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Abstract

Let G be a reductive group, P be its parabolic subgroup, and H be a closed
subgroup of G . There are several studies on the orbit decomposition of the flag
variety G/P by the H‐action, and these studies are expected to play an important
role in various problems such as branching problem of G with respect to H . In thib
note, we focus on explicit descriptions of the orbit decomposition of a multiple flag
variety (G\times G\times \cdots \times G)/(P_{1} \times P_{2} \times \cdots \times P_{m}) by the diagonal action of G.

Now, let G be a general linear group on an algebraically closed field with char‐
acteristic 0 . Magyar‐Weyman‐Zelevinsky proved that there are only finitely many
orbits only if m\leq 3 . Furthermore, they also classificd all tuples (P_{1}, P2, . . . , P_{m}) of
parabolic subgroups where the number of orbits are finite, and gave explicit orbit
decompositions for these cases. The aim of this note is to give an explicit description
of the orbit decomposition for m\geq 4 , the case where infinitely many orbits exist.

1 Introduction

There have been many studies on the relations between orbit decompositions on flag
varieties and representation theory. For example, for a real reductive algebraic group G,
its minimal parabolic subgroup P_{G} (resp. a Borel subgroup B_{G} of the complexification G_{c}
of G) , and its algebraically defined closed sUbgroup H , Kobayashi‐Obhima [2] proved the
following theorem on the relationship between the H‐orbits (resp. H_{c}‐orbits) on the real
flag variety G/P_{G} (resp. complex flag variety G_{C}/B_{G} ) and the analysis on the homogeneous
space G/H :

Theorem 1.1. For an irreducible admissible representation  $\pi$ of  G and a finite dimen‐
sional irreducible representation  $\tau$ of  H , let c_{\mathfrak{g},K}( $\pi$, \mathrm{I}\mathrm{n}\mathrm{d}_{H}^{G} $\tau$) be the multiplicity of the un‐
derlying (\mathfrak{g}, K) ‐module $\pi$_{K} in the space of sections for the vector bundle \mathrm{I}\mathrm{n}\mathrm{d}_{H}^{G} $\tau$ on  G/H
associated with  $\tau$ . Then the followings are equivalent:

(1)  H (resp. H_{c}) has an open orbit on G/P_{G} (rcsp. G_{C}/B_{G});

(2) for all irreducible admissible representations  $\pi$ of  G and finite dimensional irre‐
duciblc rcpresentations  $\tau$ of  H, \mathrm{c}_{\mathrm{g},K}( $\pi$, \mathrm{I}\mathrm{n}\mathrm{d}_{H}^{G} $\tau$) < \infty . (resp. boundcd proportionally
to \dim $\tau$) .

A homogeneous space G/H satisfying the first condition in the theorem is called a
real spherical variety (resp. sphcrical varicty).

A number of people, for instance, Brion, Vinberg, Kimelfeld, Bien, Matsuki, and
Kobayashi, proved that G/H is real spherical (resp. spherical) if and only if the riuiriber
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of H‐orbits (resp H_{c}‐orbits) on the flag variety G/P_{\mathrm{C}} (resp. G_{c}/B_{G} ) is finite [3]. Remark
that for a non‐minimal parabolic subgroup P of G , it may occur that H has infinitely
many orbits and some open orbits on G/P simultaneously.

In this note, we focus on the orbit decomposition of an m‐tuple flag variety of G=GL_{n}
especially for the m‐ary direct product of projective spaces under the diagonal action of
G . This is because it is the simplest case among the cases where H has some open orbits
and uncountably many orbits simultaneously on a flag variety G/I^{\supset} in some sense.

The main idea is to decompose the multiple flag variety into finitely many pieces by
using the notion of direct sums of multiple flags, and to classify those pieces whether it
becomes a single orbit or it decomposes into infinitely many orbits.

2 Main problem and settings

Let G be the general linear group of the degree n\geq 2 over the field \mathbb{K}=\mathbb{R} or \mathbb{C} . We also
let P denote the parabolic subgroup of G with blocks of sizes (1, n-1)_{:} and we consider
the multiple flag variety G^{m}/P^{m} . Our main problem is to describe the diag (G)‐orbit
decomposition of this multiple flag variety.

We know that  G^{m}/P^{m}\simeq (\mathbb{P}^{n-1}\mathrm{K})^{m} . Hence our main problem is equivalent to describ‐
ing the orbit decomposition of (\mathbb{P}^{n-1}\mathbb{K})^{m} under the diagonal action of GL(n;\mathbb{K}) .

In this setting, the following proposition holds.

Proposition 2.1. (1)  m\geq 4\Leftrightarrow there are infinitely many orbits.

(2)  m\leq n+1\Leftrightarrow there exists an open orbit.

If there are only finitely many orbits, then there exists an opcn orbit. On the other
hand, the converse does not hold in general. (If  P is the minimal parabolic subgroup,
then it holds.) In other words, there are some cases where open orbits and infinitely iriany
orbits exist simultaneously. In our case, if 4\leq m\leq n+1 , then open orbits and infinitely
many orbits exist simultaneously. Hence, our setting includes the following 3 situations:

(1) the number of orbits is finite ( \Rightarrow there exists an open orbit);

(2) the number of orbits is infinite, but there exists an open orbit;

(3) there is no open orbit ( \Rightarrow \mathrm{t}\mathrm{h}\mathrm{e} number of orbits is infinite).

Example 2.2. If (n, m) = (2,3) , we are considering the casc where GL(2;\mathrm{K}) acts diago‐
nally on the ternary product of \mathbb{P}^{1}\mathrm{K} by the Möbius transformation. Any 3 distinct points
can be transformed to (0,1, \infty) by this action. hence representatives of all orbits can be
described as

(0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1, \infty) .

In particular if (n, m) = (2,2) , representatives of all orbits can be described as
(0,0) , (0,1) .
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Example 2.3. If (n, m) = (2.4) , we replace the ternary product of \mathbb{P}^{1}\mathrm{K} with 4‐ary
product. For a 4‐tuple (z_{\rceil}, z_{2}, z_{3}, z_{4}) such that z_{\rceil} \neq  z_{2} \neq z3 \neq  z_{1} , by transforming
(z_{1}, z_{2}, z3) to (0,1, \infty) , z_{4} is transformed to

(z_{2}-z_{3})(z_{4}-z_{1})
(z_{1}-z_{2})(z_{3}-z_{4})

which is GL(2;\mathrm{K})‐invariant. Hence there exist infinitely many orbits represented by

(0,1, \infty, z) (z\in \mathbb{P}^{1}\mathrm{K}) .

3 Main result

To describe all orbitb combinatorially, we introduce a bet of some partitionb of \{ 1, 2 \ldots . ,  m\}
with some extra conditions and information. Let \mathcal{P} denote the set of tuples

p= (\{I_{a}\}_{a=1}^{A}, \{J_{b}\}_{b=1}^{B}, \{(K_{c}, r_{c})\}_{c=1}^{c})
satisfying the conditions:

(1)
A, B, C, r_{c}\in \mathbb{N}, \emptyset\neq I_{a}, J_{b}, K_{c}\subset \{1, 2, . . . , m\} ;

(2)

(\displaystyle \coprod_{a=1}^{A}I_{a}) \sqcup (\prod_{b=1}^{B}J_{b}) \sqcup (\coprod_{\mathrm{c}=1}^{c^{\mathrm{Y}}}K_{c}) =\{1, 2, . . . , m\} ;

(3)
3\leq\# J_{b} (1\leq\forall b\leq B) ;

(4)
4\leq r_{c}+2\leq\# K_{c} (1 \leq\forall_{\mathcal{C}}\leq C) ;

(5)

0\displaystyle \leq A+\sum_{b=1}^{B}(\# J_{b}-1)+\sum_{c=1}^{c}r_{c}\leq n.
The number r(p) denotes the summation in (5).
With this combinatorial material, we can claim the main result as follows:

Theorem 3.1 ([5]). There exists a surjection

 $\pi$ : diag (G)\backslash G^{m}/P^{m}\rightarrow \mathcal{P}

onto the finite set \mathcal{P} with the property that, forp\in \mathcal{P} , there exists an open dense embedding

\displaystyle \prod_{c=1}^{c^{ $\gamma$}}(\mathbb{P}^{r_{\mathrm{c}}-1}\mathrm{K})^{\# K_{c}-r_{\mathrm{c}}-1} \hookrightarrow$\pi$^{-1}(p)
in the classical topology.
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To give explicit representatives of orbits, we introduce the following notations in gen‐
eral settings.

Let F^{(1)}, F^{(2)} , . . . , and F^{(rr $\iota$)} be flags with the common whole space. More precisely,
for a vector space V , each F^{(x)} is a sequence of subspaces of V such as

F^{(i)}= (0=V_{0}\subset V_{1} \subset. . . \subset V_{n_{ $\iota$}-1} \subset V_{n_{ $\iota$}}=V) .

Then we call (F^{(1)}, F^{(2)}, \ldots, F^{(rr $\iota$)};V) an m‐tuple flag.
We define the notion of the direct sum of multiple flags as the collection of direct sums

of each subspaces. More precisely. given two flags F = (0 = V_{0} \subset  V_{1} \subset. . . \subset  V_{n-1} \subset

 V_{n} =V) and G= (0= W_{0} \subset W_{1} \subset. . . \subset W_{n-1} \subset W_{n} = W) , we define the dircct SUiii
of the flags F and G by

F\oplus G= (0=V_{0}\oplus W_{0}\subset V_{1}\oplus W_{1} \subset. . . \subset V_{n-1}\oplus W_{n-1} \subset V_{n}\ominus W_{n}=V\oplus W) .

For two multiple flags F=(F^{(1)}, F^{(2)}, \ldots, F^{(m)};V) and G= (G^{(1)_{\dot{0}}}G^{(2)}, \ldots, G^{(7n)};W) , we
define the direct sum of two multiple flags by

F\oplus G= (F^{(1)}\oplus G^{(1)}, F^{(2)}\oplus G^{(2)}, \ldots F^{(m)}\dot{}\ominus G^{(m)};V\oplus W) .

Example 3.2. Let F and G be double flags defined by

F= ((0\subset \mathrm{K}\subset \mathrm{K}), (0\subset 0\subset \mathrm{K});\mathbb{K}) ,

G= ((0\subset 0\subset \mathbb{K}), (0\subset \mathbb{K}\subset \mathrm{K});\mathrm{K}) .

The whole space of F\oplus G is \mathrm{K}^{\oplus 2} , and let \{e_{1}, e_{2}\} be the standard basis. Then we have

F\oplus G= ((0\subset \mathrm{K}e_{1} \subset \mathbb{K}^{\oplus 2}), (0\subset \mathbb{K}e_{2}\subset \mathbb{K}^{\oplus 2});\mathrm{K}^{\oplus 2}) .

On the other hand, if

F'= ((0\subset \mathbb{K}\subset \mathrm{K}), (0\subset \mathrm{K}\subset \mathbb{K});\mathrm{K}) ,

G'= ((0\subset 0\subset \mathrm{K}), (0\subset 0\subset \mathrm{K});\mathrm{K}) ,

then we have

F'\oplus G'= ((0\subset \mathbb{K}e_{1} \subset \mathrm{K}^{\oplus 2}), (0\subset \mathbb{K}e_{1} \subset \mathbb{K}^{\oplus 2});\mathbb{K}^{\oplus 2}) .

We say that a multiple flag is indt,composable if it cannot be realised as the direct sum
of two non‐trivial (the whole space is non‐zero) multiple flags.

Two multiple flags F=(F^{(1)}, F^{(2)}, \ldots, F^{(m)};V) and G= (G^{(1)}, G^{(2)}, \ldots, G^{(m)};W) are
said to be isomorphic to each other if there exists a linear isoiiiorphisiii f : V\rightarrow W , and
f sends all subspaces in F to those of G . More precisely, if F^{(i)} and G^{(i)} are expressed as

F^{(i)}= (0=V_{0}^{(i)} \subset V_{\perp}^{(i)} \subset. . . \subset V_{n_{l}-1}^{(i)} \subset V_{n_{l}}^{(i)} =V) ,

G^{(i)}= (0=W_{0}^{(\mathrm{z})} \subset W_{1}^{(i)} \subset. . . \subset W_{m_{ $\iota$}-1}^{(i)} \subset W_{m_{ $\iota$}}^{(i)} =W) ,

then n_{i}=m_{i} and f(V_{j}^{(i)}) =W_{2}^{(i)} for all i ’s and j' \mathrm{s}.

13



Example 3.3. For two double flags F\oplus G and F'\oplus G' in Example 3.2, they are not
isomorphic to each other.

For a multiple \mathrm{f}\mathrm{l}\mathrm{a}\mathrm{g}_{i} we can define the notion of dimension vector by taking the dif‐
ference of dimensions between the subspaces. Let F = (0 = V_{0} \subset  V_{1} \subset. . . \subset  V_{n-1} \subset

 V_{n} = V) be a flag, then we call (\dim V_{j} - dini V_{j-1})_{j=1}^{n} the dimension vector of F and

denote it \dim F . If we have a multiple flag (F^{(1)}, F^{(2)}, \ldots, F^{(m)};V) , then we define the
dimension vector of this multiple flag just by lining up the dimension vectors of F^{( $\iota$)\prime}\mathrm{s} to
be an m‐tuple of vectors with non negative integral entries. Remark that for a dimension
vector of a multiple flag, the \mathrm{b}\mathrm{u}\mathrm{m} of entrics iri each row is independent of i' \mathrm{s} , bince it ib
equal to the dimension of the whole space V.

It is clear that diiii (F\oplus G) = diiii F+ dini G for multiple flags F aiid G . Hence, if
we have a decomposition of a multiple flag into indecomposables, then the summation of
dimension vectors of each summand is equal to the original dimension vector.

Now, we define some indecomposable multiple flags to give explicit representative,b of
orbits in Theorem 3.1. From now on, we write the multiple flag ((0 \subset V^{(1)} \subset V), (0 \subset

 V^{(2)} \subset V) , . . . . (0\subset V^{(m)} \subset V);V) just as (V^{(1)}, V^{(2)_{:}}\ldots, V^{(m)};V) .

(1) The cases for Ia’s.

At first, we consider the case where I_{a} = \{1, 2, . . . , k\} . Let F(\{1,2, \ldots, k\}) be the
m‐tuple flag defined by

k m-k

F (\{1, 2, . . . , k\}) = (\overline{\mathbb{K},\mathbb{K},\ldots};\mathbb{K}, \overline{0,0,\ldots 0\dot{}} ; \mathbb{K}) .

(3.1)

To cover permuted ones, we define F(I) for general I\subset\{1, 2, . . . : m\} by

F(I) (i)= \left\{\begin{array}{ll}
\mathrm{K} & i\in I,\\
0 & i\not\in I.
\end{array}\right. (3.2)

(2) The cases for Jb’s.

At first, we consider the case where J_{b}=\{1, 2, . . . , r+1\} . Let G(\{1,2, \ldots, r+1\})
be the m‐tuple flag such that

r+1 m-r-1

G(\{1,2, \ldots.r+1\}) = (\mathbb{K}e_{1} , \mathbb{K}e_{2}, \ldots,\overline{\mathrm{K}e_{r},\mathbb{K}(\sum_{l=1}^{r}e_{1})}, \tilde{0,0,\ldots\prime,0};\mathrm{K}^{\oplus r}) (3.3)

where \{e_{1}, e_{2}, . . . , e_{7}.\} is the startdard basis of \mathbb{K}^{\oplus r}.

To cover permuted ones, we define G(J) for general J=\{i_{1} <i_{2} <. . . <i_{r} <i_{r+1}\}
by

G(J) (i)= \left\{\begin{array}{ll}
\mathrm{K}e_{l} & i=i_{l} \in J, 1 \leq l\leq r,\\
\mathbb{K} (\sum\'{i}=1^{C_{l})} & i=i_{r+1} \in J,\\
0 & i\not\in J.
\end{array}\right. (3.4)
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(3) The cases for (K_{c}, r_{c})' \mathrm{s}.

Similarly to the previous cases, we consider the case where K_{c}=\{1, 2, . . . , k\} . Note
that 2 \leq  r_{c}+2 \leq  k by (4) in the definition of \mathcal{P} . Now r denotes r_{c} for simplicity.
For q=(q_{r+2}, q_{r+3}, \ldots, q_{k}) \in (\mathbb{P}^{r-1}\mathrm{K})^{k-7'-1} , we define the m‐tuple flag G(K, r, q) by

r+1 k-r-1 m-k

G(K, r, q) = (\mathbb{K}e_{\rceil} , Ke2, . . . ,\overline{\mathbb{K}e_{r},\mathrm{K}(\sum_{l=\perp}^{r}e_{l})}, \overline{q_{r+2},q_{r+3},\ldots,q_{k}},\tilde{0,0,\ldots,0} ; \mathrm{K}^{ $\Theta$ r})
(3.5)

where \{e_{1}, c_{2}, . . . , e_{ $\Gamma$}\} is the standard basis of \mathrm{K}^{\oplus $\tau$}.

To cover permuted ones, we define G(K, r, q) for general K = \{i_{1} < i_{2} < . . . <

i_{k}\}\subset\{1, 2, . . . \grave{/}m\} by

G(K, r, q) (i)= \left\{\begin{array}{ll}
\mathbb{K}e_{l} & i=i_{l} \in K, 1\leq l\leq r,\\
\mathrm{K}($\Sigma$_{l-1}^{r}e_{l}) & i=i_{r+1} \in K,\\
q_{l} & i=i_{l} \in K, r+2\leq l\leq k,\\
0 & i\not\in K.
\end{array}\right. (3.6)

Now, let

p= (\{I_{a}\}_{a=1}^{A}. \{J_{b}\}_{b}\ovalbox{\tt\small REJECT};=1, \{(K_{c}, r_{c})\}_{c=1}^{\mathcal{C}^{ $\gamma$}}) \in \mathcal{P}
and F be a multiple flag cxpressed as

F=F(\displaystyle \emptyset)^{\oplus(n-r(p))}\oplus (\bigoplus_{a=1}^{A}F(I_{a})) (\bigoplus_{b=1}^{B}G(J_{b})) (\mathrm{D} (\bigoplus_{c=1}^{c}G(K_{c}, r_{c}, q^{(c)})) ,

where

(q^{(1)}, q^{(2)}, \displaystyle \ldots, q^{(C)}) \in\prod_{c=1}^{c}(\mathbb{P}^{r_{c}-1}\mathrm{K})^{\# K_{c}-r_{c}-1}
Then F can be identified with an element of  G^{m}/P^{m}\simeq (\mathbb{P}^{n-1}\mathbb{K})^{m} and

 $\pi$ (diag (G) .  F ) =p.

Furthermore, this correspondence from \displaystyle \prod_{c=1}^{c^{\mathrm{V}}}(\mathbb{P}^{r_{c}-1}\mathbb{K})^{\# K_{\mathrm{c}}-r_{\mathrm{c}}} 1
to $\pi$^{-\perp}(\{p\}) ib one of the

embeddings in the Theorem 3.1.

Example 3.4. For the case (n, m) = (2,2) , we have

\mathcal{P}=\{p_{c}= (\{\{1,2\}\}, \emptyset, \emptyset), p_{0}= (\{\{1\}, \{2\}\}, \emptyset, \emptyset)\}.

The orbit corresponding to p_{c} is the orbit through

F(\emptyset)(\mathrm{D}F(\{1,2\})= (0,0;\mathrm{K})\mathrm{o}(\mathbb{K}, \mathrm{K};\mathbb{K}) = (\mathrm{K}c_{2}, \mathrm{K}e_{2};\mathbb{K}^{\oplus 2})
where \{e_{1}, e_{2}\} is the standard basis of \mathbb{K}^{\oplus 2} . This is the closed orbit in \mathbb{P}^{1}\mathrm{K}\times \mathbb{P}^{1}\mathbb{K}.

On the other hand, the orbit corresponding to p_{0} is through

F(\{1\})\oplus F(\{2\})= (\mathrm{K}, 0 \mathbb{K})\oplus(0, \mathrm{K}, \mathrm{K}) = (\mathbb{K}e_{\rceil}, \mathrm{K}e_{2};\mathrm{K}^{\ominus 2}) ,

and this is the open orbit in \mathbb{P}^{1}\mathbb{K}\times \mathbb{P}^{1}\mathbb{K} . Recall Example 3.2.
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Example 3.5. For the case (n, m) = (2,3) , we have

\mathcal{P}=\{p_{c}=(\{\{1,2,3\}\}_{7}\emptyset, \emptyset) , p_{1}= (\{\{2,3\}_{:}\{1\}\}, \emptyset, \emptyset) , p_{2}=(\{\{1,3\}, \{2\}\}, \emptyset, \emptyset) ,

p_{3}= (\{\{1,2\}, \{3\}\}.\emptyset, \emptyset) , p_{0}= (\emptyset, \{\{1,2,3\}\}, \emptyset)\}

The orbit corresponding to p_{(} . is the orbit through

F(\emptyset)\oplus F(\{1,2,3\}) = (0,0 , K) \oplus(\mathbb{K}, \mathrm{K}, \mathbb{K};\mathbb{K}) = (\mathrm{K}e_{2}, \mathrm{K}e_{2}, \mathrm{K}(\supset 2;\mathrm{K}^{(\mathrm{D}2})
where \{e_{1}, \mathrm{e}_{2}\} is the standa.rd basis of \mathrm{K}^{\oplus 2} , and this is the closed orbit in \mathrm{P}^{1}\mathrm{K}\times \mathbb{P}^{\rceil}\mathrm{K}\times \mathbb{P}^{1} K.

The orbit corresponding to p_{\rceil} is the orbit through

F(\{1\})\oplus F(\{2,3\})= (\mathrm{K}, 0_{\dot{0}}0;\mathrm{K}) \oplus(0, \mathrm{K}, \mathbb{K};\mathrm{K}) = (\mathrm{K}e_{1}, \mathrm{K}e_{2}, \mathrm{K}e_{2};\mathbb{K}^{\oplus 2}) .

The representatives of the orbits corresponding to p_{2} and p_{3} are obtained similarly.
On the other hand, the orbit corresponding to p_{0} is through

G (\{1, 2, 3\})= (\mathrm{K}e_{1}, \mathrm{K}e_{2}, \mathrm{K}(e_{1}+e_{2});\mathbb{K}^{\oplus 2}) .

This is the open orbit in \mathbb{P}^{\rceil}\mathrm{K}\times \mathbb{P}^{1}\mathrm{K}\times \mathrm{P}^{\rceil} K.

Example 3.6. For the case (n, m)= (5,9) , we set

p=(\{\{1,2\}\}, \{\{3,4,5\}\}, \{(\{6,7,8,9\}, 2 \in \mathcal{P}.

We have r(p) = 5 . For the tuple (K_{1}, r_{1}) = (\{6,7_{:}8,9\}, 2) , we have r_{1} = 2 and k =

\# K_{1}=4 under the notation in the definition of \mathcal{P} . Thus, we now deal with the multiple

flag G(K_{1}, r_{1}, q) where q \in \mathbb{P}^{1}\mathrm{K} with q = \left(\begin{array}{l}
q_{1}\\
q_{2}
\end{array}\right) \in \mathbb{P}^{1}\mathrm{K} . The orbit corresponding to

(p, q) is through

F(\{1,2\})\oplus G(\{3,4,5\})\oplus G(\{6,7,8,9\}, 2, q)
= (\mathbb{K}, \mathbb{K}, 0,0,0,0,0,0,0;\mathbb{K})\oplus(0,0, \mathrm{K}e_{1}, \mathrm{K}e_{2}, \mathrm{K}(e_{1}+e_{2}).0,0,0,0;\mathrm{K}^{\oplus 2})

\oplus(0,0,0,0,0, \mathbb{K}e_{1}, \mathrm{K}e_{2}, \mathbb{K}(e_{1}+e_{2}), \mathrm{K}(q_{1}e_{1}+q_{2}e_{2});\mathbb{K}^{\oplus 2})
=(\mathbb{K}e_{1}, \mathbb{K}e_{1}, \mathbb{K}e_{2}, \mathbb{K}e_{3}, \mathbb{K}(e_{2}+e_{3}), \mathbb{K}e_{4}, \mathrm{K}e_{5}, \mathbb{K}(e_{4}+e_{\mathrm{o}} \mathrm{K}(q_{1}e_{4}+q_{2}e_{5});\mathbb{K}^{\oplus 5})

where \{c_{1}, e_{2}, . . . , e_{5}\} is the standard basis of \mathbb{K}^{\oplus 5} . Remark that in this case there is no

open orbit.

4 Splitting of flags into indecomposables

Let a = ((a_{j}^{(i)})_{j=1}^{n_{l}})_{i=1}^{m} be an m‐tuple of vectors with non‐negative integral entries \mathrm{s} $\iota$ \mathrm{J}\mathrm{c}\mathrm{h}

that the number n=\displaystyle \sum_{J^{=1}}^{n_{l}}a_{j}^{(i)} does not depend on i . We call such a an abstract dimension
vector, and |a| denotes the number n . For an n‐dimensional vector space V , the multiple
flag variety Fl_{a}(V) is defined as the set of all multipl ỉlags whosc\lrcorner whole spaces are  V

and whose dimension vectors are a.
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Let G=GL(n;\mathrm{K}) with \mathbb{K}=\mathbb{C} or \mathbb{R} , and P be the the parabolic subgroup of G with
blocks of sizcs (1, n-1) . We consider the homogeneous space G^{m}/P^{m} . Clearly G^{m}/P^{m}
is identified with Fl_{a}(\mathrm{K}^{\oplus n}) where

m

a= (\overline{(1,n-1),(1,n-1),\ldots,(1,n-1)}) .

Under this identification we have

diag (G)\backslash G^{m}/P^{m}\cong Fl_{a}(\mathbb{K}^{\oplus $\gamma$ 1})/\simeq.

Now, our main problemi describing the double coset diag (G)\backslash G^{m}/P^{m} , is interpreted as
describing isomorphic classes of multiple flags with the dimension vectors a . To determine
all isoiiiorphic classes, it suffices to consider the decoiiipobitions of multiple flags with the
dimension vectors a into indecomposable ones. More precisely,

Fl_{a}(\mathrm{K}^{\oplus n})/\simeq \cong \{\{m_{I}\}_{I}\in $\Lambda$-|$\Sigma$_{I\in $\Lambda$}-m_{I}\dim I=a, m_{I}\in \mathbb{Z}_{\geq 0}\}
(\cup (\cup

(\mathrm{D}_{I\in\overline{ $\Lambda$}}T^{\oplus m} ĩ \mapsto \{m_{ $\Gamma$}\}_{\in\overline{ $\Lambda$}}

where \tilde{ $\Lambda$} is a system of representatives of all indecomposable multiple flags. Furthermore,
we have a surjection

\{\{m_{I}\}_{I\in $\Lambda$}-|$\Sigma$_{I\in\overline{ $\Lambda$}}m_{I}\dim I=a, m_{I} \in \mathbb{Z}_{\geq 0}\} \rightarrow \{\{m_{d}\}_{d\in $\Lambda$}|$\Sigma$_{d\in $\Lambda$}m_{d}d=a, m_{d}\in \mathbb{Z}_{\geq 0}\}
(1)

\{m_{I}\}_{I\in\overline{ $\Lambda$}} \mapsto \{$\Sigma$_{\dim I=d}m_{I}\}_{d\in $\Lambda$}
(4.1)

where  $\Lambda$ is the set of all abstract dimension vectors  d such that there exists an indecom‐

posable multiple flag with the dimension vector d_{:} and d is an summand of a.

Considering these maps, our problem is separated into the following 2 problems:

\bullet determining all combinations of dimension vectors whose sum is equal to the original
dimension vector  a , which is purely combinatorial problem (determining the set in
the right‐hand side of the surjection above);

\bullet determining all isomorphic classes of indecomposable multiplc flags with the \mathrm{g}\mathrm{i}\mathrm{v}$\zeta$^{ $\Delta$}.\mathrm{n}
dimension vectors, which is a slightly complicated problem (determining the preim‐
ages of the surjection).

The surjection in Theorem 3.1 is the composition of three maps above. More pre‐
cisely, for an orbit \mathcal{O} in G^{m}/P^{m}, I_{a}, J_{b} , and (K_{c}, r_{c}, q_{c}) occuring in  $\pi$(\mathcal{O}) express that
the multiplicities of F(I_{a}) , G(J_{b}) , and G(K_{c}, r_{c}, q_{c}) defined in (3.1)-(3.6) are all 1, and
multiplicities of other indecomposable multiple flags arc 0 but F(\emptyset) . The multiplicity of
F(\emptyset) is n-r(p) .

First of all, we determine all possibilities of abstract dimension vectors which are
summands of a . All summands of a are of the forms

k m-k
--

d(r, k)= ( (1, r-1), \ldots, (1, r-1), (0, r), \ldots, (0, r)) ,
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or its permutations of entries. We see that |d(r, k)| = r . The numbers r and k should
satisfy 1 \leq r\leq n and 0\leq k\leq m . Remark that if r=n then k=m.

Now to determine all indecomposable multiple flags for each dimension vector d(r_{i}k) ,
we introduce the Tits form.

For a dimension vector d , the Tits form Q(d) is defined as

Q(d)=\dim GL(W)-\dim FL_{d}(W) ,

where |d| =r , and W is an r‐dimensional vector space.
For this quadratic form, there is an important property.

Theorem 4.1 ([1], [4]). If there exists an indeeo7nposable multiple flag with lhe dimension
vector d , then Q(d) \leq  1 . Furthermore, if there exists an indecomposable multiple flag
with the dimension vector d and Q(d) = 1 , then all indecomposable multiple flags with
the dimension vectors d are isomorphic to each others.

Permuting the entries preserves the Tits form, hence it suffices to consider the dimen‐
sion vectors of the form d(r, k) now. One can easily compute that

Q(d(r, k))=(r-1)(r-k+1)+1.

(1) The case where r=1.

Clearly Fl_{d(1,k)}(\mathrm{K}) is a singleton, and the only multiple flag with this dimension
vector is of course indecomposable. The only isomorphic class of multiple flags with
the diiriension vectors d(1, k) is represented by

k m-k

(\overline{\mathrm{K},\mathrm{K},\ldots,\mathrm{K}}, \tilde{0,0,\ldots,0}; \mathbb{K}) \in Fl_{d(1,k)}(\mathrm{K}) . (42)

This is just F(\{1,2, \ldots.k\}) which we defined in (3.1).

To ‘cover all permuted ones, we redefine the dimension vector 1(I) as

1(I)(i) = \left\{\begin{array}{l}
(1, 0) i\in I,\\
(0,1) i\not\in I
\end{array}\right. (4.3)

for I \subset \{1, 2, . . . , m\} with \# I = k . It is clear that d(1, k) = 1(\{1,2, \ldots :  k and
the indecomposable multiple flags corresponding to 1(I) are given by F(I) in (3.2).

(2) The case where r\geq 2_{\dot{\text{ノ}}} and 0\leq k\leq 2.

Now Q(d(r, k)) \geq  2 holds always. Hence there is no indecomposable multiple flag
with the dimension vector d(r, k) by Theorem 4.1 in this case.

(3) The case where r\geq 2 , and k\geq 3.

Now the value of Q(d(r, k)) is

Q(d(r, k)) \leq 0 \Leftrightarrow 4\leq r+2\leq k,
Q(d(r, k)) =1 \Leftrightarrow r+1 =k,
Q(d(r, k)) \geq 2 \Leftrightarrow k\leq r.
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Hence there is no indecomposable multiple flag with the dimension vector d(r, k) if
k\leq r.

If r+1=k , the multiple flag

r+1 m-r-1

(\mathbb{K}e1 , Ke2, . . . ,\overline{\mathrm{K}e_{r},\mathrm{K}(\sum_{k=1}^{r}e_{k})}, \tilde{0,0,\ldots,0} ; \mathrm{K}^{\oplus $\gamma$}\cdot) \in Fl_{d(r,r+1)}(\mathbb{K}^{\oplus r}) (44)

is just G(\{1_{\grave{}}2, \ldots, r+1\}) defined in (3.3), and this is indccomposable. By Theorem
4.1, G(\{1,2, \ldots, r+1\}) is contained in the unique isomorphic class of indecompos‐
able multiple flags with the dimcnsion vcctors d(r, r+1) .

To cover permuted ones, we redefine the dimension vector d(J) for  J\subset \{1, 2, . . . , m\}
as

d(J)^{(\mathrm{z})} = \left\{\begin{array}{ll}
(1, r-1) & i\in J,\\
(0, r) & i\not\in J
\end{array}\right. (4.5)

where r+1=k=\# I . It is clear that d(r, r+1) =d(\{1,2, \ldots, r_{\dot{1}}r+1 and the

indecomposable multiple falg corresponding to d(J) are given by G(J) in (3.4).

On the other hand if 4\leq r+2\leq k , then there may exist ifiore than two isomorphic
classes of indecomposable multiple flags with the dimension vectors d(r, k) by Theo‐
rem 4.1. $\Lambda$_{d(r,k)} denotes the set of all isomorphic classes of indecomposable multiple
flags with the dimension vectors d(r, k) , and consider the topology relatively defined
from the classical topology of \mathbb{P}^{1}\mathbb{K} . In fact, there is an open dense embedding of
(\mathbb{P}^{r-1}\mathbb{K})^{k-r-1} into $\Lambda$_{d(r,k)} defined by

(p_{r+2_{\dot{}}}p_{r+3}, . . . p_{k})\mapsto
 r+1 k-r-1 m-k

(\mathbb{K}e_{1}, \mathbb{K}e_{2}, \ldots,\overline{\mathrm{K}e_{r},\mathbb{K}(\sum_{k=1}^{r}\supset\prime k)}, \overline{p_{r+2},p_{r+3},\ldots,p_{k}},\tilde{0,0,\ldots,0} ; \mathrm{K}^{\oplus r})\in Fl_{d(r,k)}(\mathbb{K}^{\oplus 7}.) .

Hence $\Lambda$_{d(r,k)} has uncountably many elements.

To cover permuted ones, we redefine the dimension vector e(K, r) as

e(K, r)^{( $\iota$)} = \left\{\begin{array}{ll}
(1, r-1) & i\in K_{:}\\
(0, r) & i\not\in K
\end{array}\right. (4.6)

for K\subset\{1, 2_{:}\ldots, m\} where r+2\leq k=\# K.

It is clear that d(r, k) = e(\{1,2, \ldots, k\}.r) , and the indecomposable multiple flags
corresponding to e(K, r) are given by G(K, r, q) in (3.6).

If we consider other embeddings of (\mathbb{P}^{r-1}\mathrm{K})^{\# K-r-1} into $\Lambda$_{(_{\sim}(K,r)} bv pernniting the first r+1

vectors in general position and the remaining k-r-1 vectors, these are all isomorphic
classes of indecomposable multiple flags occuring in the decomposition of multiple flags
in Fl_{a}(\mathrm{K}^{\oplus n}) .

19



Next, we want to determine (m_{d})_{d\in $\Lambda$} satisfying $\Sigma$_{d\in $\Lambda$}m_{d}d =a in (4.1). As we saw
before, all dimension vectors in d which are possibly summands of a and which have
indecomposable multiple flags are expressed as 1(I), d(J) , or e(K, r) . One can prove
that all multiplicities of each diifiension vectors are at, most 1 but 1 ( \emptyset ) , and  I, J, K'\mathrm{s}

form a partition of \{ 1, 2, . . . , m\}.
Hence the multiplicity problem is reduced to determining which dimension vectors

occur or not. The equality

\displaystyle \sum_{d\in $\Lambda$}d=m_{1(\'{i}/\mathrm{I})}1(\emptyset)+\sum_{a=1}^{A}1(I_{a})+\sum_{b=1}^{B}d(J_{b})+\sum_{c=1}^{c}e(K_{c}, r_{c})=a
leads us to the condition

m_{1(\emptyset)}+A+\displaystyle \sum_{b=1}^{B}(\# J_{b}-1)+\sum_{c=1}^{c}r_{c}=n
which is a crucial part of the dcrfinitioti of \mathcal{P}.

5 Infiniteness and dimension of orbits

By the expression in Theorem 3.1, we can calculate the dimension of each orbit cxplicitly.

Corollary 5.1. For

p= (\{I_{a}\}_{a=1}^{A}, \{J_{b}\}_{b=1}^{B}, \{(K_{c}, r_{c})\}_{c=1}^{c}) \in \mathcal{P}
and O\in$\pi$^{-1}(p) ,

\dim O=nr(p)-A-B-C.

Using this formula, the open orbit is explicitly obtained.

(1) If n\geq m , consider p_{0}= (\{\{j\}\}_{j=1}^{7n}, \emptyset, \emptyset) \in \mathcal{P} . Then for \{O_{0}\}=$\pi$^{-1} (p0),

\dim O_{0}=nm-m-0-0=\dim(\mathbb{P}^{n-1}\mathbb{K})^{m}.

(2) If n+1 =m , consider p_{()}= (\emptyset, \{\{1,2, \ldots, m\}\}, \emptyset) \in \mathcal{P} . Then for \{O_{0}\} =$\pi$^{-1}(p_{()}) ,

\dim O_{0}=n(m-1)-0-1-0=\dim(\mathbb{P}^{n-1}\mathrm{K})^{m}.

(3) If n+2\leq m , then for any p\in \mathcal{P} and aiiy O\in$\pi$^{-1}(p) , \dim O<\dim(\mathbb{P}^{n-1}\mathbb{K})^{m}.

Also, the infiniteness of orbits is obtained from Theorem 3.1.

Corollary 5.2.
\# diag (GL_{n})\backslash GL_{n}^{m}/P^{m}=\infty\Leftrightarrow m\geq 4.

This equivalence is already proved by Magyar‐Weyman‐Zelevinsky in [1], but by using
Theorem 3.1, we can easily see what kind of infinitely many orbits occur and their topology
explicitly.
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