## Small stable theories with the tree property

## Koichiro Ikeda \* Faculty of Business Administration, Hosei University

Let T be a complete theory in a countable first order language. A non-isolated type  $p \in S(T)$  is said to have the tree property, if there are realizations  $\bar{a}, \bar{b}, \bar{c} \models p$  such that  $\operatorname{tp}(\bar{b}\bar{c}/\bar{a})$  is isolated and  $\bar{b}\downarrow\bar{c}$  (see [1] for the definition). It is known that any stable Ehrenfeucht theory has a type with the tree property, and moreover that any type with the tree property has infinite weight ([1]). Using the Hrushovski amalgamation construction ([2]), Herwig constructed a small stable theory with a type of weight  $\omega$  ([1]), but it does not have a type with the tree type. In this short note, we show that there is a small stable theory with the tree property.

**Notation 1** M, N, ... will denote L-structures, and A, B, ... subsets of structures. Elements of structures will be denoted by a, b, ..., and finite tuples of elements by  $\bar{a}, \bar{b}, ...$  If members of the tuple  $\bar{a}$  come from A we sometimes write  $\bar{a} \in A$ .  $A \subset_{\text{fin}} B$  means that A is a finite subset of B. AB means  $A \cup B$ .  $\operatorname{tp}(\bar{a}/A)$  denotes a type of  $\bar{a}$  over A. S(A) denotes the set of all types over A and S(T) means  $S(\emptyset)$ . The set of all algebraic elements over A in M is denoted by  $\operatorname{acl}_M(A)$ .  $B \downarrow_A C$  means that B and C are independent over A in the sense of forking.

**Definition 2** Let  $L_0$  be a language consisting of a binary relation R. Here, a directed graph means an  $L_0$ -structure  $(A, R^A)$ , where  $R^A = \{ab \in A : A \models R(a,b)\}$ , satisfying that

- $A \models \forall x \forall y [R(x,y) \rightarrow \neg R(y,x)];$
- $A \models \forall x \forall y [R(x,y) \rightarrow x \neq y].$

Let  $\mathbf{K}_0$  be a class of the finite directed graphs.

<sup>\*</sup>The author is supported by Grants-in-Aid for Scientific Research (No. 17K05350).

For  $A \in \mathbf{K}_0$ , a predimension of A is defined by

$$\delta(A) = |A| - \alpha |R^A|,$$

where  $\alpha \in (0,1]$ . For  $A, B \in \mathbf{K}_0$ ,  $\delta(B \cup A) - \delta(A)$  is denoted by  $\delta(B/A)$ . For  $A \subset B \in \mathbf{K}_0$ , A is said to be closed in B (written  $A \leq B$ ), if

$$\delta(X/A) \ge 0$$
 for any  $X \subset B - A$ .

**Definition 3** For a function  $f: \omega \to \mathbb{R}^+$ , let  $\mathbf{K}_f$  be a class of finite  $L_0$ -structures A satisfying that

- $A \in \mathbf{K}_0$ ;
- $\delta(A') > f(|A'|)$  for any  $A' \subset A$ .

For  $A, B, C \in \mathbf{K}_0$  with  $A = B \cap C$ , B and C is said to be free over A (written  $B \perp_A C$ ), if

$$R^{B \cup C} = R^B \cup R^C.$$

When  $B \perp_A C$ , a graph  $B \cup C$  is called the free amalgam of B and C over A, and written  $B \oplus_A C$ .

**Note 4** By the similar argument as in the Hrushovski construction [2], we can take an irrational  $\alpha \in (0,1]$  and a function  $f: \omega \to \mathbb{R}^+$  such that

- f is unbounded;
- $(\mathbf{K}_f, \leq)$  has the free amalgamation property, i.e., whenever  $A \leq B \in \mathbf{K}_f$  and  $A \leq C \in \mathbf{K}_f$  then  $B \oplus_A C \in \mathbf{K}_f$ .

Moreover, we can assume that

- f(0) = 0 and f(1) = 1;
- $\alpha < 1/2$ .

**Note 5** From Since f(0) = 0 it follows that  $acl(\emptyset) = \emptyset$ . Moreover, from f(1) = 1 it follows that any 1-element is closed. If  $abc \in \mathbf{K}_0$  satisfies  $R(a,b) \land R(a,c)$ , then we have  $bc \leq abc$ .

**Definition 6** Let L consist of  $L_0$  and countably many unary predicates  $U_0, U_1, \ldots$  Let K be a class of finite L-structures A satisfying

- $A \in \mathbf{K}_f$ ;
- $U_0^A \subset U_1^A \subset ...;$
- For any  $a, b \in A$  and  $i \in \omega$ , if  $A \models R(a, b) \wedge U_i(b)$ , then there is a j < i with  $A \models U_i(a)$ .

Let  $\overline{\mathbf{K}}$  be a class of (possibly infinite) *L*-structures *N* satisfying  $A \in \mathbf{K}$  for any  $A \subset_{\operatorname{fin}} N$ . For  $A, B \in \overline{\mathbf{K}}$  with  $A \subset B$ ,  $A \leq B$  is defined by

$$A \cap X \leq B \cap X$$
 for every  $X \subset_{\text{fin}} B$ .

For A, M with  $A \subset M$ , the closure of A in M is

$$\bigcap \{B : A \subset B \leq M\},\$$

and it will be written  $cl_M(A)$ .

**Definition 7** A countable L-structure M is said to be a  $(\mathbf{K}, \leq)$ -generic structure, if it satisfies

- 1. if  $M \in \overline{\mathbf{K}}$ ;
- 2. if  $A \leq M$  and  $A \leq B \in \mathbf{K}$ , then there is a  $B' \cong_A B$  with  $B \leq M$ ;
- 3. if  $A \subset_{\text{fin}} M$ , then  $\operatorname{cl}_M(A)$  is finite.

Since  $(\mathbf{K}_f, \leq)$  has the free amalgamation property, so is  $(\mathbf{K}, \leq)$ . Therefore, there is a unique generic structure for  $(\mathbf{K}, \leq)$ .

In what follows, let M be the generic structure, and  $\mathcal{M}$  a big model.

Notation 8 Let  $\Sigma(x) = {\neg U_i(x) : i \in \omega};$ 

For  $n \geq 3$ ,  $a_1...a_n \in \mathbf{K}$  is called *n*-cycle, if it satisfies  $R(a_1, a_2) \wedge R(a_2, a_3) \wedge \cdots \wedge R(a_n, a_1)$ .

Note 9 For the generic M, let  $M_1 = \Sigma^M$  and  $M_0 = M - M_1$ . Then

- 1.  $M_0$  has no cycles;
- 2. For each  $n \geq 3$  and  $a \in M_1$ , there is an n-cycle containing a.

**Proof:** (1) Suppose that there would be a cycle. Then we can take a, b in the cycle such that  $\models U_i(a) \wedge U_j(b) \wedge R(a, b)$  for some i, j with j < i. A contradiction.

(2) By Note 5, we have  $a \leq M$ . Take any cycle S with  $a \in S$  and  $\models \Sigma(b)$  for any  $b \in S$ . Then it can be seen that  $a \leq S \in \mathbf{K}$ . By genericity of M, we can assume that  $S \subset M$ .

Notation 10 Let  $\pi(x) = \exists y \exists z \exists w [R(x,y) \land R(y,z) \land R(z,w) \land R(w,x)]$ . For  $A \subset \mathcal{M}$ , let

- $\bullet \ p_1^A = \Sigma^A \cap \pi^A;$
- $p_2^A = \Sigma^A \cap (\neg \pi)^A$ ;
- $p_0^A = A (p_1^A \cup p_2^A).$

Note 11 It can be seen that  $p_1^A = \pi^A$ .

Note 12 Since f is unbounded, it can be seen that for a finite  $A \subset \mathcal{M}$ ,  $A \leq \mathcal{M}$  is definable, i.e., there is a formula  $\theta(X) \in \operatorname{tp}(A)$  such that  $\models \theta(A')$  implies  $A' \leq \mathcal{M}$ .

Notation 13 Let  $\bar{a} \in \mathcal{M}$ . Then

- let  $\theta_{\bar{a}}(\bar{x})$  be a formula expressing that  $\bar{x}$  is closed;
- let  $\psi_{\bar{a}}(\bar{x})$  be a formula expressing that  $\bar{x}$  and  $\bar{a}$  are  $L_0$ -isomorphic;
- for  $n \in \omega$ , let  $\alpha_{\bar{a}}^n(\bar{x}) = \bigwedge \{U_i(x_k)^{\text{if }} \models U_i(a_k) : i \leq n, a_k \in \bar{a} = a_0...a_m\};$
- let  $\beta_{\bar{a}}(\bar{x}) = \bigwedge \{\pi(x_k)^{\mathrm{if}} \models \pi(\mathbf{a}_k) : a_k \in \bar{a} = a_1...a_m\}.$

Notation 14 For  $\bar{a} \leq \mathcal{M}$ , let

$$\operatorname{qftp}^*(\bar{a}) = \{\theta_{\bar{a}}(\bar{x})\} \cup \{\psi_{\bar{a}}(\bar{x})\} \cup \{\alpha_{\bar{a}}^n(\bar{x})\}_{n \in \omega} \cup \{\beta_{\bar{a}}(\bar{x})\}$$

**Lemma 15** Let  $\bar{a}, \bar{a}' \leq \mathcal{M}$ . If  $qftp^*(\bar{a}) = qftp^*(\bar{a}')$  then  $tp(\bar{a}) = tp(\bar{a})$ .

**Proof.** It is enough to show that, for any finite A, A', B with  $qftp^*(A) = qftp^*(A')$  and  $A \leq B \leq \mathcal{M}$ , there is  $B' \leq \mathcal{M}$  with  $qftp^*(A'B') = qftp^*(AB)$ . Assume otherwise. Then

$$\{\psi_{BA}(YA')\} \cup \{\alpha_B^n(Y)\}_{n \in \omega} \cup \{\beta_B(Y)\} \cup \{\theta_{AB}(A'Y)\}$$

is inconsistent. Let  $\Gamma(X) = \operatorname{tp}(A')$ . Then

$$\Gamma(X) \cup \{\psi_{BA}(YX)\} \cup \{\alpha_B^n(Y)\}_{n \in \omega} \cup \{\beta_B(Y)\} \cup \{\theta_{AB}(XY)\}$$

is inconsistent. By compactness, there are  $\varphi(X) \in \Gamma(X)$  and  $n \in \omega$  such that

$$\varphi(X) \wedge \psi_{BA}(YX) \wedge \alpha_B^n(Y) \wedge \beta_B(Y) \wedge \theta_{AB}(XY)$$

is inconsistent. We can assume that  $\models \forall X [\varphi(X) \to (\psi_A(X) \land \theta_A(X))]$ . Let  $\gamma(XY)$  denote the formula above. Take  $A^* \subset M$  with  $M \models \varphi(A^*)$ . Note that

$$\models \neg \exists Y \gamma (A^*Y).$$

On the other hand, since  $p_2^B$  has no cycles, we can take  $B^* \in \mathbf{K}$  and an  $L_0$ -isomorphism  $\sigma: BA \to B^*A^*$  satisfying

- $\bullet \ \sigma(A) = A^*;$
- for any  $b \in p_0^B \cup p_1^B$  and  $i \in \omega$ ,  $B \models U_i(b)$  iff  $B^* \models U_i(\sigma(b))$ ;
- for any  $b \in p_2^B$ ,  $n < \sup\{i \in \omega : B^* \models U_i(\sigma(b))\} < \omega$ .

Since  $A^* \leq B^* \in \mathbf{K}$  and  $A^* \leq \mathcal{M}$ , by genericity of M, we can assume that  $B^* \leq M$ . Then it can be seen that  $M \models \gamma(A^*B^*)$ . A contradiction.

## Corollary 16 T is small.

For  $\bar{a} \in \mathcal{M}$ , a dimension of  $\bar{a}$  is defined by  $d(\bar{a}) = \delta(\operatorname{cl}(\bar{a}))$ . For  $\bar{a}, \bar{b} \in \mathcal{M}$ ,  $d(\bar{a}/\bar{b})$  will denote  $d(\bar{a}\bar{b}) - d(\bar{b})$ . For a (possibly infinite)  $B \subset \mathcal{M}$ , we define  $d(\bar{a}/B) = \inf\{d(\bar{a}/B_0) : B_0 \subset_{\operatorname{fin}} B\}$ .

Fact 17 ([3]) Let  $A, B, C \subset \mathcal{M}$  with  $A = B \cap C$  and  $B, C \leq \mathcal{M}$ . Then the following are equivalent:

- 1.  $B \perp_A C$  and  $BC \leq \mathcal{M}$ ;
- 2. d(B/C) = d(B/A).

**Lemma 18** *T* is stable.

**Proof.** Take  $\lambda$  with  $\lambda^{\aleph_0} = \lambda$ . Take any  $B \leq \mathcal{M}$  with  $|B| \leq \lambda$ . We want to show that  $|S(B)| \leq \lambda$ . Take any  $\bar{e} \in \mathcal{M} - B$ . By the definition of the dimension d, there is a countable  $A \leq B$  with

$$d(\bar{e}/B) = d(\bar{e}/A)$$
 and  $\operatorname{cl}(\bar{e}A) \cap B = A$ .

Take any  $\bar{e}' \models \operatorname{tp}(\bar{e}/A)$  with

$$d(\bar{e}'/B) = d(\bar{e}'/A)$$
 and  $cl(\bar{e}'A) \cap B = A$ .

Since  $\operatorname{tp}(\bar{e}/A) = \operatorname{tp}(\bar{e}'/A)$ , we have

$$qftp^*(cl(\bar{e}A)/A) = qftp^*(cl(\bar{e}'A)/A).$$

On the other hand, by Fact 17, we have

$$\operatorname{cl}(\bar{e}A) \perp_A B$$
 and  $\operatorname{cl}(\bar{e}'A) \perp_A B$ .

Therefore we have

$$qftp^*(cl(\bar{e}A)/B) = qftp^*(cl(\bar{e}'A)/B).$$

Again by Fact 17,

$$\operatorname{cl}(\bar{e}A)B, \operatorname{cl}(\bar{e}'A)B \leq \mathcal{M}.$$

Then we have  $\operatorname{tp}(\bar{e}/B) = \operatorname{tp}(\bar{e}'/B)$ . Therefore any type over B is determined by a type of over some countable  $A \subset B$ . Hence

$$|S(B) \le \lambda^{\aleph_0} \times 2^{\aleph_0} = \lambda.$$

Therefore T is  $\lambda$ -stable.

Fact 19 ([3]) Let  $A, B, C \subset_{\text{fin}} \mathcal{M}$  with  $A = B \cap C$ ,  $\operatorname{acl}(A) = A$  and  $B, C \subseteq \mathcal{M}$ . If  $B \perp_A C$  and  $BC \subseteq \mathcal{M}$  then  $B \downarrow_A C$ .

**Lemma 20** T has a type with the tree property.

**Proof.** Take any  $a \in \mathcal{M}$  with  $\models \Sigma(a)$  and  $\models \neg \pi(a)$ . Since any 1-element is closed, we have

$$\Sigma(x) \cup \{\neg \pi(x)\} \vdash \text{qftp}^*(a) \vdash \text{tp}(a).$$

Let  $p(x) = \operatorname{tp}(a)$ . We want to show that p has the tree property. By compactness, we can take  $b, c \models p$  with  $\models R(a, b) \land R(a, c) \land \neg R(b, c)$  and  $abc \leq \mathcal{M}$ . First, we show that

 $b \downarrow c$ .

Note that  $acl(\emptyset) = \emptyset$ . Since  $\delta(a/bc) = 1 - 2\alpha > 0$ , by Note 5, we have

$$bc \leq abc \leq \mathcal{M}$$
.

Note that

 $b \perp c$ .

By Fact 19, we have  $b \downarrow c$ . Next, we show that

$$tp(bc/a)$$
 is isolated.

Let

$$\varphi(yz,a) = R(a,y) \wedge R(a,z) \wedge \neg \pi(y) \wedge \neg \pi(z) \wedge \neg R(y,z) \wedge \theta_{abc}(ayz).$$

Take any  $b'c' \models \varphi$ . Since  $\models \Sigma(a)$  and  $\models R(a,b') \land R(a,c')$ , we have

$$\models \Sigma(b') \text{ and } \models \Sigma(c').$$

SInce  $\models \varphi(b'c', a)$ , we have

$$\models \neg R(b',c') \land \neg \pi(b') \land \neg \pi(c') \text{ and } ab'c' \leq M.$$

Then

$$qftp^*(abc) = qftp^*(ab'c').$$

By Lemma 15, we have

$$\operatorname{tp}(b'c'/a) = \operatorname{tp}(bc/a).$$

It follows that tp(bc/a) is isolated.

## References

- [1] B. Herwig, Weight  $\omega$  in stable theories with few types, The Journal of Symbolic Logic (1995)
- [2] E. Hrushovski, A stable  $\omega$ -categorical pseudoplane, preprint (1989)
- [3] F. O. Wagner, Relational structures and dimensions, In Automorphisms of first-order structures, Clarendon Press, Oxford, 1994