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1 Introduction

We are concerned with the boundary value problem

\left\{\begin{array}{ll}
u_{xx}+ $\lambda$ f(u)=0, & x\in(-1,1)\backslash \{0\},\\
u_{x}=0, & x=-1, 1,\\
u(-0)+au_{x}(-0)=u(+0)-au_{x}(+0) , & \\
u_{x}(-0)=u_{x}(+0) , & 
\end{array}\right. (1.1)

where  $\lambda$ > 0 is a bifurcation parameter, a > 0 is a fixed constant and the symbols -0

and +0 stand for the limits from the left and right, respectively. f is assumed to be a
bistable nonlinearity (e.g., f(u) =u-u^{3}) and precise assumptions will be made later.
Our interest is the solution structure of (1.1) in the bifurcation diagram.

1.1 Background

The motivation comes from a scalar reaction‐diffusion equation

\left\{\begin{array}{ll}
u_{t}=\triangle u+ $\lambda$ f(u) , & x\in $\Omega$,\\
\frac{\partial u}{\partial $\nu$}=0, & x\in\partial $\Omega$.
\end{array}\right. (1.2)

Here  $\Omega$ \subset \mathbb{R}^{N} (N \geq 2) is a bounded domain and \partial/\partial \mathrm{v} stands for the outward normal

derivative. One of fundamental problems in the study of reaction‐diffusion equations is
the existence and stability of nonconstant stationary solutions, because stable nonconstant
stationary solutions correspond to spatial patterns. In scalar equations, it is known that
not only the properties of a nonlinearity, but also the shape of a domain is important for
the existence of such solutions. In fact, it was shown by Casten and Holland [1] and
Matano [5], independently, that (1.2) does not have any stable nonconstant stationary
solutions if  $\Omega$ is convex, and Matano [5] found that such a solution indeed exists if  f is a

bistable nonlinearity and  $\Omega$ is a dumbbell‐shaped domain which are chosen suitably.

Dumbbell‐shaped domain.
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Now let us fix a bistable nonlinearity  f and a dumbbell shaped domain  $\Omega$ . Then (1.2)
will have a stable nonconstant stationary solution if  $\lambda$ is not small, while (1.2) cannot have
it if  $\lambda$ is too small. Therefore a stable nonconstant stationary solution must appear through
a bifurcation. It is seen that a nonconstant stationary solution bifurcating from a constant
solution is always unstable near the bifurcation point. This means that we need global
information on the bifurcation diagram to know how stable nonconstant stationary solu‐
tions appear. One of the ways to overcome this difficulty is to focus on solutions which
converge to a constant on each weight of the dumbbell as the thickness of the channel of
the dumbbell tends to zero. This way enables us to reduce the equation (1.2) into a finite‐
dimensional equation which is much easier to handle. In this direction, Vegas [10] studied
the bifurcations of stationary solutions. He obtained a reduced equation by applying the
Lyapunov‐Schmidt reduction and observed that stable nonconstant stationary solutions
appear through a secondary bifurcation if both the nonlinearity and the domain are sym‐
metric (see also [3]). Fang [2] and Morita [7] discussed the stability of solutions from the
viewpoint of dynamical systems. They constructed a finite‐dimensional invariant man‐
ifold which contain stationary solutions and revealed how stable nonconstant stationary
solutions appear by analyzing the flows on the manifold (see also [6, 8

The equation (1.1) is another type of reduced equation. Indeed, for the domain  $\Omega$^{ $\varepsilon$}

shown in the figure below, (1.1) is obtained as the limiting equation of the stationary
problem

\left\{\begin{array}{l}
\triangle u+ $\lambda$ f(u)=0, x\in$\Omega$^{ $\varepsilon$},\\
\frac{\partial u}{\partial $\nu$}=0, x\in\partial$\Omega$^{ $\varepsilon$}
\end{array}\right. (1.3)

as  $\varepsilon$\rightarrow 0 . The width and the length of the channel of $\Omega$^{ $\varepsilon$} are $\epsilon$^{3} and  2a $\varepsilon$ , respectively, and
the widths of the weights are  $\epsilon$^{2} . The domain $\Omega$^{ $\varepsilon$} converges to the interval (-1,1) while
the channel shrinks to the origin as  $\varepsilon$\rightarrow 0 . The limiting equation (1.1) is relatively easier
to handle than (1.3) and, in comparison with finite‐dimensional reductions, it would have
much information on the solution structure of (1.3).

Thin tubular dumbbell‐shaped domain.

Let us formally derive the equation (1.1). We only focus on the derivation of the last
two conditions. Assume that u^{ $\epsilon$} =u^{ $\varepsilon$}(x, y) is a solution of (1.3) with the property that
u^{ $\varepsilon$}(x, y) = O(1) as  $\varepsilon$ \rightarrow  0 . Since the domain is thin in the vertical direction, we can

expect that u^{ $\varepsilon$} is approximated by some function depending only on x , that is, u^{ $\epsilon$}(x, y)=
v^{ $\varepsilon$}(x)+o(1) for some v^{ $\varepsilon$} as  $\varepsilon$\rightarrow 0 . Since the length of the channel is O( $\varepsilon$) , it is reasonable
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to assume that v_{x}^{ $\varepsilon$}(x)=O(1/ $\varepsilon$) and u_{x}^{ $\varepsilon$}(x, y)=v_{x}^{ $\varepsilon$}(x)+o(1/ $\epsilon$) if (x, y) lies on the channel,

and v_{x}^{ $\varepsilon$}(x)=O(1) and u_{x}^{ $\varepsilon$}(x, y)=v_{x}^{ $\varepsilon$}(x)+o(1) otherwise.. As shown in the figure below,

we take vertical line segments $\Gamma$^{\underline{ $\varepsilon$}}, $\Gamma$_{+}^{ $\varepsilon$} and $\Gamma$_{0} lying on the left weight, right weight and
channel. x^{\underline{ $\varepsilon$}}, x_{+}^{ $\varepsilon$} and x_{0} denote the positions of $\Gamma$_{-}^{ $\varepsilon$}, $\Gamma$_{+}^{ $\varepsilon$} and $\Gamma$_{0} , and x^{\underline{ $\varepsilon$}} and x_{+}^{ $\varepsilon$} are assumed
to converge to 0 as  $\varepsilon$\rightarrow 0 . Integrating both sides of (1.3) over R^{ $\varepsilon$} which is surrounded by
$\Gamma$_{+}^{ $\varepsilon$}, $\Gamma$_{0} and \partial$\Omega$^{ $\varepsilon$} , we have

0=\displaystyle \int_{R^{ $\varepsilon$}}(\triangle u^{ $\varepsilon$}+ $\lambda$ f(u^{ $\varepsilon$}))dx=\int_{$\Gamma$_{+}^{ $\varepsilon$}}u_{x}^{ $\varepsilon$}dx-\int_{$\Gamma$_{0}}u_{x}^{ $\varepsilon$}dx+ $\lambda$\int_{R^{ $\varepsilon$}}f(u^{ $\varepsilon$})dx (1.4)

=v_{x}^{ $\varepsilon$}(x_{+}^{ $\varepsilon$})$\varepsilon$^{2}-v_{x}^{ $\varepsilon$}(x_{0})$\varepsilon$^{3}+o($\varepsilon$^{2}) .

In a similar manner, integrating over the region surrounded by $\Gamma$_{-}^{ $\varepsilon$}, $\Gamma$_{0} and \partial$\Omega$^{ $\varepsilon$} gives

0=-v_{x}^{ $\varepsilon$}(x_{-}^{ $\varepsilon$})$\varepsilon$^{2}+v_{x}^{ $\varepsilon$}(x_{0})$\epsilon$^{3}+o($\varepsilon$^{2}) . (1.5)

Adding (1.4) to (1.5) leads to

v_{x}^{ $\varepsilon$}(x_{-}^{ $\varepsilon$})=v_{x}^{ $\varepsilon$}(x_{+}^{ $\varepsilon$})+o(1) ,

and hence we have the last condition in (1.1) by letting  $\varepsilon$\rightarrow 0.

To get the other condition, we subtract (1.4) from (1.5). Then we have

v_{x}^{ $\varepsilon$}(x_{0})=\displaystyle \frac{v_{x}^{ $\varepsilon$}(x_{+}^{ $\varepsilon$})+v_{x}^{ $\varepsilon$}(x^{\underline{ $\varepsilon$}})+o(1)}{2 $\epsilon$},
which yields

v^{ $\varepsilon$}(x_{+}^{ $\varepsilon$})-v^{ $\varepsilon$}(x_{-}^{ $\varepsilon$})=\displaystyle \int_{x^{\underline{ $\varepsilon$}}}^{x_{+}^{ $\varepsilon$}}v_{x}^{ $\varepsilon$}dx=\int_{-a $\varepsilon$}^{a $\varepsilon$}v_{x}^{ $\varepsilon$}dx+o(1)=a(v_{x}^{ $\varepsilon$}(x_{+}^{ $\varepsilon$})+v_{x}^{ $\varepsilon$}(x_{-}^{ $\varepsilon$}))+o(1) .

Letting  $\varepsilon$\rightarrow 0 , we obtain the desired condition.

$\varepsilon$^{2}

\prime

: :

 x=x^{\underline{ $\varepsilon$}} x=x_{0} x=x_{+}^{ $\varepsilon$}

Enlarged view of the channel.

We can also deal with higher‐dimensional domains. In the higher‐dimensional case,
width should be replaced with cross sectional area.
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Thin tubular dumbbell‐shaped domain in a higher‐dimensional space.

1.2 Main result

To state our main result, we specify the assumptions on f and introduce notation. Here
and subsequently, we always assume the following.

\left\{\begin{array}{l}
f\in C^{2}(\mathbb{R}) ,\\
f(-1)=f(0)=f(1)=0, f'(-1)<0, f'(0)>0, f'(1)<0,\\
(u-u^{3})f(u)>0 \mathrm{f}\mathrm{o}\mathrm{r} u\in \mathbb{R}\backslash \{-1, 0, 1\},\\
f(u)=-f(-u) \mathrm{f}\mathrm{o}\mathrm{r} u\in[-1, 1].
\end{array}\right.
In order to obtain the detailed properties of solutions, we will additionally make one of
the following assumptions if needed.

\displaystyle \frac{f(u)}{u}>f'(u) for u\in(-1,1)\backslash \{0\} , (1.6)

u\displaystyle \frac{d}{du}\{\frac{f'(u)}{f(u)^{3}}(\int_{0}^{u}f(s)ds)^{\frac{3}{2}}\}<0 for u\in(-1,1)\backslash \{0\} . (1.7)

One can show that (1.7) implies (1.6) and that the cubic nonlinearity f(u) = u-u^{3}

satisfies all of the above assumptions.
Let u be a solution of (1.1) and consider the linearized eigenvalue problem

\left\{\begin{array}{ll}
$\varphi$_{xx}+ $\lambda$ f'(u) $\varphi$= $\mu \varphi$, & x\in(-1,1)\backslash \{0\},\\
$\varphi$_{x}=0, & x=-1, 1,\\
 $\varphi$(-0)+a$\varphi$_{x}(-0)= $\varphi$(+0)-a$\varphi$_{x}(+0) , & \\
$\varphi$_{x}(-0)=$\varphi$_{x}(+0) . & 
\end{array}\right.
It is known that eigenvalues are real and simple, and accumulate only at -\infty . We denote
the k‐th largest eigenvalue by $\mu$_{k}(u) and say that u is nondegenerate if $\mu$_{k}(u)\neq 0 for all
k= 1 , 2, .. .. The number of positive eigenvalues is called the Morse index of u and is
denoted by i(u) .

Our main result is the following.
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Theorem 1. Bifurcation points on the trivial branch \{( $\lambda$, u);u\equiv 0\} are given by p_{k}^{0} :=

($\lambda$_{k}^{0},0) , k=1 , 2, . . ., where

$\lambda$_{k}^{0}:= \left\{\begin{array}{ll}
(\frac{z_{(k-1)/2}}{f'(0)})^{2} & if k is odd,\\
(\frac{k $\pi$}{2f'(0)})^{2} & if k is even
\end{array}\right. (1.8)

and z_{l} is a unique root of the equation az \tan z=1 in (l $\pi$, (l+1/2) $\pi$) . From each point
p_{k}^{0} , a solution branch C_{k}=\{ ( $\lambda$_{k}( $\alpha$), u_{k}  $\alpha$ ) )\}_{ $\alpha$\in(-1,1)} emanates and it has the following
properties.

(i) u_{k}(-1; $\alpha$) = (-1)^{k}u_{k}(1; $\alpha$) =  $\alpha$, u_{k}(x; $\alpha$) = (-1)^{k}u_{k}(-x; $\alpha$) = -u_{k}(x;- $\alpha$) ,
$\lambda$_{k}(0)=$\lambda$_{k}^{0}, $\lambda$_{k}( $\alpha$)=$\lambda$_{k}(- $\alpha$) and $\lambda$_{k}( $\alpha$)\rightarrow\infty as  $\alpha$\rightarrow\pm 1.

(ii) Assume thưt k is even and that (1.6) holds. Then u_{k}  $\alpha$ ) is nondegenerate and
 i(u_{k}(\cdot; $\alpha$))=kfor all  $\alpha$\in(-1,1)\backslash \{0\} . In pamcular, there is no bifu rcation point
on C_{k}\backslash \{p_{k}^{0}\}.

(iii) Assume that k is odd and that (1.7) holds. Then there exists $\alpha$_{k}^{*} \in (0,1) such that

p_{k}^{+} := ($\lambda$_{k}($\alpha$_{k}^{*}), u_{k} $\alpha$_{k}^{*})) and p_{k}^{-} :=($\lambda$_{k}(-$\alpha$_{k}^{*}), u_{k} -$\alpha$_{k}^{*}) ) are bifurcation points
from which solution branches emanate. Funhermore, u_{k}  $\alpha$ ) is nondegenerate if
 0<| $\alpha$|\neq a_{k}^{*}, i(u_{k}(\cdot; $\alpha$))=kif| $\alpha$|<$\alpha$_{k}^{*}and i(u_{k}(\cdot; $\alpha$))=k-1 if $\alpha$_{k}^{*}\leq| $\alpha$|<1.
In particular, there is no bifurcation point on C_{k}\backslash \{p_{k}^{0}, p_{k}^{+},p_{k}^{-}\}.

Bifurcation diagram of (1.1).

The remaining sections are devoted to discussing how to analyze (1.1).

2 The shooting method

We analyze (1.1) by the shooting method. For $\alpha$_{1}\in(-1,1) and $\alpha$_{2}\in(-1,1) , we define
u_{1}=u_{1}(x;$\alpha$^{-}) and u_{2}=u_{2}(x;$\alpha$_{2}) to be solutions of the equation u_{xx}+ $\lambda$ f(u)=0 with
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the initial conditions u_{1}(-1)=$\alpha$_{1}, (u_{1})_{x}(-1)=0, u_{2}(1)=$\alpha$_{2} and (u_{2})_{x}(1)=0 . Then

we see that (1.1) admits a solution u satisfying u(-1)=$\alpha$_{1} and u(1)=$\alpha$_{2} if and only if
the pair ($\alpha$_{1}, $\alpha$_{2}) satisfies

\left\{\begin{array}{l}
u_{1}(0;$\alpha$_{1})+a(u_{1})_{x}(0;$\alpha$_{1})=u_{2}(0;$\alpha$_{2})-a(u_{2})_{x}(0;$\alpha$_{2}) ,\\
(u_{1})_{x}(0, $\alpha$_{1})=(u_{2})_{x}(0;$\alpha$_{2}) ,
\end{array}\right. (2.1)

and if (2.1) holds, then the solution u is given by

u(x)=\left\{\begin{array}{l}
u_{1}(x;$\alpha$_{1}) (x\in[-1,0\\
u_{2}(x;$\alpha$_{2}) (x\in(0,1
\end{array}\right. (2.2)

To get the representation of the solutions u_{1} and u_{2} , we introduce a solution (U, V)=
(U(x; $\alpha$), V(x; $\alpha$)) of the initial value problem

\left\{\begin{array}{ll}
U_{x}=V, V_{x}=-f(U) , & x\in \mathbb{R},\\
(U(0; $\alpha$), V(0,  $\alpha$)=( $\alpha$, 0) , & 
\end{array}\right.
where  $\alpha$\in(-1,1) . Then we have

u_{j}(x;$\alpha$_{j})=U(\sqrt{ $\lambda$}((-1)^{j-1}x+1);$\alpha$_{j}) ,

(2.3)

(u_{j})_{x}(x;$\alpha$_{j})=(-1)^{j-1}\sqrt{ $\lambda$}V(\sqrt{ $\lambda$}((-1)^{j-1}x+1);$\alpha$_{j})
for j = 1 , 2. Set F(u) = 2\displaystyle \int_{0}^{u}f(s)ds and $\beta$_{0} := \sqrt{F(-1)} = \sqrt{F(1)}, and define a
function G : (-$\beta$_{0}, $\beta$_{0})\rightarrow(-1,1) to be the inverse of the function

u\mapsto v=\left\{\begin{array}{ll}
\sqrt{F(u)} & (u\in(-1,0\\
-\sqrt{F(u)} & (u\in(0,1
\end{array}\right.
One can check that G\in C^{2}((-$\beta$_{0}, $\beta$_{0}))\cap C^{3}((-$\beta$_{0}, $\beta$_{0})\backslash \{0\}) . By putting  $\alpha$=G( $\beta$) and
U= G(W) , the periodic orbit determined by V^{2}+F(U) =F( $\alpha$) transforms into the
circle given by V^{2}+W^{2}=$\beta$^{2} . Hence (U, V) must be of the form

(U, V)=(G(W), V)=(G( $\beta$\cos $\Theta$), - $\beta$\sin $\Theta$) . (2.4)

Since U_{x} =V , we see that  $\Theta$ =  $\Theta$(x; $\beta$) is determined by \displaystyle \int_{0}^{ $\Theta$}G'( $\beta$\cos $\tau$)d $\tau$=x . The
representation formula as in (2.4) is helpful in the analysis of time maps (for instance, see
[9, 4

Substituting (2.3) and (2.4) into (2.1), we obtain the equation

(P($\beta$_{1}; $\lambda$), Q($\beta$_{1}; $\lambda$))=(P($\beta$_{2}; $\lambda$), -Q($\beta$_{2}; $\lambda$ (2.5)
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where

 P($\beta$_{)} $\lambda$) :=G( $\beta$\cos $\theta$( $\beta$; $\lambda$))-a\sqrt{ $\lambda$} $\beta$\sin $\theta$( $\beta$; $\lambda$) ,

Q( $\beta$; $\lambda$):=- $\beta$\sin $\theta$( $\beta$; $\lambda$) ,

 $\theta$($\beta$_{)}\cdot $\lambda$):= $\Theta$(\sqrt{ $\lambda$}; $\beta$) .

Each pair ($\beta$_{1}, $\beta$_{2}) \in (-$\beta$_{0}, $\beta$_{0})^{2} which solves (2.5) corTesponds to a solution u of (1.1)
with u\not\equiv-1 , 1 and, from (2.2) and (2.4), the correspondence is given by

u(x)=\left\{\begin{array}{ll}
G($\beta$_{1}\cos $\Theta$(\sqrt{ $\lambda$}(x+1);$\beta$_{1})) & (x\in[-1,0\\
G($\beta$_{2}\cos $\Theta$(\sqrt{ $\lambda$}(-x+1);$\beta$_{2})) & (x\in(0,1
\end{array}\right. (2.6)

We note that the constant solution u=0 corresponds to the pair ($\beta$_{1}, $\beta$_{2})=(0,0) and  $\theta$ is
determined by the relation

\displaystyle \int_{0}^{ $\theta$}G'( $\beta$\cos $\tau$)d $\tau$=\sqrt{ $\lambda$} . (2.7)

In what follows, we examine the solution structure of(2.5) in the  $\lambda \beta$_{1}$\beta$_{2} ‐space. By the
correspondence (2.6), discussions in the next two sections can be translated to the claims
in Theorem 1.

3 Primary branches

Let us consider solutions of (2.5) bifurcating from the trivial branch L^{0} :=\{( $\lambda,\ \beta$_{1}, $\beta$_{2}) ;
$\beta$_{1}=$\beta$_{2}=0\} . The theory of local bifurcations leads to the following fact.

Lemma 2. Biprcation points on L^{0} are given by q_{k}^{0} :=($\lambda$_{k}^{0}, 0,0) , k=1 , 2, . . ., where $\lambda$_{k}^{0}
is defined by (1.8). For each k, solutions of (2.5) in a neighborhood of q_{k}^{0} consist only of
two branches which meet at q_{k}^{0} transversally.

We denote by \mathcal{A}_{k} the (local) solution branch emanating from q_{k}^{0} . As is seen below, \mathrm{a}

point ( $\lambda,\beta$_{1}, $\beta$_{2}) on \mathcal{A}_{k} satisfies $\beta$_{1}=-$\beta$_{2} if k is odd and $\beta$_{1}=$\beta$_{2} if k is even. Hence the
corresponding solution of (1.1) is odd if k is odd and is even if k is even.

Let us first find a solution ($\beta$_{1}, $\beta$_{2}) of (2.5) satisfying $\beta$_{1} = -$\beta$_{2} . To this end we put
($\beta$_{1}, $\beta$_{2}) = ( $\beta$, - $\beta$) and substitute this into (2.5). Then, since P( $\beta$; $\lambda$) = -P(- $\beta$; $\lambda$)
and Q( $\beta$; $\lambda$)=-Q(- $\beta$; $\lambda$) are automatically satisfied, we see that (2.5) is reduced to the
equation P( $\beta$; $\lambda$) =0 . Instead of investigating this equation directly, we first solve the
equation

G( $\beta$\displaystyle \cos $\phi$)-a(\int_{0}^{ $\phi$}G'( $\beta$\cos $\tau$)d $\tau$) $\beta$\sin $\phi$=0
with respect to  $\phi$ . One can show that for each  $\beta$\in(-$\beta$_{0}, $\beta$_{0})\backslash \{0\} and l=0 , 1, .. ., this
equation has a unique solution $\phi$_{l}( $\beta$) in (l $\pi$, (l+1/2) $\pi$) , and $\phi$_{l} becomes continuous
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if we define $\phi$_{l}(0) := z_{l} , where z_{l} is a unique root of the equation az \tan z = 1 in
(l $\pi$, (l+1/2) $\pi$) . From (2.7), we see that  $\beta$ \in (-$\beta$_{0}, $\beta$_{0}) solves P( $\beta$; $\lambda$) = 0 if and
only if  $\theta$( $\beta$; $\lambda$) = $\phi$_{l}( $\beta$) for some l . We thus obtain solution branches \mathcal{B}_{l}^{o}, l = 0 , 1, . . .
given by

\displaystyle \mathcal{B}_{l}^{o}:=\{($\lambda$_{l}^{o}( $\beta$),  $\beta$, - $\beta$)\}_{ $\beta$\in(-$\beta$_{0},$\beta$_{0})}, $\lambda$_{l}^{o}( $\beta$):= (\int_{0}^{$\phi$_{l}( $\beta$)}G'( $\beta$\cos $\tau$)d $\tau$)^{2}
Since $\lambda$_{l}^{o}(0)=($\phi$_{l}(0)G'(0))^{2}=(z_{l}/f'(0))^{2}=$\lambda$_{2l+1}^{0} , we see that \mathcal{B}_{$\iota$^{o}} bifurcates from q_{2t+1}^{0}.
By Lemma 2, we have \mathcal{B}_{l}^{o}\cap \mathcal{N}=\mathcal{A}_{2l+1} for some neighborhood \mathcal{N} of q_{2l+1}^{0}.

We look for a solution ($\beta$_{1}, $\beta$_{2}) with $\beta$_{1} =$\beta$_{2}= $\beta$\neq 0 . In this case (2.5) is reduced

to the equation Q( $\beta$; $\lambda$)=0, which is equivalent to  $\theta$( $\beta$; $\lambda$)=l $\pi$, l=1 , 2, . . .. Therefore
we have solution branches

\mathcal{B}_{l}^{e}:=\{($\lambda$_{l}^{e}( $\beta$),  $\beta$,  $\beta$)\}_{ $\beta$\in(-$\beta$_{0},$\beta$_{0})}, l=1 , 2, . . . , $\lambda$_{l}^{e}( $\beta$):= (\displaystyle \int_{0}^{l $\pi$}G'( $\beta$\cos $\tau$)d $\tau$)^{2}
\mathcal{B}_{l}^{e} bifurcates from the point (G'(0)l $\pi$, 0,0) = q_{2l}^{0} , and hence \mathcal{B}_{l}^{e}\cap \mathcal{N}= \mathcal{A}_{2t} for some
neighborhood \mathcal{N} of q_{2l}^{0}.

4 Spectral property of solutions

4.1 Secondary bifurcation

The implicit function theorem implies that if ($\lambda$^{*}, $\beta$_{1}^{*}, $\beta$_{2}^{*}) is a bifurcation point, then the
quantity

D( $\lambda,\ \beta$_{1}, $\beta$_{2}):=\det\left(\begin{array}{ll}
P_{ $\beta$}($\beta$_{1}; $\lambda$) & -P_{ $\beta$}($\beta$_{2}; $\lambda$)\\
Q_{ $\beta$}($\beta$_{1}; $\lambda$) & Q_{ $\beta$}($\beta$_{2}; $\lambda$)
\end{array}\right)
must vanish at ($\lambda$^{*}, $\beta$_{1}^{*}, $\beta$_{2}^{*}) . This fact and the following lemma give the nonexistence of
bifurcation points on the even‐numbered branch \mathcal{B}_{$\iota$^{e}}\backslash \{q_{2l}^{0}\}.

Lemma 3. If (1.6) holds, then D($\lambda$_{l}^{e}( $\beta$),  $\beta$,  $\beta$)\neq 0 for all  $\beta$\in(-$\beta$_{0}, $\beta$_{0})\backslash \{0\}.

Let us discuss bifurcation points on the odd‐numbered branch \mathcal{B}_{l}^{o} . We can show that
if  $\delta$ is small enough, then

 D($\lambda$_{l}^{o}( $\delta$),  $\delta$, - $\delta$)<0, D($\lambda$_{l}^{o}($\beta$_{0}- $\delta$), $\beta$_{0}- $\delta$, -($\beta$_{0}- $\delta$))>0.

Hence D($\lambda$_{l}^{o}($\beta$_{l}^{*}), $\beta$_{l}^{*}, -$\beta$_{l}^{*})=D($\lambda$_{ $\iota$}^{o}(-$\beta$_{l}^{*}), -$\beta$_{l}^{*}, $\beta$_{l}^{*})=0 for some $\beta$_{l}^{*}\in(0, $\beta$_{0}) (note that

D($\lambda$_{l}^{o}( $\beta$),  $\beta$, - $\beta$) is even with respect to  $\beta$). If we can additionally show that the derivative

 E( $\beta$):=\displaystyle \frac{d}{d $\beta$}(D($\lambda$_{l}^{o}( $\beta$),  $\beta$, - $\beta$))
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does not vanish at  $\beta$ = $\beta$_{l}^{*} , then the theory of local bifurcations implies that q_{l}^{+} :=

($\lambda$_{l}^{o}($\beta$_{l}^{*}),$\beta$_{l}^{*}, -$\beta$_{l}^{*}) and q_{l}^{-} := ($\lambda$_{l}^{o}(-$\beta$_{l}^{*}), -$\beta$_{l}^{*}, $\beta$_{l}^{*}) are indeed bifurcation points and so‐
lutions in a neighborhood of q_{l}^{+} (resp. q_{l}^{-} ) consist of two branches which intersect at q_{l}^{+}
(resp. q_{l}^{-} ) transversally. The most difficult point in our study is to check the transversality
condition E($\beta$_{l}^{*})\neq 0 . This can be proved under the assumption (1.7).

Lemma 4. Assume that (1.7) holds and that D($\lambda$_{ $\iota$}^{o}($\beta$^{*}), $\beta$^{*}, -$\beta$^{*}) = 0 for some $\beta$^{*} \in

(0, $\beta$_{0}) . Then there holds E($\beta$^{*}) > 0 . In particular,  $\beta$=$\beta$_{l}^{*} is a unique solution of the
equation D($\lambda$_{l}^{o}( $\beta$), $\beta$, - $\beta$)=0 in (0, $\beta$_{0}) .

4.2 The Morse index

Finally, we study the Morse index of solutions. We begin with the eigenvalues of the
constant solution 0.

Lemma 5. lf  $\lambda$=$\lambda$_{k}^{0} , then $\mu$_{k}(0)=0.

The following lemma gives the basic estimates of the Morse index.

Lemma 6. Suppose (1.6). Let k be a nonnegative integer and let u\not\equiv 0 be a solution of
(1.1) which vanishes at k poims in (-1,1)\backslash \{0\} . Then $\mu$_{k+2}(u)<0 ifu(-0)u(+0)<0
and $\mu$_{k+1}(u)<0 ifu(-0)u(+0)>0.

The nondegeneracy of solutions is determined by D.

Lemma 7. Let u be a solution of (1.1) and let ($\beta$_{1}, $\beta$_{2}) be the corresponding solution of
(2.5). Then u is nondegenerate ifand only if D( $\lambda,\ \beta$_{1}, $\beta$_{2})\neq 0.

From the above lemmas, we can obtain the Morse index for solutions on \mathcal{B}_{l}^{e} . Let

u_{ $\beta$}^{e} be a solution of (1.1) corresponding to a point ($\lambda$_{l}^{e}( $\beta$),  $\beta$,  $\beta$) \in \mathcal{B}_{ $\iota$}^{e} and assume that
(1.6) holds. Then Lemmas 5 and 7 imply that $\mu$_{2l}(u_{ $\beta$}^{e})|_{ $\beta$=0} > $\mu$_{2l+1}(u_{ $\beta$}^{e})|_{ $\beta$=0} = 0 and

$\mu$_{2l}(u_{ $\beta$}^{e})\neq 0 . We know that $\mu$_{2l-1}(u_{ $\beta$}^{e}) is continuous in  $\beta$ , and hence  $\mu$_{2l}(u_{ $\beta$}^{e}) >0 . Since

u_{ $\beta$}^{e} has 2l zeros and u_{ $\beta$}^{e}(-0)u_{ $\beta$}^{e}(+0) = $\beta$^{2} > 0 if  $\beta$ \neq  0 , we see ffom Lemma 6 that

$\mu$_{2l+1}(u_{ $\beta$}^{e})<0 for  $\beta$\neq 0 . Therefore i(u_{ $\beta$}^{e})=2l.
Let u_{ $\beta$}^{o} be a solution which corresponds to ($\lambda$_{l}^{o}( $\beta$),  $\beta$, - $\beta$)\in \mathcal{B}_{ $\iota$}^{o} and suppose (1.7). To

determine the Morse index of u_{ $\beta$}^{o} , we need to know the relation between $\mu$_{2l+1}(u_{ $\beta$}^{o}) and

E( $\beta$) at  $\beta$=$\beta$_{l}^{*}.
Lemma 8. There holds

E($\beta$_{l}^{*})\displaystyle \frac{d}{d $\beta$}$\mu$_{2l+1}(u_{ $\beta$}^{o}) $\beta$=$\beta$_{l}^{*} <0.
It is seen that u_{ $\beta$}^{o} has 2l zeros and u_{ $\beta$}^{o}(-0)u_{ $\beta$}^{o}(+0) <0 if  $\beta$\neq 0 , and so Lemma 6 yields

$\mu$_{2l+2}(u_{ $\beta$}^{o})<0 for  $\beta$\neq 0 . By Lemmas 4, 5, 7 and 8, we have

$\mu$_{2l+1}(u_{ $\beta$}^{o})\left\{\begin{array}{l}
>0 \mathrm{f}\mathrm{f}| $\beta$|<$\beta$_{l}^{*},\\
=0 \mathrm{i}\mathrm{f} | $\beta$|=$\beta$_{l}^{*},\\
<0 \mathrm{i}\mathrm{f}$\beta$_{l}^{*}<| $\beta$|<1.
\end{array}\right.
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This together with Lemmas 4 and 7 shows that $\mu$_{2l}(u_{ $\beta$}^{o}) > 0 . We thus conclude that

i(u_{ $\beta$}^{o})=2l+1\mathrm{i}\mathrm{f}| $\beta$|<$\beta$_{l}^{*} and i(u_{ $\beta$}^{o})=2l if $\beta$_{l}^{*}\leq| $\beta$|<1.
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