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On localized trapped modes in a pipe-cavity system
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Abstract

The work is concerned with an analytical study of acoustic trapped modes in a cylindrical
expansion chamber, placed in between two semi-infinite pipes (waveguides). Trapped mode
solutions are expressed in terms of Fourier-Bessel series, with the expansion coefficients
determined from a determinant condition. The roots of the determinant, expressed in terms
of the wavenumber k, correspond to trapped modes. In the case of a shallow cavity, in
the sense that the cavity radius is only slightly larger than the pipe radius, asymptotic
approximations for the coefficients of the determinant can be applied. The determinant then
reduces to a simple form with four-rowed minors placed on a diagonal, enabling analytical
evaluation and a proof of existence of trapped modes. We consider here circumferential mode
numbers m > 1. For a shallow cavity and for low values of the circumferential mode number
there is just one trapped mode in the allowable wave number domain kpin < k¥ < Kmax, where
kmin is the cutoff frequency for acoustic waves in the cavity and kmax is the corresponding
cutoff frequency in the pipes. This mode is symmetric about a radial axis in the center of
the cavity.

1 Introduction

The existence of trapped modes in a variety of physical systems has received much attention
for more than sixty years and it is now known that trapped modes may be found across a wide
range of length scales, from waveguides in the ocean, over acoustic and elastic waveguides, to
quantum waveguides [5]. A trapped mode, also called a localized mode, refers to an infinite
medium in a state of linear oscillations only in the vicinity of an object or a geometrical fea-
ture which can act as a resonator. There is no radiation of energy to infinity; the energy is
also trapped, or localized. One reason for the attention these problems have received is math-
ematical: the trapped modes, characterized by a discrete wavenumber spectrum, co-exist with
the continuous spectrum which is characteristic for guided waves in an infinite domain. The
solutions to these problems are thus non-unique even though the problems are linear.

The present paper gives an analytical solution to the problem of acoustic trapped modes in
a cylindrical expansion chamber, placed in between two semi-infinite pipes, i.e. waveguides, a
problem which previously has been investigated just numerically [2]. The existence of trapped
modes is proved in the case of a shallow cavity, shallow in the sense that the radius of the cavity
is only slightly larger than the radius of the connecting pipes.



2 Problem formulation

Consider a cylindrical cavity — an expansion chamber — connected with two semi-infinite
cylindrical pipes (wave guides), as shown in figure 1.
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Figure 1: Sketch of the configuration.
Let the radius of the pipes be r¢ and let the radius of the cavity be ;. The length of the

cavity L1 = z9 — z;. Cylindrical polar coordinates z, 7,8 will be used. The propagation of sound
through the system is governed by the wave equation

2%¢
57 = 2?9, (1)
subject to the Neumann condition
Vé-n=0 (2)

on the solid boundaries. Here ¢(¢, z,7,8) is the velocity potential, with ¢ being the time, co is
the speed of sound, and n is the inward pointing normal vector. The Laplacian in cylindrical
polar coordinates is given by
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The sound pressure p(t, z, 7, 6) is given by
p=—pd¢/ot, (4)

where p is the fluid density. The acoustic particle velocity u = (u_,u,, up) is given by

u="Ve. (5)

3 Construction of a trapped mode

We will here consider the construction of a trapped mode. By employing the method of
separation of variables, the solution to (1) can be expressed in the form of a Fourier-Bessel
series. In the cavity domain z; < z < z2 the mode m solution can be written

o0 o0
. — T
P1m = Z P1mn = Z {Cmn efimn? 4 Dpne ’kl’""z} Im (Jmng) ) (6)
n=0
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where m is the circumferential mode number, Cp,;, and Dy,y, are constants, Jp,(2) is the Bessel
function of first kind and order m, jmn are the zeros of J),(z), where the dash denotes differen-
tiation with respect to the argument z, and

. 2
2_ (Imn =¥
K pm = K (TI), k o (7)

A factor e~ e has been suppressed. The zeros jmy, are ordered such that
Jmo < Jm1 S me <0 - (8)

It is noted also that m < jmo [1, p. 370]. The complete solution is given by ¢1 = >, d1m. In
the following a single, fixed value of m will be considered rather than the sum over m. This is
equivalent to the approach in (8].

The function Jpm(jmnr/m1), 0 < 7/r1 < 1, is shown in figure 2 for » = 0, 1, 2, and 3, with
m =1 in part (a) and with m = 3 in part (b). For any value of m the value of n corresponds to
the number of nodal points in the domain 0 < r/r; < 1; thus there are no nodal point for n = 0,
one nodal point for n = 1, etc. As part (b) indicates, the larger the value of m the ‘flatter’ are
the graphs by small values of r/r;.
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Figure 2: The function Jp,(jmn7/71) plotted in the range 0 < r/r; < 1 with m =1 in (a) and
m = 3 in (b). Plain lines: n = 0; broken lines: n = 1; dotted lines: n = 2; dash-dot lines: n = 3.

In order to construct a trapped mode we consider the following mode m solutions in the pipe
domains. In the left hand domain —oco < z < z1, the left-going (outgoing) wave

¢’6m Z Amn Im (]mn )e—iko,,mz’ —0<z< 2z <0, (9)
n=0
where )
o = 2= (222, 10)
To

and in the right-hand domain 22 < z < 00, the right-going (and again outgoing) wave

S = ZanJ (JmnT()) efomn2 (0 < 25 < 2 < 00. (11)

n=0
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The functions kom, and kimn in (10) and (7), respectively, are specified as

k2 — (J'm_n)2, k>m

Ta

komn = > Ta a=0,1. (12)
i (Jm) —k2, k< Jmn
Ta TQ

It is thus seen that a trapped mode may be present by mode (m,n) if the wavenumber % is in

the range ) )
Imn < Imn (13)
T1 To

where jmn/To is the cutoff frequency for mode (m,n) for a pipe of radius 7y and jmn /71 is the
cutoff frequency for mode (m, n) for a pipe of radius ;. This is because, with this specification
of k, the solution has the form e¥!¥1mn! in the cavity domain and the form e~ lkomnzl ip the pipe
domains.

It is noted that the expansions (6), (9), (11) constitute complete sets of functions [7]. These
functions must satisfy matching and boundary conditions at the steps. At z = z; these conditions
are given by

(b‘,—no(zl—) = ¢1m(21+), 0<r< 70, (14)
Winey ) = 2mi), 0<r<m, (15)
8¢1m (z14) = 0, ro<r<rmy. (16)

Similar conditions apply at z = 22. It is noted that the boundary conditions

Odom _ Od1m
or =0 for 21 <2< 29, o

T=T0 r=r1

=0 for z<z,z> 2, (17)

which apply as well, are exactly satisfied by the solutions (6), (9), and (11). The conditions (14)
(at z = z;, z2) are Dirichlet conditions, while (15) and (16) (also at z = z1, 22) are Neumann
conditions.

The mixed boundary value problem (6), (9), (11) and (14)-(16) (again with similar conditions
applying at z = z2) can be discretized by converting the boundary conditions (14) (16) to a
Galerkin weak formulation, using the weight functions Jp, (qu )T and Jp, ( Jmgr o) The
residual equations take the forms

" {bom(21-) = bim(s12)} I (Gmg = ) =0, 19)
0
{2 o) = 22 1) (g ) i =0, (19
. / 2041 ) (qu%) rdr =0, (20)

for ¢ =0,1,2,--. Combining (19) with (20) we get

/0 ° 6¢°’"<9z(z1 Vm (]mq ) rdr —/ ¢1m (z14+)Im (qu ) rdr =0. (21)
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4 Nondimensionalization

Next we make the equations nondimensional by introducing the nondimensional parameters
r ~
f=l, i=2, k=kr, a=-. (22)
T1 T

IEOmn = lv .71?,m - IE, Elmn =Y k- a2j12nn- (23)

The three series solutions (6), (9), and (11) are now expressed in the forms

F=

)

=
S
-

Also, let

S ik1mn (2—71) Fimn(-22) | _ 1 Im (Jmnof) 2jz
¢ = {C el 1mn{2—21 + D e—l 1mnl?—22 } - k - mn , 24
1m ; mn mn klmn .]% (Jmn) ]%m_m2 ( )
00 .o .
_ _ik s—31) Im (mnT) 252 5< 3
G =Y  Ampe komn(Z=21) mp U _Smr__ o< 3< 3 <0, (25)
om ,,; ™ J’r%z (Jmn) ]gnn —m?2
and
00 .
Fomn (3-72) Im (JmnT) _ 277 s s
+ B ikomn (2—22) Zm \Jmn mn 0 < . 26
#om = 2 Brme T2, () T 2’ 2SES (26)

n=0
5 Determinant condition

The matching and boundary conditions (18) and (21), evaluated at Z = %; and Z = 25, can
with (24), (25), and (26) inserted be written

)
Z {anAmn - -Flmqncmn - flmqneiklm"(22_21>Dmn} = 0’ (27)
n=0
o .1 ~ ~
Z {6anmn _ flmqnexklmn(zz—zl)cmn — -Flmanmn} =0,
n=0
0 .7 -~ -
Z {]'-qunAmn + 8gnCrmn — 6qnelk1"m(22—zl)Dmn} =0,
n=0
i .7 -~ ~
Z {fzmanmn _ 6qnenk1mn(zz—21)cmn + 5an"m} =0,
n=0
for g=0,1,---, where 4, is Kronecker’s delta and
20252 kL 1
F — i mn _ 1mn - . 28
tman Jm —m2 a2jk, — -772nq J2, (Jmn) (28)
X {ajanm+1(ajmn)Jm(jmq) - Jm(ajmn)Jm+1(jmq)}>
20252 k 1
F: 2mgn = Jrom L (29)

Jom —m? 5 — 0‘2.7.1%1:1 J2, (jmn)

X {janm-H (jmn)Jm(ajmq) - O‘Jm(jmn)Jm+l (ajmq) } .



The functions (28) and (29) have been obtained by employing the relations [9, Ch. V]

1 )
T G o i) 7 = 322 [ = ] (s G (30)
mg
and
1 1
0 Jmn — Img
X {O‘janm (9mq) Im+1 (@Fmn) — FmgJdm (@Fmn) Im+1 (jmq) }
Written in matrix form, (27) can be expressed as
Ab=0, (32)

where b = {Amo Bimo Cmo Dimo Ami Bmi1 Cmi Dmi ...}T. The elements of the matrix A are
denoted by agn, ¢,n = 0,1,---. The condition for the existence of a trapped mode at a given
value of the wavenumber  is that the infinite determinant

A =det A =|ag|g° =0. (33)

In terms of the nondimensional variables a trapped mode may exist in mode (m,n) in the
wavenumber range
aJmn < k < Jmn- (34)

6 Symmetric and antisymmetric solutions

It is seen directly from (27) that two types of solutions are possible: symmetric solutions,
#(z) = ¢(—z), and antisymmetric solutions, ¢(z) = —@(—z). By symmetric solutions, Amn =
Byn, and Cpypy = Dy, for any m,n. By antisymmetric solutions, Ay, = —Bpp, and Cpyp =
—Dyy, for any m,n. In both cases, (27) reduces to the following system of just two equations:

i {aanmn — FimgnConn (1 + ei"ﬂm(fz—fl)) } =0, (35)

n=0
o

{]:2manmn + 6anmn (1 F eikl"‘"(b_il))} =0,
n=0
g =0,1,---. In each of these two equations the upper sign (before the exponential function)
gives the symmetric solution, while the lower sign gives the antisymmetric solution.

7 The case of a shallow cavity

Here we consider the case where o < 1, that is to say, o is slightly smaller than one. Use
will be made of the expansion [1, p. 363]

oo}

Inlimn) = ™ 3 (10 = 1Pt i) (36)
=0 £
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Let e=1— . For 0 < € € 1 we can write
Im(0Fjmn) = & I (T jmn) + O(€). (37)
The functions Fimgn and Fomgn, defined by (28) and (29), then reduce to
Fimgn = 0gna™2k;L 0, Fomgn & 6gna™komn. (38)

A comparison between the ‘full’ functions Fimgn and Famgn and their asymptotic approximations
(38) is shown in figure 3. The graphs are obtained with m = 1, ¢ = n = 0, and with k =
% j1o(e + 1). As would be expected, the agreements are very good when « is close to one, i.e.
when € = 1 — « is small, and less good otherwise. The trends are similar for any values of m, g,

n, and k.
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Figure 3: Comparisons between the functions Fimgn and Fomgn, defined by (28) and (29), and
their asymptotic approximations, defined by (38).

Employing (38) the system (27) reduces to

ad m+2 m+2 L
Z Oqn {Amn - (f Cmn ~ Cf vlklm"(zz_zl)Dmn} =0, (39)
n=0 klmn kimn
" L. m+2
Z 6‘1" {an ~ ’klmn(zz_zl)cmn - C~Y Dmn} =0,
n—O kl mn 1mn
Z an {ami‘;OmnAmn + Cmn — eiélmn(h_il)Dmn} =0,
n=0
e -~ A ~ -~
Zafm {akamann - elkl"m(zZ—_zl)c'mn + Dmn} =0,
n=0
g=0,1,---. That is to say, the determinant decouples into four-rowed minors [4, p. 20], i.e.,

blocks of size 4 x 4, placed on a diagonal, and with zeros elsewhere. The (determinant of the)
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minor no. n is evaluated as

1k1mn(z2 -z1) -
A, =28 " 7 [2k0mnk1mna2(m+l) cos(Frmn (32 — 51)) (40)

1mn

=i (Egmna4(m+1) + iélzmn) Sin(klmn(‘% - 51))]-
The original determinant is evaluated as A = []>2 A,
Consider first the case where k 2 Qjmn (k is just shghtly larger than ajmy), specifically let

6% = k% — 022, 0 < 6% < 1. Then kipmn = 6 and komn ~ ijmn(1 — az)%. Inserting this into
(40) gives

EMA ~ 1[25' (1 — a?)202™+D cos(5(7 — 7)) (41)

2 eii‘:lmn (22—21) " Jrmn 2 !

- (;jf,ma‘*(m“)(l —a?) + 52) sin(8(Z2 — 21))]
& 10[2mn(1 - 0®)FaXmHY 4 2 oM (1 - o?)(z, - a)|.

Consider next the case where k 5 jmn (K is just slightly smaller than jmy), specifically let

82 =342, - k2,0 < 62 < 1. Then komn = i6 and Kimp ~ Jmn(1 — a2)%. Inserting this into (40)
gives

EMA,I ~ i[zéjmn(l — 02)202™ D) cos(jn /1 — o(32 — 51)) (42)

2 eiklmn(§2'—21)

( 82atm+1) 4 52 (1 — )sm(ymn\/ 1—o02(3 — 71) ]
i[26jmn(l — a?)5a2m+)
— (~#%4m D 4 32, (1- 0%)) (jmnV/1 — 02(5 — 21)|

. 3,
~ —ij3.(1—a?)2(% — 7).

R

Q

In the first case, (41) clearly shows that —i% —-—’-clﬂm_—An is real and > 0 for k 2 ajpmn, while
2e‘klmn(22 Z1) ~

1 k
2 gik1mn (Z2—21)

also, that neither eifimn(2-21) por Fimn is zero in QJmn < k < jmn. Thus A, (and thus A) has,
at least, one zero for ajm, < k < Jmn- To locate one or more of these zeros, set A, = 0 and let

in the second case, (42) shows that A, is real and < 0 for k < = Jmn- It is noted,
k = 5jmn. Using (40), the expression for A, = 0 can be written as

e (2 ayh) ooy (1= 3)F(E - a?)i i3
tan (22 = 2@ — D)) = 2 4

Assuming that § ~ « < 1 we can use that tan(---) =~ (---). Using also that (1 — 52)% ~1-33,
(43) gives that

3 o2(m+1) (22 _ zl)jm'n, (012 + a4(m+l)) 3 (44)
s= ’
%oﬁ(m"‘l) + (22 — Z1)jmn (1 + d4(m+l))
or equivalent]
‘ Y 530%™ — (%2 — 21)jmn (1 — o)
=1+ 2 (45)

302D 4 (2 — 21)jmp (1 + a4(mHD))

In order to satisfy the condition ajm, < k < Jmn it is necessary that a < § < 1. It is clearly
possible to choose a cavity length Z; — Z; such that this condition is satisfied. In particular,
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< 1if 3 — 7 > o™t /{(1 — a®)jmn}. (It is noted that the lowest possible value of j, is
j10 = 1.8412---.)

We finally discuss the limit o — 1, where the cavity disappears altogether. In this limit (13)
degenerates into a single point, k = jmn. Then, from (23) we obtain komn = kimn = 0. Thus
there is no wave motion and no meaningful solution to the problem, as there shouldn’t be either.

In the following we check (45) in this limit. As a — 1, k — kmax, that is, k& — Jmn, the
cutoff frequency of the pipes. This means that § — 1 in (43). Then, in (44) and (45), the square
root function (1 — 52)% needs to be approximated not for 5 small but for 1 — 32 small. Here use
can be made of Lanczos’s power expansion of y = 1/ in terms of Chebyshev polynomials [3, p.
485]. The first approximation is simply y1 = z. Using this approximation in (43), (45) takes

the form o )
B (22 — Z1)jmn (1 — o°)
@2(mH1) 4 (75 — Z1)jmn (1 + @dm+1))’

?x~1 (46)

which correctly gives that § — 1, and thus that k= Emax = Jmn, as a@ — 1.

8  Symmetric and antisymmetric solutions in the case of a shal-

low cavity

Employing the shallow cavity approximation (38) to the two equations (35), they reduce to
o m+2 - L
> b { A = 5 (12 6m =) | 0, (a7)
n=0 k

1mn
o ~ .1 -~ ~
Z ‘5qn {akamnAmn + Cmn (1 F elkl’""(22_zl))} =0.
n=0
Here the upper signs correspond to the solution symmetric about the r axis, while the lower
signs correspond to the antisymmetric solution. The determinant of the nth minor is

Ay = 1 F elfimn@=51) | o2m+1) Komn (1 + ei"“w-(fz—fﬂ) ) (48)

1mn
We consider first the symmetric case, that is, the upper signs in (48). With these signs (48)

can be written as
A, = zei%hmn(fz—il) (49)
k 1. 1.
x { o2m+1) Komn “kimn(Z2 — 71) ) —isin (| Zkimn(Z2 — 51 )) )
1mn 2 2

Consider first the case where & g AJmn (I:: is just slightly larger than ojmy,), as done in the
previous section. Then kimn = 6 and komn ~ ifmn(1 — az)%. Inserting these approximations
into (49) it can be written

Ap =~ 20205 /1 — a2 {—-;-(22 —5)+ ié—‘} . (50)

Consider next the case where & < Jmn (K is just slightly smaller than jy,). Then Koms = i6 and
Ktmn & jma(l — a2)%. Inserting these expressions into (49) gives

1, U .. .
Ap ~ igfnn (1- a2) (2 — 21)? — ijmn V1 — 02(52 — 7). (51)
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Thus both the real part and the imaginary part change signs. This shows that a symmetric
trapped mode exists in the domain ajmn < k < Jmn-

Consider next the antisymmetric case, that is, the lower signs in (48). Then (48) can be
written

A, = 2eizhimn(f2-5) (52)
X {cos (%fclmn(z? - 21)> - ia2(m+1)goﬂsin (%Elmn(zz - 21)) } )

1mn
In the case where k % @jmn (52) can be approximated as
Ap =2+ 2m /1~ 62(5 — 7) +10(6). (53)
In the case where & $ jmn We get
An =~ 2+ ijmnV/1 — @2(52 — 51). (54)

The positive real parts in both (53) and (54) indicate that there is no antisymmetric trapped
mode in the case of a shallow cavity.

9 Conclusion

In this paper we have carried out an analytical study of acoustic trapped modes in a cylin-
drical expansion chamber, connected with two semi-infinite pipes that are waveguides. The
problem has been solved by employing the method of separation of variables, giving Fourier-
Bessel expansion-type of solutions in each of the three subregions left pipe, expansion chamber,
and right pipe. The solutions for each of these three regions have been linked via boundary- and
matching-conditions, giving an infinite determinant for which the roots correspond to trapped
modes. For the case of a shallow cavity — i.e. the cavity radius is only slightly larger than the
pipe radius - it has been found that the infinite determinant decouples into four-rowed minors
(sub-determinants of dimension 4 x 4) placed along a diagonal, enabling analytical evaluation
into a simple expression. Asymptotic results predicting the existence of trapped modes have
been given in this limit for which there, with low values of the circumferential mode number m,
is just one trapped mode in the allowable wave number domain, kpin < & < kmax. It is shown
that this mode is symmetric about a radial axis in the center of the cavity.

While we have restricted the analytical studies of the present paper to the case of a shallow
cavity, there is another interesting limit case that may be studied analytically, namely that of
a narrow cavity (22 — Z; small). It may be suspected that a deep, narrow cavity will, in effect,
approach a three-dimensional Helmholtz resonator, that is, a three-dimensional version of the
first problem studied in [6]. This may be of interest to examine in future work.
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