sum symmetric function

[~}
Pn=pn(x) = Zz?’
i=1

which is another important class of symmetric functions, corresponds to {(ns).

2.3 A special case

For s € C, let {s}*/* = (s;;) € T(\/1) be the Young tableau of shape \/u defined by s;; = s
for all (i,5) € D(A/). We here notice that, though it is not true for general s € W, /,, (({s}*)
is realized as a specialization of the Schur function, namely,

C{sIMH) = s5/u(17%,27%,..).
This leads the following result.

Proposition 2.2. Let R(s) > 1. Then, ¢({s}*/*) can be written as a polynomial in ¢(s), {(2s),
¢(3s), ... with rational number coefficients. More precisely, if we write each monomial modulo
coefficient as []} ¢(v;s) satisfying 11 > -+ > vy, then (v1,..., 1)  |A/pl.

Proof. Since sy/,(x) is symmetric, it can be written as a Q-linear combination of p,(z) =
[Tiey Py () for v = (v1,...,0) & |\/p| (see [Ma]). Therefore, ¢({s}*/*) = syu(17%,27%,..) as
a Q-linear combination of p, (17%,27%,...) = [Ti_; P, (175,27%,...) = [T1; ¢(vis). O

Corollary 2.3. For k € N, ¢({2k}»#) € Qn2kMul,

Proof. This immediately follows from Proposition 2.2 with the well-known formula {(2k) =

(—l)k‘lgg(lc—z%fw"’k € Q72 where By, € Q is the Bernoulli number. 0

Example 2.4. When \/p = (3,2)/(1), since

1 1 1, 1 5, 54
3(3v2)/(1) = —Zp‘i - §P3P1 + '8-122 + szpl + -2—41)1,
we have
S Sl _ _l _ l l 9 l ) i .
C(Ls s ) = —¢(4s) = 3CBs)((s) + 5¢(25)° + 7¢(2)C(s)" + 574(5)
and hence

7]\ 61 4
= 362880 °

4] 667 6
™
631547280000

6 ) 9077644 2

oY
/
'S

[o2] Ke>) L NN

T 432684797065192546875
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Remark 2.5. Let f*# be the number of standard Young tableaux of shape A\/u (i.e., semi-
standard tableaux (m; ;) € SSYT(A/u) such that {m; ;| (i,5) € D(A/p)} = {1,2,...,|1\/ul})- It
is shown in [S] that, only for k = 1,2,3, there exists Young tableaux o/ such that (({2k}*/*) =
Cy /“(2k)7r2’°|>‘/ #l where Cy /u(2k) € Q is involved in f°/T. More precisely, for any A/ satisfying
A1 € m and |A/p| = n, it can be written as

f@XN+rm+om—1)/ (2 +bm 1)

Mpy — 2n
@ @rrmi "
C({4}A/#) — 2m+2nf(4x+2'rm+36m-1)/(4,u+36m-1) ‘,74",

(4n + 2m)!
6™ 26nf(6)\'+3'rm +56m-1)/(61'+56m—1)

Muy — 6n

CHB}™) (6n + 3m)! .

where v, = (1™) and §,,, = (m,m—1,...,2,1). For example, when A\/p = (3,2)/(1), m = A1 =3

(and n = 4), we have
T3]\ FOSI/ED
C([z 2 )‘ i

C 1[4) _ ol1 f(16,13,6)/(10,3)7r16
4[4 22! ’

6 33!
Together with the expressions in Example 2.4, we have respectively

fO8/ @) = g710,  f(16136)/(103) — 579637674, f(25,20.9)/(165) = 50270540048960.

’ 6]6] _ 63224 £(25,209)/(16,5) ™
[6 '

3 Relations among SMZF's

This section is devoted to give relations among Schur multiple zeta functions which are anlogues
of those for Schur functions. To describe our results, we need the set

W:\i/izg={(si,j)GW)\/ulsiJ:sk,, ifj—i=l—k}.

For a tableau s = (s;;) € Wf'/.';g, we always write s, = s.(,) Where c(u) = j — i is the content of

u = (1,7) € D(M\/p). For example, 8 = (s;;) € W(df;gz) implies that s is of the form

51,1/51,2(51,3 81,4] S0 |81 |52 |83 !
8 = 192,1/82,2/52,3 = [s-1/80 | 51
93,1(93,2 S—2(9-1

3.1 Jacobi-Trudi formula

Let A = (A1,..., Ap) and p = (u1,. .., q) be partitions satisfying p C A. Write X' = (M},..., X))
and p' = (pi,..., py) with p’ = A and ¢’ = p1. Recall that the Schur function sy, satisfies
the following Jacobi-Trudi formula

8x/u = det [hh-—m-iﬂhsi,jsp )

Sxju = det [e,\l‘,_“;__i+j:| 1< i<y’ 3
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where we understand that hg = ¢g = 1 and h, = e, = 0 if n < 0. For example, when \/
u=(4,3,2)/(2,1), we have

€1 €3 €5 €g

h2 h4 h6 1 €2 €4 E€j5

sus2/en =| 1 h2 ha|, sug2yeu=
A 0 1 e e3
2 0 0 1 e

As an analogue of these formulas, SMZF's satisfy the following formula.

Theorem 3.1 ([NPY, Theorem 1.1 for u = ) and Theorem 4.3 for general p]). Retain the above
notations. Assume that 8 = (3; )i j)eD(r/u) = (Se(w))ueD(V/u) € Wf;‘;g.

(1) Assume further that R(s; ;) > 1 for all 1 < ¢ < p. Then, we have

Co/u(8) = det [C*(sltj—j+l’ Spy—jt2s e e ,suj-j+(,\,--,,,»-i+j))] <ig<n

Here, we understand that ¢*(---)=1if A\ —pj—i+j=0and 0if \; — p; —i+j <O.

(2) Assume further that R(sy; ;) > 1 for all 1 <i < p'. Then, we have

() = det [0y g1y 5oyt gan S gt i)

Here, we understand that (---) = 1if X, — g} —i+j=0and 0if X, — pj—i+j<0.

We notice that just combining these two expressions for (y/,(s), we obtain a family of
algebraic relations among MZFs and MZSFs.

Example 3.2. When \/p = (4,3,2)/(2,1), we have

52193 I (*(s2,83) €*(s0,91,52,83) (*(s-2,8-1,50,51,32,53)
¢ 80 |81 = 1 ¢*(s0,81) ¢*(s-2,8-1,%0,81) )
—2I8—1 0 1 C*(s—z) 3—1)
82|83 I C(3—2) ((-90,3—1,3—2) ((82’ 81, So, 3—1)3—2) C(83132131, 30, 3—1)8—2)
C 30l s = C(So, 8-1) C(82,81,30,8_1) 4(33132”91130,8—1)
e 0 1 ((s2,81) ((ss, 82, 81)
p2f1 0 0 1 ¢lss)

In [NPY], the proof of Theorem 3.1 is given in two ways: One is obtained by establishing
an analogue of Lindstrom-Gessel-Viennot Lemma. Namely, we can regard {,/,(s) for s € Wf};g
as a sum of weights, defined by the variable s, of certain lattice paths in Z2? determined by
A/ p (remark that, in [NPY], this proof is given only for the case of u = @, however, one can
easily generalize it for general x). Another is obtained by regarding (y/,(s) as a specialization
of Macdonald’s ninth variation of Schur functions studied by Nakagawa, Noumi, Shirakawa and
Yamada [NNSY], which satisfy the Jacobi-Trudi formulas.

Remark 3.3. In general, for s € W), we can also find a kind of Jacobi-Trudi formulas for
Y, u(s), however, in this case, we encounter some ”error terms” which disappear when s € Wf};g,
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in the formulas. For example, when A = (2,2), we have

al5]\ _ | ¢(@b) ¢ d.b)
C( cld ) = @ ¢ed)
+ C*(C’ d’ b’ 0.) - (*(c,a, by d) + C*(C, a’b + d) - C*(C, d’b + a)v
al5]\ _ | ¢@o) ¢bdyo)
‘( c|d ) =] @) cbd)

+¢(b,d,c,a) — ((b,a,c,d) + {(b,d,c + a) — ((b,a,c+ d).

Notice that the error terms (*(c,d,b,a) — ¢*(c,a,b,d) + (*(¢c,a,b + d) — (*(c,d,b + a) and
¢(b,d,c,a) — ¢(b,a,c,d) + {(b,d,c + a) — {(b,a,c + d) disappear when a = d. It seems to
be interesting to find explicit expressions of the error terms for the Jacobi-Trudi formulas of
C/u(8) for se Wy,

3.2 Giambelli formula

Let A= (p1 —1,...,pt — 1| q1,...,q) be the Frobenius notation of the partition A, that is,

t is the number of diagonal entries of A and p;,...,p; and qi,...,q are respectively defined

bypi=MA—i+1and ¢ =X —ifor 1 <i<t Notice that p > ps > --- > p; > 0 and
q1 > g2 > -+ > g > 0. The Giambelli formula for Schur function s, is given by

=d t[ . ] .

R AL I PPV

For example, when A = (4,3,3,2) = (3,1,0] 3, 2,0), we have
Sam SBIEEI S,

F o e
g

As an analogue of these formulas, SMZFs satisfy the following formula.

S(4,18) S(4,12) S(4,19)
S(2,8) $(2,12) $(2,19)
S(1,18)  S(1,12) 8(1,1)

o 1O

S\ =

Theorem 3.4 ([NPY, Theorem 4.5]). Retain the above notations. Assume that 8 = (s;;)(; j)en())
= (Se(u))ueD(n) € W2 Moreover, assume further that R(s; »,) = R(sp,—1) > 1 and R(sx,i) =
R(s_g;) > 1 for 1 < i < t. Then, we have

(a(8) = det [C(pi,qu)(si.j)] i<t

where

So | 81 | S2 | Bp—1

8 = [ € W(p,-,lqi)'

S—q,

This is also obtained by regarding {)(s) as a specialization of Macdonald’s ninth variation
of Schur functions, which satisfy the Giambelli formula.
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Example 3.5. When )\ = (4,3,3,2) = (3,1,0]3,2,0), we have

S0 (S1 |82 '83 I
S0 | S1 L82L33J
$—-1
C r— C is_ 1 C(|30|81|82l83|)

-2

P2 -

p-3
So[81]82 83| S0 3l—|

S0 |81
S—1| So | S1 S—1
¢ = 5 = ¢([so]21])
IS—21S—-1| So 18—2) 1
M 5 _ol

15315 —2f 1S — 3 —

¢ = ¢([=])

3.3 Dual Cauchy formula

Let p,q € N and put r = p+q. For a partition A = (A1,...,Ap) C (¢?), define the complementary
partition X* C (¢?) of A by X* = (p—N),...,p— M) C (p") For example, when p=5,q¢ =7
and A = (6,4,4,3,1), we have \* = (5,4,4,2,1,1,0).

For variables © = (z1,%2,...,%p) and y = (y1,%2,...,Yq), the dual Cauchy formula for Schur
function is given by
E SA(m)sA‘ (y H H(zz + y]
AcC(qr) i=1j=1

As an analogue of these formulas, the SMZF's satisfy the following formula.

Theorem 3.6 ([NPY, Theorem 4.8]). Retain the above notations. Let s = (s,,J)(,,])ep((qp)) =

(Sc(u)JueD((g?) € W(d )g and t = (ti;)G5)eD(p)) = (te(u))ueD(@e)) € (p.,)g Assume that
R(s;) > 2 and R(¢;) > 2 for all i € Z. Then, we have

3 ()G (sl) G (Elar)

AC(gP)
1 C*(SI—P) C*(sl—py 32—p) e {*(sl_p, e 130) cee C*(sl-})» ey s'r-l—p)-
0 1 ¢*(s2-p) oo C*(S2=py--+r80) 0 (*(S2-py--ySr—1-p)
= det 0 - 0 1 C*(So) <o C*(s0,. - .', Sr—1-p)
1 C*(tl-q) C*(tl—q, t2—q) N C*(tl—q, e ,to) . C*(tl—q, . ’tr—l—q)
0 1 C*(te—g) -+ C*lta—gr--rto) = C*(ba—gs---bro1-g)
Lo - 0 1 ¢*(t0) o tr_1-q)

Here, s|) € Wfiag and ¢y« € Wy, diag are the shape restrictions of s and ¢ to A and \*, respectively.

This is again proved by regarding {x(8) as a specialization of Macdonald’s ninth variation of
Schur functions, which satisfy the dual Cauchy formula.
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Example 3.7. When p = 2 and g = 3, the lefthand side of the dual Cauchy formula is given by

%0 |51 1% 0|8 szl s 31|82| m

C(s—lso 31)_C<3_180 )C(>+<(8;1 )C()
to

(e )+ (] (<[ ()

2|

[~y
(=)

to trl ';— 13 to{t1 to |11
+C(|30l31|)C 1] +C(;—°->C(t0 tl )—C()C t_afto| | + ¢ | t-1|to
= 51 —1|to - s

On the other hand, the righthand side is

1 ¢*(s-1) (*(s-1,%) ¢*(5-1,80,81) ¢*(s-1,50,51,52)
0 1 ¢*(s0) ¢*(s0,51) ¢*(30, 51, 82)

det [ 1 (*(t—2) (*(t-2,t-1) C*(t-2,t-1,t0) (*(t-2,t-1,%0,%1)
0 1 ¢*(t-1) ¢*(t-1,t0) ¢*(t-1,to,t1)
0 0 1 ¢*(to) ¢*(to, 1)

4 1,3 formulas for SMZVs

To find explicit expressions for special values at positive integers of Schur multiple zeta functions
(SMZVs for short) are another interesting problem. Here, we finally show so-called 1, 3 formulas
for SMZVs, which can be regarded as analogues of formulas

(@1) ({13 = o = Lo

' ’ (dn+2)! 4» '

n 1 k B
(42) GAL3M =3 (‘Z) C(4k +3)C({1,3}"%),
k=0

respectively obtained in [BBB, BB} for MZVs. Here, for ki,...,kr € N, {k1,...,k,}"* is the n
times repetition of kj,...,k,. Remark that the corresponding formulas for MZSVs are obtained
in [Mu].
4.1 Stairs

In this section, we show 1,3 formula for SMZVs of stair type, that is, of shape éy = (N,N —
1,...,2,1). In the following, the coloring is just for optical reasons.

Theorem 4.1 ([BY, Corollary 4.6]). (1) For odd N > 1, we have

= 4HVOED et [c (@6 +5) = 5)] |y
<i,j< M




176

(2) For even N > 2, we have

Con =47V det[C (4G +7) - 1)]1<ijsﬂ'

These formulas are obtained by using the Jacobi-Trudi formulas obtained in Theorem 3.1
together with the help of (4.1) and (4.2). Notice that, in [BY, Corollary 4.6], more generally,
1,3 formulas for SMZVs of shape dy/u are obtained.

Remark 4.2. The righthand side of the formulas in Theorem 4.1 are so-called the Hankel
determinant. See [Mo] and [HZ] for the similar topics.

Example 4.3.

(@) =z,

[<B3)|,

= LB <)
2 ¢(7) <ayp

117 <)
41 |¢(11) <(15)|”

L@« can
= 5|40 D) ¢15)
¢ai) s ¢19)

1 ¢ ¢y ¢s)
= & [6an ¢@s) (9.
¢(15) ¢(19) ¢(23)

» €

4.2 Ribbons

A Young diagram A/ is called a ribbon if it is connected and does not contain any 2 x 2 blocks.
In this section, we show 1,3 formulas for SMZVs of ribbon type.

Theorem 4.4 ([BY, Theorem 3.4]). For n > 1, let 0, = (n,n,n—1,...,2,1)/6p—1 and o}, =
(n+1,n,...,8,2)/6,—1. We have

43 G, = 3" FCEPRE™).

k=0

In particular, these values are in Q74".

The next theorem asserts that all odd Riemann zeta values are realized as a SMZV by adding
a 1 on the bottom left or a 3 on the top right of the former tableau in Theorem 4.4.

Theorem 4.5 ([BY, Theorem 3.5]). For n > 1, let ap = (n+1,n+1,n,n—1,...,8,2)/8, and
Bn = 0p41/0n—1. we have

1
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These formulas (4.3) and (4.4) are obtained by considering the corresponding generating
functions, which can be written in terms of the Gauss hypergeometric function. We notice that
the second one in (4.4) is also derived from the Jacobi-Trudi formula studied in the previous
section together with (4.1) and (4.2).

With Theorem 4.4 and Theorem 4.5, one reaches the following result.

Theorem 4.6 ([BY, Theorem 3.1]). All Schur multiple zeta values of ribbons type whose entries
are 1,3 and are arranged as in a Checkerboard style are in Q[r%, ¢(3), ¢(5),¢(7),-. ).

Let us check this by the following example (then one can understand the general case). We
notice that a harmonic product formula (see [BY, Lemma 2.2]), which gives an expression of a
product of SMZVs as a sum of SMZVs, plays a crucial role in the calculation:

= —4(3)’«5)

129600 @+ 16“11)

5 Concluding remark

For k > 0, let Z; be the Q-vector space spanned by all multiple zeta values of weight k. It
is conjectured by Zagier that dim Zj = dj where {dx}r>0 is defined by the recurrence formula
do=1,d1 =0,ds =1 and dy, = dix_o + dx_3 for £ > 3. To solve this conjecture, one needs to
find all linear relations among MZVs of fixed weight.

It is worth mentioning that Kaneko and Yamamoto [KY, Conjecture 4.3] conjectured that
any linear dependency of MZVs over Q can be deduced from the iterated integral representations
of Schur multiple zeta values associated with some anti-hooks. Here, we mean that an anti-hook
is anti-diagonal transpose of a hook. Let us consider the simplest case, that is, A\/p = (2,2)/(1)

(1]
with k =

mlz] From the definition (series expression), we have

<(113)=§k;n2= )ETD DI SISy

k<m<n k=m<n m<k<n m<k=n

=20(1,1,2) +¢(2,2) + {(1,3).

On the other hand, as is proved in [KY] (see also § 6 in [NPY] for more general cases), it has
an iterated integral representation;

1] _ dr dy dz dw
C([l 2 )—/z<y<z>w l—zl—yz 1-—w —/w<z<y<z +/:<w<y<z +/z<v<w<z

0<z,y,z,w<1 0<z,y,2,w<1 0<z,y,z,w<1 0<z,y,2,w<1

=3¢(1,1,2).
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Combining these equations, we have a linear relation

€(2,2) +¢(1,3) = ¢(1,1,2).
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